
AutoDoc
Generate documentation from GAP

source code
2022.10.20

20 October 2022

Sebastian Gutsche

Max Horn

Sebastian Gutsche
Email: gutsche@mathematik.uni-siegen.de
Homepage: https://algebra.mathematik.uni-siegen.de/gutsche/
Address: Department Mathematik

Universität Siegen
Walter-Flex-Straße 3
57072 Siegen
Germany

Max Horn
Email: horn@mathematik.uni-kl.de
Homepage: https://www.quendi.de/math
Address: Fachbereich Mathematik

TU Kaiserslautern
Gottlieb-Daimler-Straße 48
67663 Kaiserslautern
Germany

mailto://gutsche@mathematik.uni-siegen.de
https://algebra.mathematik.uni-siegen.de/gutsche/
mailto://horn@mathematik.uni-kl.de
https://www.quendi.de/math


AutoDoc 2

Abstract
AutoDoc is a GAP package whose purpose is to aid GAP package authors in creating and maintaining the
documentation of their packages.

Copyright
© 2012-2022 by Sebastian Gutsche and Max Horn

This package may be distributed under the terms and conditions of the GNU Public License Version 2 or
(at your option) any later version.

Acknowledgements
This documentation was prepared using the GAPDoc package [LN12].



Contents

1 Getting started using AutoDoc 4
1.1 Creating a package manual from scratch . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Documenting code with AutoDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Using AutoDoc in an existing GAPDoc manual . . . . . . . . . . . . . . . . . . . . 6
1.4 Scaffolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 AutoDoc worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 AutoDoc documentation comments 13
2.1 Documenting declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Other documentation comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Title page commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Plain text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Markdown-like formatting of text in AutoDoc . . . . . . . . . . . . . . . . . . . . . 22
2.8 Deprecated commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 AutoDoc worksheets 24
3.1 Worksheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 AutoDoc 25
4.1 The AutoDoc() function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 30

Index 31

3



Chapter 1

Getting started using AutoDoc

AutoDoc is a GAP package which is meant to aid GAP package authors in creating and maintain-
ing the documentation of their packages. In this capacity it builds upon the GAPDoc package (see
https://www.gap-system.org/Packages/gapdoc.html). As such, it is not a replacement for
GAPDoc, but rather complements it.

In this chapter we describe how to get started using AutoDoc for your package. First, we explain
in Section 1.1 how to write a new package manual from scratch.

Then we show in Section 1.3 how you might benefit from AutoDoc even if you already have a
complete manual written using GAPDoc.

In Section 1.4, we explain how you may use AutoDoc to generate a title page and the main XML
file for your manual.

Finally, Section 1.5, explains what AutoDoc worksheets are and how to use them.

1.1 Creating a package manual from scratch

Suppose your package is already up and running, but so far has no manual. Then you can rapidly gen-
erate a “scaffold” for a package manual using the AutoDoc (4.1.1) command like this, while running
GAP from within your package’s directory (the one containing the PackageInfo.g file):

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := true ) );

This first reads the PackageInfo.g file from the current directory. It extracts information about
package from it (such as its name and version, see Section 1.4.1). It then creates two XML files
doc/NAME_OF_YOUR_PACKAGE.xml and doc/title.xml inside the package directory. Finally, it runs
GAPDoc on them to produce a nice initial PDF and HTML version of your fresh manual.

To ensure that the GAP help system picks up your package manual, you should also add something
like the following to your PackageInfo.g:

PackageDoc := rec(
BookName := ~.PackageName,
ArchiveURLSubset := ["doc"],
HTMLStart := "doc/chap0.html",
PDFFile := "doc/manual.pdf",
SixFile := "doc/manual.six",

4

https://www.gap-system.org/Packages/gapdoc.html


AutoDoc 5

LongTitle := ~.Subtitle,
),

Congratulations, your package now has a minimal working manual. Of course it will be mostly
empty for now, but it already should contain some useful information, based on the data in your
PackageInfo.g. This includes your package’s name, version and description as well as information
about its authors. And if you ever change the package data, (e.g. because your email address changed),
just re-run the above command to regenerate the two main XML files with the latest information.

Next of course you need to provide actual content (unfortunately, we were not yet able to automate
that for you, more research on artificial intelligence is required). To add more content, you have several
options: You could add further GAPDoc XML files containing extra chapters, sections and so on. Or
you could use classic GAPDoc source comments. For details on either, please refer to (GAPDoc:
Distributing a Document into Several Files), as well as Section 1.3 of this manual on how to teach
the AutoDoc (4.1.1) command to include this extra documentation. Or you could use the special
documentation facilities AutoDoc provides (see Section 1.2).

You will probably want to re-run the AutoDoc (4.1.1) command frequently, e.g. whenever you
modified your documentation or your PackageInfo.g. To make this more convenient and repro-
ducible, we recommend putting its invocation into a file makedoc.g in your package directory, with
content based on the following example:

LoadPackage( "AutoDoc" );
AutoDoc( rec( autodoc := true ) );
QUIT;

Then you can regenerate the package manual from the command line with the following command,
executed from within in the package directory:

gap makedoc.g

1.2 Documenting code with AutoDoc

To get one of your global functions, operations, attributes etc. to appear in the package manual, simply
insert an AutoDoc comment of the form #! directly in front of it. For example:

#!
DeclareOperation( "ToricVariety", [ IsConvexObject ] );

This tiny change is already sufficient to ensure that the operation appears in the manual. In general,
you will want to add further information about the operation, such as in the following example:

#! @Arguments conv
#! @Returns a toric variety
#! @Description
#! Creates a toric variety out
#! of the convex object <A>conv</A>.
DeclareOperation( "ToricVariety", [ IsConvexObject ] );



AutoDoc 6

For a thorough description of what you can do with AutoDoc documentation comments, please refer
to chapter 2.

