
debian-binary
2.0

control.tar.xz
control.tar

./control

Package: pikepdf-doc
Source: pikepdf
Version: 8.7.1+dfsg-2
Architecture: all
Maintainer: Debian Python Team <team+python@tracker.debian.org>
Installed-Size: 2980
Depends: libjs-jquery (>= 3.6.0), libjs-sphinxdoc (>= 7.2.2), sphinx-rtd-theme-common (>= 2.0.0~rc3+dfsg)
Built-Using: sphinx (= 7.2.6-2)
Section: doc
Priority: optional
Multi-Arch: foreign
Homepage: https://github.com/pikepdf/pikepdf
Description: Python library to read and write PDFs with QPDF - documentation
 pikepdf is a Python library to read and write PDFs with QPDF.
 .
 This package includes pikepdf's HTML documentation.
 .
 See the description for the pikepdf binary package for more
 information about pikepdf.

./md5sums

998b0f07dcecd93874f7ce2696c90769 usr/share/doc-base/pikepdf-doc.pikepdf
d2bcb177b4c093863f4aa23dbb0487f2 usr/share/doc/pikepdf-doc/changelog.Debian.gz
56bc2c28f30dc20ca076b70eb07c85d9 usr/share/doc/pikepdf-doc/copyright
019d1f5e91fc18174017739bad55787b usr/share/doc/python3-pikepdf/html/_images/28fish.jpg
e6464ade18052b092839b33dce7122da usr/share/doc/python3-pikepdf/html/_images/acrobat-attachments.png
c034018fc95c4976f8d816f0b1811927 usr/share/doc/python3-pikepdf/html/_images/congress_im0.jpg
095a6e43ba5435bde5dac8e54e232543 usr/share/doc/python3-pikepdf/html/_images/pdfcoords.svg
903f9292525707c3659997d1ad302e71 usr/share/doc/python3-pikepdf/html/_images/pike-cartoon.png
0c48522f9fe78c99534679e0b4040568 usr/share/doc/python3-pikepdf/html/_images/pike-release.jpg
cd5c25a8727db7f9a16c3525283a6ec7 usr/share/doc/python3-pikepdf/html/_images/pike.png
3f400c6a929f22504711a1b77ac589a6 usr/share/doc/python3-pikepdf/html/_images/pikemen.jpg
7029319eb7b11c00ecba8e26ff35682a usr/share/doc/python3-pikepdf/html/_images/sushi.jpg
07b32b5a2ab2ecf9e796dba7eb10f169 usr/share/doc/python3-pikepdf/html/_sources/api/exceptions.rst.txt
afc62f5f13c5996a3d95fe56c7d90c8a usr/share/doc/python3-pikepdf/html/_sources/api/filters.rst.txt
a66e1e00c5317343e9f46b345c492f03 usr/share/doc/python3-pikepdf/html/_sources/api/main.rst.txt
133cf62907e80d0d726159745b395cf4 usr/share/doc/python3-pikepdf/html/_sources/api/models.rst.txt
48c86f4242df5ca6c1e3738875ed6272 usr/share/doc/python3-pikepdf/html/_sources/api/settings.rst.txt
3df799eba3ea78a99ef1f9266caec702 usr/share/doc/python3-pikepdf/html/_sources/index.rst.txt
0f32933f1c12df417c5ed6dc0b51a6a9 usr/share/doc/python3-pikepdf/html/_sources/references/arch.rst.txt
8dfc3ca00b51118bf1c6389ed6f0c6c7 usr/share/doc/python3-pikepdf/html/_sources/references/contributing.rst.txt
26599f38bec3683ca68e06a1c724d85c usr/share/doc/python3-pikepdf/html/_sources/references/debugging.rst.txt
aa2a25801a2886e630d441c32ee54957 usr/share/doc/python3-pikepdf/html/_sources/references/resources.rst.txt
32bd2e2352adb462d3b0e882f3f88eb7 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/index.rst.txt
ab545f23c294b0a101109423499a5f3f usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version0.rst.txt
a94aeab4e3535b0b89f5e69ba96f5037 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version1.rst.txt
ad7239c47afe98750c18b1294dfd5932 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version2.rst.txt
0e84e7c2e7a728f05ec986fe2f769027 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version3.rst.txt