Suppose you have not been using GAPDoc before but instead used the process described in sec-
tion 1.1 to create your manual. Then the following GAP command will regenerate the manual and
automatically include all newly documented functions, operations etc.:

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := true,

autodoc := true ) );

If you are not using the scaffolding feature, e.g. because you already have an existing GAPDoc based
manual, then you can still use AutoDoc documentation comments. Just make sure to first edit the
main XML file of your documentation, and insert the line

<#Include SYSTEM "_AutoDocMainFile.xml">

in a suitable place. This means that you can mix AutoDoc documentation comment freely with your
existing documentation; you can even still make use of any existing GAPDoc documentation com-
ments in your code. The following command should be useful for you in this case; it still scans the
package code for AutoDoc documentation comments and the runs GAPDoc to produce HTML and
PDF output, but does not touch your documentation XML files otherwise.

LoadPackage( "AutoDoc" );
AutoDoc( rec( autodoc := true ) );

1.3 Using AutoDoc in an existing GAPDoc manual

Even if you already have an existing GAPDoc manual, it might be interesting for you to use AutoDoc
for two purposes:

First off, with AutoDoc is very convenient to regenerate your documentation.
Secondly, the scaffolding feature which generates a title page with all the metadata of your package

in a uniform way is very handy. The somewhat tedious process of keeping your title page in sync with
your PackageInfo.g is fully automated this way (including the correct version, release data, author
information and so on).

There are various examples of packages using AutoDoc for only this purpose, e.g. io and orb.

1.3.1 Using AutoDoc on a complete GAPDoc manual

Suppose you already have a complete XML manual, with some main and title XML files and some
documentation for operations distributed over all your .g, .gd, and .gi files. Suppose the main XML
file is named PACKAGENAME.xml and is in the /doc subdirectory of your package. Then you can
rebuild your manual by executing the following two GAP commands from a GAP sessions started
started in the root directory of your package:

LoadPackage( "AutoDoc" );
AutoDoc( );



AutoDoc 7

In contrast, the RingsForHomalg currently uses essentially the following code in its makedoc.g file
to achieve the same result

LoadPackage( "GAPDoc" );
SetGapDocLaTeXOptions( "utf8" );
bib := ParseBibFiles( "doc/RingsForHomalg.bib" );
WriteBibXMLextFile( "doc/RingsForHomalgBib.xml", bib );
list := [

"../gap/RingsForHomalg.gd",
"../gap/RingsForHomalg.gi",
"../gap/Singular.gi",
"../gap/SingularBasic.gi",
"../examples/RingConstructionsExternalGAP.g",
"../examples/RingConstructionsSingular.g",
"../examples/RingConstructionsMAGMA.g",
"../examples/RingConstructionsMacaulay2.g",
"../examples/RingConstructionsSage.g",
"../examples/RingConstructionsMaple.g",
];

MakeGAPDocDoc( "doc", "RingsForHomalg", list, "RingsForHomalg" );
GAPDocManualLab( "RingsForHomalg" );

Note that in particular, you do not have to worry about keeping a list of your implementation files
up-to-date.

But there is more. AutoDoc can create .tst files from the examples in your manual to test your
package. This can be achieved via

LoadPackage( "AutoDoc" );
AutoDoc( rec( extract_examples := true ) );

Now files PACKAGENAME01.tst, PACKAGENAME02.tst and so appear in the tst/ subdirectory of
your package, and can be tested as usual using Test (Reference: Test) respectively TestDirectory
(Reference: TestDirectory).

1.3.2 Setting different GAPDoc options

Sometimes, the default values for the GAPDoc command used by AutoDoc may not be suitable for
your manual.

Suppose your main XML file is not named PACKAGENAME.xml, but rather something else, e.g.
main.xml. Then you can tell AutoDoc to use this file as the main XML file via

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( main := "main" ) ) );

As explained above, by default AutoDoc scans all .g, .gd and .gi files it can find inside of your
package root directory, and in the subdirectories gap, lib, examples and examples/doc as well.
If you keep source files with documentation in other directories, you can adjust the list of directo-
ries AutoDoc scans via the scan_dirs option. The following example illustrates this by instructing
AutoDoc to only search in the subdirectory package_sources of the packages root directory.



AutoDoc 8

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( scan_dirs := [ "package_sources" ] ) ) );

You can also specify an explicit list of files containing documentation, which will be searched in
addition to any files located within the scan directories:

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( files := [ "path/to/some/hidden/file.gds" ] ) ) );

Giving such a file does not prevent the standard scan_dirs from being scanned for other files.
Next, GAPDoc supports the documentation to be built with relative paths. This means, links

to manuals of other packages or the GAP library will not be absolute, but relative from your docu-
mentation. This can be particularly useful if you want to build a release tarball or move your GAP
installation around later. Suppose you are starting GAP in the root path of your package as always,
and the standard call of AutoDoc (4.1.1) will then build the documentation in the doc subdirectory of
your package. From this directory, the gap root directory has the relative path ../../... Then you
can enable the relative paths by

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( gap_root_relative_path := "../../.." ) ) );

or, since ../../.. is the standard option for gap_root_relative_path, by

LoadPackage( "AutoDoc" );
AutoDoc( rec( gapdoc := rec( gap_root_relative_path := true ) ) );

1.3.3 Checklist for converting an existing GAPDoc manual to use AutoDoc

Here is a checklist for authors of a package PackageName, which already has a GAPDoc based
manual, who wish to use AutoDoc to build the manual from now on. We assume that the manual is
currently built by reading a file makedoc.g and that the main .xml file is named manual.xml.

The files PackageInfo.g, makedoc.g, doc/title.xml and doc/PackageName.xml (if it exists)
will be altered by this procedure, so it may be wise to keep backup copies.

You should have copies of the AutoDoc files PackageInfo.g and makedoc.g to hand when
reading these instructions.

• Copy AutoDoc/makedoc.g to PackageName/makedoc.g.

• Edit PackageName/makedoc.g as follows.

– Change the header comment to match other files in your package.

– After LoadPackage("AutoDoc"); add LoadPackage("PackageName");.

– In the AutoDoc record delete autodoc := true;.

– In the scaffold record change the includes list to be the list of your .xml files that are
contained in manual.xml.



AutoDoc 9

– If you do not have a bibliography you may delete the bib := "bib.xml", field in the
scaffold. Otherwise, edit the file name if you have a different file. If you only have a .bib
file (manual.bib or bib.xml.bib say) you should rename this file PackageName.bib.

– In the LaTeXOptions record, which is in the gapdoc record, enter any LATEX
newcommands previously in manual.xml. (If there are none you may safely delete this
record.) To illustrate this option, the AutoDoc file makedoc.g defines the command \bbZ
by \newcommand{\bbZ}{\mathbb{Z}}, which may be used to produce the LATEX formula
f : Z2 → Z.

– In the entities record enter any entities previously stored in manual.xml. (Again, if
you have none, you may safely delete this record.) To illustrate this option the AutoDoc
file makedoc.g defines entities for the names of packages io and PackageName.

• Now edit PackageName/PackageInfo.g as follows.

– Delete any PKGVERSIONDATA chunk that may be there. One reason for converting your
manual to use AutoDoc is to stop using entities such as PACKAGENAMEVERSION.

– Copy the AutoDoc record from AutoDoc/PackageInfo.g to the end of your file (just
before the final "));".

– Replace the Copyright, Abstract and Acknowledgements fields of the TitlePage
record with the corresponding material from your manual.xml. (If you do not have an
abstract, then delete the Abstract field, etc.) For other introductory components, such as
Colophon, consult the file gap/Magic.gd.

• If you are using a GitHub repository, as well as running "git add" on files makedoc.g,
PackageInfo.g and doc/PackageName.bib, you should run "git rm -f" on files
doc/manual.xml, and doc/title.xml.

You should now be ready to run GAP and Read("makedoc.g"); in your package root directory.

1.4 Scaffolds

1.4.1 Generating a title page

For most (if not all) GAP packages, the title page of the package manual lists information such as
the release date, version, names and contact details of the authors, and so on. All this data is also
contained in your PackageInfo.g, and whenever you make a change to that file, there is a risk that
you forget to update your manual to match. And even if you don’t forget it, you of course have to
spend some time to adjust the manual. GAPDoc can help to a degree with this via entities. Thus, you
will sometimes see code like this in PackageInfo.g files:

Version := "1.2.3",
Date := "20/01/2015",
## <#GAPDoc Label="PKGVERSIONDATA">
## <!ENTITY VERSION "1.2.3">
## <!ENTITY RELEASEDATE "20 January 2015">
## <!ENTITY RELEASEYEAR "2015">
## <#/GAPDoc>



AutoDoc 10

However, it is still easy to forget both of these versions. And it doesn’t solve the problem of updating
package authors addresses. Neither of these is a big issue, of course, but there have been plenty
examples in the past where people forget either of these two things, and it can be slightly embarrassing.
It may even require you to make a new release just to fix the issue, which in our opinion is a sad waste
of your valuable time.

So instead of worrying about manually synchronising these things, you can instruct AutoDoc
to generate a title page for your manual based on the information in your PackageInfo.g. The
following commands do just that (in addition to building your manual), by generating a file called
doc/title.xml.

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := rec( MainPage := false ) ) );

Note that this only outputs doc/title.xml but does not touch any other files of your documentation.
In particular, you need to explicitly include doc/title.xml from your main XML file.

However, you can also tell AutoDoc to maintain the main XML file for you, in which case this is
automatic. In fact, this is the default if you enable scaffolding; the above example command explicitly
told AutoDoc not to generate a main page.

1.4.2 Generating the main XML file

The following generates a main XML file for your documentation in addition to the title page. The
main XML file includes the title page by default, as well as any documentation generated from
AutoDoc documentation comments.

LoadPackage( "AutoDoc" );
AutoDoc( rec( scaffold := true ) );

You can instruct AutoDoc to include additional XML files by giving it a list of filenames, as in the
following example:

LoadPackage( "AutoDoc" );
AutoDoc(rec(

scaffold := rec(
includes := [ "somefile.xml", "anotherfile.xml" ]

)
));

For more information, please consult the documentation of the AutoDoc (4.1.1) function.

1.4.3 What data is used from PackageInfo.g?

AutoDoc can use data from PackageInfo.g in order to generate a title page. Specifically, the follow-
ing components of the package info record are taken into account:

PackageName
This is used to set the <Title> element of the title page.

Subtitle
This is used to set the <Subtitle> element of the title page.



AutoDoc 11

Version
This is used to set the <Version> element of the title page, with the string “Version ” prepended.

Date This is used to set the <Date> element of the title page.

Persons
This is used to generate <Author> elements in the generated title page.

PackageDoc
This is a record (or a list of records) which is used to tell the GAP help system about the package
manual. Currently AutoDoc extracts the value of the PackageDoc.BookName component and
then passes that on to GAPDoc when creating the HTML, PDF and text versions of the manual.

AutoDoc
This is a record which can be used to control the scaffolding performed by AutoDoc,
specifically to provide extra information for the title page. For example, you can set
AutoDoc.TitlePage.Copyright to a string which will then be inserted on the generated title
page. Using this method you can customize the following title page elements: TitleComment,
Abstract, Copyright, Acknowledgements and Colophon.

Note that AutoDoc.TitlePage behaves exactly the same as the scaffold.TitlePage param-
eter of the AutoDoc (4.1.1) function.

1.5 AutoDoc worksheets

AutoDoc worksheets can be used to create HTML and PDF documents using AutoDoc syntax and
possibly including GAP examples and implementations without having them associated to a package.
A file for a worksheet could look like this:

#! @Title My first worksheet
#! @Author Charlie Brown

#! @Chapter Some groups

#! @BeginExample
S3 := SymmetricGroup( 3 );;
S4 := SymmetricGroup( 4 );;
#! @EndExample

Now, one can create a PDF and HTML document, like a package documentation out of it. Suppose
the document above is saved as worksheet.g. Then, when GAP is started in the directory of this file,
the command

AutoDocWorksheet( "worksheet.g" );

will create a subdirectory called doc of the current directory in which it will create the documentation.
There are several options to configure the output of the worksheet command, which are identical to
the options of the AutoDoc (4.1.1) command. It is even possible to test the examples in the worksheet
using the extract_examples option of the AutoDoc (4.1.1) command.



AutoDoc 12

Since the worksheets do not have a PackageInfo.g to extract information, all possible tags that
GAPDoc supports for the title page can be set into the document. A fully typed title page can look
like this:

#! @Title My first worksheet
#! @Subtitle Some small examples
#! @Author Charlie Brown

#! @Version 0.1
#! @TitleComment Some worksheet
#! @Date 01/01/2016
#! @Address TU Kaiserslautern
#! @Abstract
#! A worksheet showing some small examples about groups.
#! @Copyright 2016 Charlie Brown
#! @Acknowledgements Woodstock
#! @Colophon Some colophon

#! @Chapter Some groups

#! @BeginExample
S3 := SymmetricGroup( 3 );;
S4 := SymmetricGroup( 4 );;
#! @EndExample



Chapter 2

AutoDoc documentation comments

You can document declarations of global functions and variables, operations, attributes etc. by insert-
ing AutoDoc comments into your sources before these declaration. An AutoDoc comment always
starts with #!. This is also the smallest possible AutoDoc command. If you want your declaration
documented, just write #! at the line before the documentation. For example:

#!
DeclareOperation( "AnOperation",

[ IsList ] );

This will produce a manual entry for the operation AnOperation.
Inside of AutoDoc comments, AutoDoc commands starting with @ can be used to control the

output AutoDoc produces.

2.1 Documenting declarations

In the bare form above, the manual entry for AnOperation will not contain much more than the name
of the operation. In order to change this, there are several commands you can put into the AutoDoc
comment before the declaration. Currently, the following commands are provided:

2.1.1 @Description descr

Adds the text in the following lines of the AutoDoc to the description of the declaration in the manual.
Lines are until the next AutoDoc command or until the declaration is reached.

2.1.2 @Returns ret_val

The string ret_val is added to the documentation, with the text “Returns: ” put in front of it. This
should usually give a brief hint about the type or meaning of the value returned by the documented
function.

2.1.3 @Arguments args

The string args contains a description of the arguments the function expects, including optional parts,
which are denoted by square brackets. The argument names can be separated by whitespace, commas

13



AutoDoc 14

or square brackets for the optional arguments, like “grp[, elm]” or “xx[y[z] ]”. If GAP options are
used, this can be followed by a colon : and one or more assignments, like “n[, r]: tries := 100”.

2.1.4 @Group grpname

Adds the following method to a group with the given name. See section 2.5 for more information
about groups.

2.1.5 @Label label

Adds label to the function as label. If this is not specified, then for declarations that involve a list
of input filters (as is the case for DeclareOperation, DeclareAttribute, etc.), a default label is
generated from this filter list.

#! @Label testlabel
DeclareProperty( "AProperty",

IsObject );

leads to this:

2.1.6 AProperty (testlabel)

▷ AProperty(arg) (property)

Returns: true or false
while

#!
DeclareProperty( "AProperty",

IsObject );

leads to this:

2.1.7 AProperty (for IsObject)

▷ AProperty(arg) (property)

Returns: true or false

2.1.8 @ChapterInfo chapter, section

Adds the entry to the given chapter and section. Here, chapter and section are the respective titles.
As an example, a full AutoDoc comment with all options could look like this:

#! @Description
#! Computes the list of lists of degrees of ordinary characters
#! associated to the $p$-blocks of the group $G$
#! with $p$-modular character table <A>modtbl</A>
#! and underlying ordinary character table ‘ordtbl‘.
#! @Returns a list
#! @Arguments modtbl
#! @Group CharacterDegreesOfBlocks



AutoDoc 15

#! @Label chardegblocks
#! @ChapterInfo Blocks, Attributes
DeclareAttribute( "CharacterDegreesOfBlocks",

IsBrauerTable );

2.2 Other documentation comments

There are also some commands which can be used in AutoDoc comments that are not associated to
any declaration. This is useful for additional text in your documentation, examples, mathematical
chapters, etc..

2.2.1 @Chapter name

Sets the active chapter, all subsequent functions which do not have an explicit chapter declared in their
AutoDoc comment via @ChapterInfo will be added to this chapter. Also all text comments, i.e. lines
that begin with #! without a command, and which do not follow after @Description, will be added
to the chapter as regular text. Additionally, the chapters label will be set to Chapter_name . Example:

#! @Chapter My chapter
#! This is my chapter.
#! I document my stuff in it.

The @ChapterLabel label command can be used to set the label of the chapter to Chapter_label
instead of Chapter_name . Additionally, the chapter will be stored as _Chapter_label.xml. The
@ChapterTitle title command can be used to set a heading for the chapter that is different from
name . Note that the title does not affect the label. If you use all three commands, i.e.,

#! @Chapter name
#! @ChapterLabel label
#! @ChapterTitle title

title is used for the headline, label for cross-referencing, and name for setting the same chapter as
active chapter again.

2.2.2 @Section name

Sets an active section like @Chapter sets an active chapter. The section automatically ends with the
next @Section or @Chapter command.

#! @Section My first manual section
#! In this section I am going to document my first method.

The @SectionLabel label command can be used to set the label of the section to Section_label
instead of Chapter_chaptername_Section_name . The @SectionTitle title command can be
used to set a heading for the section that is different from name .



AutoDoc 16

2.2.3 @Subsection name

Sets an active subsection like @Section sets an active section. The subsection automatically ends with
the next @Subsection, @Section or @Chapter command. It also ends with the next documented
function. Indeed, internally each function “manpage” is treated like a subsection.

#! @Subsection My first manual subsection
#! In this subsection I am going to document my first example.

The @SubsectionLabel label command can be used to set
the label of the subsection to Subsection_label instead of
Chapter_chaptername_Section_sectionname_Subsection_name . The @SubsectionTitle
title command can be used to set a heading for the subsection that is different from name .

2.2.4 @BeginGroup [grpname]

Starts a group. All following documented declarations without an explicit @Group command are
grouped together in the same group with the given name. If no name is given, then a new nameless
group is generated. The effect of this command is ended when an @EndGroup command is reached.

See section 2.5 for more information about groups.

2.2.5 @EndGroup

Ends the current group.

#! @BeginGroup MyGroup
#!
DeclareAttribute( "GroupedAttribute",

IsList );

DeclareOperation( "NonGroupedOperation",
[ IsObject ] );

#!
DeclareOperation( "GroupedOperation",

[ IsList, IsRubbish ] );
#! @EndGroup

2.2.6 @GroupTitle title

Sets the subsection heading for the current group to title . In the absence of any @GroupTitle
command, the heading will be the name of the first entry in the group. See 2.5 for more information.

2.2.7 @Level lvl

Sets the current level of the documentation. All items created after this, chapters, sections, and items,
are given the level lvl , until the @ResetLevel command resets the level to 0 or another level is set.

See section 2.6 for more information about levels.



AutoDoc 17

2.2.8 @ResetLevel

Resets the current level to 0.

2.2.9 @BeginExample and @EndExample

@BeginExample marks the start of an example to be put into the manual. It differs from GAPDoc’s
<Example> (see (GAPDoc: Log)), in that it expects actual code (not in a comment) interspersed with
comments, to allow for examples files that can be both executed by GAP, and parsed by AutoDoc.
To achieve this, GAP commands are not preceded by a comment, while output has to be preceded
by an AutoDoc comment. The gap> prompt for the display in the manual is added by AutoDoc.
@EndExample ends the example block.

To illustrate this command, consider this input:

#! @BeginExample
S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
Order(S5);
#! 120
#! @EndExample

This results in the following output:
Example

gap> S5 := SymmetricGroup(5);
Sym( [ 1 .. 5 ] )
gap> Order(S5);
120

The AutoDoc command @Example is an alias of @BeginExample.

2.2.10 @BeginExampleSession and @EndExampleSession

@BeginExampleSession marks the start of an example to be put into the manual, while
@EndExampleSession ends the example block. It is the direct analog of GAPDoc’s <Example>
(see (GAPDoc: Log)).

To illustrate this command, consider this input:

#! @BeginExampleSession
#! gap> S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
#! gap> Order(S5);
#! 120
#! @EndExampleSession

This results in the following output:
Example

gap> S5 := SymmetricGroup(5);
Sym( [ 1 .. 5 ] )
gap> Order(S5);
120



AutoDoc 18

It inserts an example into the manual just as @Example would do, but all lines are commented and
therefore not executed when the file is read. All lines that should be part of the example displayed
in the manual have to start with an AutoDoc comment (#!). The comment will be removed, and,
if the following character is a space, this space will also be removed. There is never more than one
space removed. To ensure examples are correctly colored in the manual, there should be exactly one
space between #! and the gap> prompt. The AutoDoc command @ExampleSession is an alias of
@BeginExampleSession.

2.2.11 @BeginLog and @EndLog

Works just like the @BeginExample command, but the example will not be tested. See the GAPDoc
manual for more information. The AutoDoc command @Log is an alias of @BeginLog.

2.2.12 @BeginLogSession and @EndLogSession

Works just like the @BeginExampleSession command, but the example will not be tested if manual
examples are run. It is the direct analog of GAPDoc’s <Log> (see (GAPDoc: Log)). The AutoDoc
command @LogSession is an alias of @BeginLogSession.

2.2.13 @DoNotReadRestOfFile

Prevents the rest of the file from being read by the parser. Useful for unfinished or temporary files.

#! This will appear in the manual

#! @DoNotReadRestOfFile

#! This will not appear in the manual.

2.2.14 @BeginChunk name , @EndChunk, and @InsertChunk name

Text inside a @BeginChunk / @EndChunk part will not be inserted into the final documentation directly.
Instead, the text is stored in an internal buffer. That chunk of text can then later on be inserted in any
other place by using the @InsertChunk name command. If you do not provide an @EndChunk, the
chunk ends at the end of the file.

#! @BeginChunk MyChunk
#! Hello, world.
#! @EndChunk

#! @InsertChunk MyChunk
## The text "Hello, world." is inserted right before this.

You can use this to define an example like this in one file:

#! @BeginChunk Example_Symmetric_Group
#! @BeginExample
S5 := SymmetricGroup(5);
#! Sym( [ 1 .. 5 ] )
Order(S5);



AutoDoc 19

#! 120
#! @EndExample
#! @EndChunk

And then later, insert the example in a different file, like this:

#! @InsertChunk Example_Symmetric_Group

2.2.15 @BeginCode name , @EndCode, and @InsertCode name

Inserts the text between @BeginCode and @EndCode verbatim at the point where @InsertCode is
called. This is useful to insert code excerpts directly into the manual.

#! @BeginCode Increment
i := i + 1;
#! @EndCode

#! @InsertCode Increment
## Code is inserted here.

2.2.16 @LatexOnly text , @BeginLatexOnly, and @EndLatexOnly

Code inserted between @BeginLatexOnly and @EndLatexOnly or after @LatexOnly is only inserted
in the PDF version of the manual or worksheet. It can hold arbitrary LATEX-commands.

#! @BeginLatexOnly
#! \include{picture.tex}
#! @EndLatexOnly

#! @LatexOnly \include{picture.tex}

2.2.17 @NotLatex text , @BeginNotLatex, and @EndNotLatex

Code inserted between @BeginNotLatex and @EndNotLatex or after @NotLatex is inserted in the
HTML and text versions of the manual or worksheet, but not in the PDF version.

#! @BeginNotLatex
#! For further information see the PDF version of this manual.
#! @EndNotLatex

#! @NotLatex For further information see the PDF version of this manual.

2.3 Title page commands

The following commands can be used to add the corresponding parts to the title page of the document
which generated by AutoDoc if scaffolding is enabled.

• @Title



AutoDoc 20

• @Subtitle

• @Version

• @TitleComment

• @Author

• @Date

• @Address

• @Abstract

• @Copyright

• @Acknowledgements

• @Colophon

Those add the following lines at the corresponding point of the title page. Please note that many of
those things can be (better) extracted from the PackageInfo.g. In case you set some of those, the
extracted or in scaffold defined items will be overwritten. While this is not very useful for docu-
menting packages, they are necessary for worksheets created with AutoDocWorksheet (3.1.1), since
worksheets do not have a PackageInfo.g file from which this information could be extracted.

2.4 Plain text files

Files that have the suffix .autodoc and are listed in the autodoc.files option of AutoDoc (4.1.1),
resp. are contained in one of the directories listed in autodoc.scan_dirs, are treated as AutoDoc
plain text files. These work exactly like AutoDoc comments, except that lines do not need to (and in
fact, should not) start with #!.

2.5 Grouping

In GAPDoc, it is possible to make groups of manual items, i.e., when documenting a function, oper-
ation, etc., it is possible to group them into suitable chunks. This can be particularly useful if there
are several definitions of an operation with several different argument types, all doing more or less the
same to the arguments. Then their manual items can be grouped, sharing the same description and
return type information. You can give a heading to the group in the manual with the @GroupTitle
command; if that is not supplied, then the heading of the first manual item in the group will be used as
the heading.

Note that group names are globally unique throughout the whole manual. That is, groups with the
same name are in fact merged into a single group, even if they were declared in different source files.
Thus you can have multiple @BeginGroup / @EndGroup pairs using the same group name, in different
places, and these all will refer to the same group.

Moreover, this means that you can add items to a group via the @Group command in the AutoDoc
comment of an arbitrary declaration, at any time.

The following code



AutoDoc 21

#! @BeginGroup Group1
#! @GroupTitle A family of operations

#! @Description
#! First sentence.
DeclareOperation( "FirstOperation", [ IsInt ] );

#! @Description
#! Second sentence.
DeclareOperation( "SecondOperation", [ IsInt, IsGroup ] );

#! @EndGroup

## .. Stuff ..

#! @Description
#! Third sentence.
#! @Group Group1
KeyDependentOperation( "ThirdOperation", IsGroup, IsInt, "prime );

produces the following:

2.5.1 A family of operations

▷ FirstOperation(arg) (operation)

▷ SecondOperation(arg1, arg2) (operation)

▷ ThirdOperation(arg1, arg2) (operation)

First sentence. Second sentence. Third sentence.

2.6 Level

Levels can be set to not write certain parts in the manual by default. Every entry has by default the
level 0. The command @Level can be used to set the level of the following part to a higher level, for
example 1, and prevent it from being printed to the manual by default. However, if one sets the level
to a higher value in the autodoc option of AutoDoc, the parts will be included in the manual at the
specific place.

#! This text will be printed to the manual.
#! @Level 1
#! This text will be printed to the manual if created with level 1 or higher.
#! @Level 2
#! This text will be printed to the manual if created with level 2 or higher.
#! @ResetLevel
#! This text will be printed to the manual.



AutoDoc 22

2.7 Markdown-like formatting of text in AutoDoc

AutoDoc has some convenient ways to insert special format into text, like math formulas and lists.
The syntax for them are inspired by Markdown and LATEX, but do not follow them strictly. Neither
are all features of the Markdown language supported. The following subsections describe what is
possible.

2.7.1 Lists

One can create lists of items by beginning a new line with *, +, -, followed by one space. The first
item starts the list. When items are longer than one line, the following lines have to be indented by
at least two spaces. The list ends when a line which does not start a new item is not indented by two
spaces. Of course lists can be nested. Here is an example:

#! The list starts in the next line
#! * item 1
#! * item 2
#! which is a bit longer
#! * and also contains a nested list
#! * with two items
#! * item 3 of the outer list
#! This does not belong to the list anymore.

This is the output:
The list starts in the next line

• item 1

• item 2 which is a bit longer

– and also contains a nested list

– with two items

• item 3 of the outer list

This does not belong to the list anymore.
The *, -, and + are fully interchangeable and can even be used mixed, but this is not recommended.

2.7.2 Math modes

One can start an inline formula with a $, and also end it with $, just like in LATEX. This will translate
into GAPDocs inline math environment. For display mode one can use $$, also like LATEX.

#! This is an inline formula: $1+1 = 2$.
#! This is a display formula:
#! $$ \sum_{i=1}^n i. $$

produces the following output:
This is an inline formula: 1+1 = 2. This is a display formula:

n

∑
i=1

i.



AutoDoc 23

2.7.3 Emphasize

One can emphasize text by using two asterisks (**) or two underscores (__) at the beginning and the
end of the text which should be emphasized. Example:

#! **This** is very important.
#! This is __also important__.
#! **Naturally, more than one line
#! can be important.**

This produces the following output:
This is very important. This is also important. Naturally, more than one line can be important.

2.7.4 Inline code

One can mark inline code snippets by using backticks (‘) at the beginning and the end of the text which
should be marked as code. Example:

#! Call function ‘foobar()‘ at the start.

This produces the following output:
Call function foobar() at the start.

2.8 Deprecated commands

The following commands used to be supported, but should not generally be used anymore. They will
be removed in a future version of AutoDoc.

@EndSection
You can simply remove any use of this, AutoDoc ends sections automatically at the start of any
new section or chapter.

@EndSubsection
You can simply remove any use of this, AutoDoc ends subsections automatically at the start of
any new subsection, section or chapter.

@BeginAutoDoc and @EndAutoDoc
It suffices to prepend each declaration that is meant to be appear in the manual with a minimal
AutoDoc comment #!.

@BeginSystem name , @EndSystem, and @InsertSystem name
Please use the chunk commands from subsection 2.2.14 instead.

@AutoDocPlainText and @EndAutoDocPlainText
Use .autodoc files or AutoDoc comments instead.



Chapter 3

AutoDoc worksheets

3.1 Worksheets

3.1.1 AutoDocWorksheet

▷ AutoDocWorksheet(list_of_filenames: options) (function)

The intention of these function is to create stand-alone pdf and html files using AutoDoc without
having them associated to a package. It uses the same optional records as the AutoDoc command
itself, but instead of a package name there should be a filename or a list of filenames containing
AutoDoc text from which the documents are created. Please see the AutoDoc command for more
information about this and have a look at 1.5 for a simple worksheet example.

24



Chapter 4

AutoDoc

4.1 The AutoDoc() function

4.1.1 AutoDoc

▷ AutoDoc([packageOrDirectory][,] [optrec]) (function)

Returns: nothing
This is the main function of the AutoDoc package. It can perform any combination of the follow-

ing tasks:

1. It can (re)generate a scaffold for your package manual. That is, it can produce two XML files in
GAPDoc format to be used as part of your manual: First, a file named doc/PACKAGENAME.xml
(with your package’s name substituted) which is used as main XML file for the package manual,
i.e. this file sets the XML doctype and defines various XML entities, includes other XML
files (both those generated by AutoDoc as well as additional files created by other means),
tells GAPDoc to generate a table of contents and an index, and more. Secondly, it creates a
file doc/title.xml containing a title page for your documentation, with information about
your package (name, description, version), its authors and more, based on the data in your
PackageInfo.g.

2. It can scan your package for AutoDoc based documentation (by using AutoDoc tags and the
Autodoc command. This will produce further XML files to be used as part of the package
manual.

3. It can use GAPDoc to generate PDF, text and HTML (with MathJaX enabled) documentation
from the GAPDoc XML files it generated as well as additional such files provided by you. For
this, it invokes MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc) to convert the XML sources,
and it also instructs GAPDoc to copy supplementary files (such as CSS style files) into your
doc directory (see CopyHTMLStyleFiles (GAPDoc: CopyHTMLStyleFiles)).

For more information and some examples, please refer to Chapter 1.
The parameters have the following meanings:

packageOrDirectory
The purpose of this parameter is twofold: to determine the package directory in which AutoDoc
will operate, and to find the metadata concerning the package being documented. The parameter
is either a string, an IsDirectory object, or omitted. If it is a string, AutoDoc interprets

25



AutoDoc 26

it as the name of a package, uses the metadata of the first package known to GAP with that
name, and uses the InstallationPath specified in that metadata as the package directory.
If packageOrDirectory is an IsDirectory object, this is used as package directory; if the
argument is omitted, then the current directory is used. In the last two cases, the specified
directory must contain a PackageInfo.g file, and AutoDoc extracts all needed metadata from
that. The IsDirectory form is for example useful if you have multiple versions of the package
around and want to make sure the documentation of the correct version is built.

Note that when using AutoDocWorksheet (see 3.1), there is no parameter corresponding to
packageOrDirectory and so the “package directory” is always the current directory, and there
is no metadata.

optrec
optrec can be a record with some additional options. The following are currently supported:

dir This should either be a string, in which case it must be a path relative to the specified
package directory, or a Directory() object. (Thus, the only way to designate an absolute
directory is with a Directory() object.) This option specifies where the package docu-
mentation (e.g. the GAPDoc XML or the manual PDF, etc.) files are stored and/or will be
generated.
Default value: "doc/".

scaffold
This controls whether and how to generate scaffold XML files for the package documen-
tation.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.scaffold is missing but the package’s info record in PackageInfo.g has an
AutoDoc entry. In all other cases (in particular if opt.scaffold is false), scaffolding is
disabled.
If scaffolding is enabled, and PackageInfo.AutoDoc exists, then it is assumed to be a
record, and its contents are used as default values for the scaffold settings.
If opt.scaffold is a record, it may contain the following entries.

includes
A list of XML files to be included in the body of the main XML file. If you specify
this list and also are using AutoDoc to document your operations with AutoDoc
comments, you can add _AutoDocMainFile.xml to this list to control at which point
the documentation produced by AutoDoc is inserted. If you do not do this, it will be
added after the last of your own XML files.

index
By default, the scaffold creates an index. If you do not want an index, set this to
false.

appendix
This entry is similar to opt.scaffold.includes but is used to specify files to in-
clude after the main body of the manual, i.e. typically appendices.

bib
The name of a bibliography file, in BibTeX or XML format. If this key is not set, but



AutoDoc 27

there is a file doc/PACKAGENAME.bib then it is assumed that you want to use this as
your bibliography.

entities
A record whose keys are taken as entity names, set to the corresponding (string) val-
ues. For example, if you pass the record “SomePackage”,

rec( SomePackage := "<Package>SomePackage</Package>",
RELEASEYEAR := "2015" )

then the following entity definitions are added to the XML preamble:
<!ENTITY SomePackage ’<Package>SomePackage</Package>’>

<!ENTITY RELEASEYEAR ’2015’>

This allows you to write “&SomePackage;” and “&RELEASEYEAR;” in your doc-
umentation, which will be replaced by respective values specified in the entities defi-
nition.

TitlePage
A record whose entries are used to embellish the generated title page for the package
manual with extra information, such as a copyright statement or acknowledgments.
To this end, the names of the record components are used as XML element names,
and the values of the components are outputted as content of these XML elements.
For example, you could pass the following record to set a custom acknowledgements
text:

rec( Acknowledgements := "Many thanks to ..." )

For a list of valid entries in the title page, please refer to the GAPDoc manual, specif-
ically section (GAPDoc: TitlePage).

MainPage
If scaffolding is enabled, by default a main XML file is generated (this is the file
which contains the XML doctype and more). If you do not want this (e.g. because
you have a handwritten main XML file), but still want AutoDoc to generate a title
page for you, you can set this option to false

document_class
Sets the document class of the resulting PDF. The value can either be a string which
has to be the name of the new document class, a list containing this string, or a list of
two strings. Then the first one has to be the document class name, the second one the
option string ( contained in [ ] ) in LATEX.

latex_header_file
Replaces the standard header from GAPDoc completely with the header in this LATEX
file. Please be careful here, and look at GAPDoc’s latexheader.tex file for an
example.

autodoc
This controls whether and how to generate additional XML documentation files by scan-
ning for AutoDoc documentation comments.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled if
opt.autodoc is missing but the package depends (directly) on the AutoDoc package. In
all other cases (in particular if opt.autodoc is false), this feature is disabled.



AutoDoc 28

If opt.autodoc is a record, it may contain the following entries.

files
A list of files (given by paths relative to the package directory) to be scanned
for AutoDoc documentation comments. Usually it is more convenient to use
autodoc.scan_dirs , see below.

scan_dirs
A list of subdirectories of the package directory (given as relative paths) which
AutoDoc then scans for .gi, .gd, .g, and .autodoc files; all of these files are then
scanned for AutoDoc documentation comments.
Default value: [ ".", "gap", "lib", "examples", "examples/doc" ].

level
This defines the level of the created documentation. The default value is 0. When
parts of the manual are declared with a higher value they will not be printed into the
manual.

gapdoc
This controls whether and how to invoke GAPDoc to create HTML, PDF and text files
from your various XML files.
The value should be either true, false or a record. If it is a record or true (the latter is
equivalent to specifying an empty record), then this feature is enabled. It is also enabled
if opt.gapdoc is missing. In all other cases (in particular if opt.gapdoc is false), this
feature is disabled.
If opt.gapdoc is a record, it may contain the following entries.

main
The name of the main XML file of the package manual. This exists primarily to
support packages with existing manual which use a filename here which differs from
the default. In particular, specifying this is unnecessary when using scaffolding.
Default value: PACKAGENAME.xml.

files
A list of files (given by paths relative to the package directory) to be scanned
for GAPDoc documentation comments. Usually it is more convenient to use
gapdoc.scan_dirs , see below.

scan_dirs
A list of subdirectories of the package directory (given as relative paths) which
AutoDoc then scans for .gi, .gd and .g files; all of these files are then scanned for
GAPDoc documentation comments.
Default value: [ ".", "gap", "lib", "examples", "examples/doc" ].

LaTeXOptions
Must be a record with entries which can be understood by SetGapDocLaTeXOptions
(GAPDoc: SetGapDocLaTeXOptions). Each entry can be a string, which will be
given to GAPDoc directly, or a list containing of two entries: The first one must be
the string "file", the second one a filename. This file will be read and then its content
is passed to GAPDoc as option with the name of the entry.

gap_root_relative_path
Either a boolean, or a string containing a relative path. By default (if this option is not
set, or is set to false), references in the generated documentation referring to external



AutoDoc 29

documentation (such as the GAP manual) are encoded using absolute paths. This is
fine as long as the documentation stays on only a single computer, but is problematic
when preparing documentation that should be used on multiple computers, e.g., when
creating a distribution archive of a GAP package.
Thus, if a relative path is provided via this option (or if it is set to true, in which case
the relative path ../../.. is used), then AutoDoc and GAPDoc attempt to replace
all absolute paths in references to GAP manuals by paths based on this relative path.
On a technical level, AutoDoc passes the relative path to the gaproot parameter of
MakeGAPDocDoc (GAPDoc: MakeGAPDocDoc)

extract_examples
Either true or a record. If set to true, then all manual examples are extracted and placed
into files tst/PACKAGENAME01.tst, tst/PACKAGENAME02.tst, ... and so on, with one
file for each chapter. For chapters with no examples, no file is created.
As a record, the entry can have the following entries itself, to specify some options.

units
This controls how examples are grouped into files. Recognized values are "Chapter"
(default), "Section", "Subsection" or "Single". Depending on the value, one file is
created for each chapter, each section, each subsection or each example. For all other
values only a single file is created.
On a technical level, AutoDoc passes the value to the units parameter of
ExtractExamples (GAPDoc: ExtractExamples).

skip_empty_in_numbering
If set to true (the default), the generated files use filenames with strictly sequential
numbering; that means that if chapter 1 (or whatever units are being used) contains
no examples but chapter 2 does, then the examples for chapter 2 are put into the file
tst/PACKAGENAME01.tst. If this option is set to false, then the chapter numbers
are used to generate the filenames; so the examples for chapter 2 would be put into
the file tst/PACKAGENAME02.tst.

maketest
This option is deprecated. Please use extract_examples instead.
Either true or a record. When it is true, a simple maketest.g file is created in the main
package directory, which can be used to test the examples from the manual. As a record,
the entry can have the following entries itself, to specify some options.

filename
Sets the name of the test file.

commands
A list of strings, each one a command, which will be executed at the beginning of the
test file.

4.2 Examples

Some basic examples for using AutoDoc were already shown in Chapter 1.



References

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.5.1). RWTH Aachen, 2012. GAP package,
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html. 2

30

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html


Index

@Arguments args , 13
@BeginChunk name , 18
@BeginCode name , 19
@BeginExample, 17
@BeginExampleSession, 17
@BeginGroup, 16
@BeginLatexOnly, 19
@BeginLog, 18
@BeginLogSession, 18
@BeginNotLatex, 19
@Chapter, 15
@ChapterInfo, 14
@ChapterLabel, 15
@ChapterTitle, 15
@Description descr , 13
@DoNotReadRestOfFile, 18
@EndChunk, 18
@InsertChunk name , 18
@EndCode, 19
@EndExample, 17
@EndExampleSession, 17
@EndGroup, 16
@EndLatexOnly, 19
@EndLog, 18
@EndLogSession, 18
@EndNotLatex, 19
@Group grpname , 14
@GroupTitle, 16
@InsertCode name , 19
@Label label , 14
@LatexOnly text , 19
@Level, 16
@NotLatex text , 19
@ResetLevel, 17
@Returns ret_val , 13
@Section, 15
@SectionLabel, 15
@SectionTitle, 15

@Subsection, 16
@SubsectionLabel, 16
@SubsectionTitle, 16

Abstract field in PackageInfo.g, 9
Acknowledgements field in PackageInfo.g, 9
AProperty

for IsObject, 14
testlabel, 14

AutoDoc, 25
AutoDocWorksheet, 24

Bibliography field in makedoc.g, 9

Copyright field in PackageInfo.g, 9

Entities record in makedoc.g, 9

FirstOperation
for IsInt, 21

LaTeXOptions record in makedoc.g, 9

makedoc.g, 5

Scaffold record in makedoc.g, 8
SecondOperation

for IsInt, IsGroup, 21

ThirdOperation
for IsGroup, IsInt, 21

31


	Getting started using AutoDoc
	Creating a package manual from scratch
	Documenting code with AutoDoc
	Using AutoDoc in an existing GAPDoc manual
	Scaffolds
	AutoDoc worksheets

	AutoDoc documentation comments
	Documenting declarations
	Other documentation comments
	Title page commands
	Plain text files
	Grouping
	Level
	Markdown-like formatting of text in AutoDoc
	Deprecated commands

	AutoDoc worksheets
	Worksheets

	AutoDoc
	The AutoDoc() function
	Examples

	References
	Index