14ba460b04bf9c80d1da4f0e0eaae299 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version4.rst.txt
0844c3dc44df2dd803d628a142baa5a2 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version5.rst.txt
f22c5473212466f7d340d2288ec14fc1 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version6.rst.txt
b032695125a00a67d5cbf0c570957f97 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version7.rst.txt
484f8662b823bb0760d10b581b3aed53 usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version8.rst.txt
8be07d0beee760a1abb088d03a0406f9 usr/share/doc/python3-pikepdf/html/_sources/topics/attachments.rst.txt
bf1918d0f51ef6717432b01f93576234 usr/share/doc/python3-pikepdf/html/_sources/topics/content_streams.rst.txt
cb0076956824347b3daf75f2ae68251e usr/share/doc/python3-pikepdf/html/_sources/topics/encoding.rst.txt
a6ae8dbc7b87a0c1e111c449035831bd usr/share/doc/python3-pikepdf/html/_sources/topics/images.rst.txt
7ecd904de4c7b6798c58c4d8bcc3ba76 usr/share/doc/python3-pikepdf/html/_sources/topics/metadata.rst.txt
3a890dd7926db08c20904cf414a36d36 usr/share/doc/python3-pikepdf/html/_sources/topics/nametrees.rst.txt
c34a8e97d6104f4dbc8064bb0754c312 usr/share/doc/python3-pikepdf/html/_sources/topics/objects.rst.txt
ee6801b55299af3edf0ddabec5622534 usr/share/doc/python3-pikepdf/html/_sources/topics/outlines.rst.txt
fcc613afe05f1993398de9e37b1f37a3 usr/share/doc/python3-pikepdf/html/_sources/topics/overlays.rst.txt
f93c7fefb0a4700cfe2da55cd656b82d usr/share/doc/python3-pikepdf/html/_sources/topics/page.rst.txt
9b50e94db045ec29cfa31b9374814798 usr/share/doc/python3-pikepdf/html/_sources/topics/pagelayout.rst.txt
8811f79eb0f715319240618044e9aac9 usr/share/doc/python3-pikepdf/html/_sources/topics/pages.rst.txt
d7819debe24e6fe42b7f562c64736935 usr/share/doc/python3-pikepdf/html/_sources/topics/security.rst.txt
2e124f990eab729d2f4427308213dfb4 usr/share/doc/python3-pikepdf/html/_sources/topics/streams.rst.txt
7ad050276c0d1b469504629c4d1452d4 usr/share/doc/python3-pikepdf/html/_sources/tutorial.rst.txt
40cd687d0309b16ead149fceb7ef5c45 usr/share/doc/python3-pikepdf/html/_static/_sphinx_javascript_frameworks_compat.js
4fa4e11bbbc3522f998b7bcb47f7204f usr/share/doc/python3-pikepdf/html/_static/basic.css
4fe2210526b7c2712bdbc08d1a7a9d12 usr/share/doc/python3-pikepdf/html/_static/documentation_options.js
ba0c95766a77a6c598a7ca542f1db738 usr/share/doc/python3-pikepdf/html/_static/file.png
36b1a4b05451c7acde7ced60b2f6bc21 usr/share/doc/python3-pikepdf/html/_static/minus.png
903f9292525707c3659997d1ad302e71 usr/share/doc/python3-pikepdf/html/_static/pike-cartoon.png
0d7849fd4d4148b7f78cab60a087633a usr/share/doc/python3-pikepdf/html/_static/plus.png
16acc1c7c720d4035192aa29995ce675 usr/share/doc/python3-pikepdf/html/_static/pygments.css
4ba9dd85c916c8131367522fb07029f2 usr/share/doc/python3-pikepdf/html/api/exceptions.html
36256fda8a17a91415959ccf872f7164 usr/share/doc/python3-pikepdf/html/api/filters.html
df16753ce8dcca0f130cca6a521a55b6 usr/share/doc/python3-pikepdf/html/api/main.html
5d16f357536b41b904bb40ff9183d1df usr/share/doc/python3-pikepdf/html/api/models.html
4c168eaa7bdbd14d3322c3e9210a8a04 usr/share/doc/python3-pikepdf/html/api/settings.html
5208e155a5d317dc51e81ba32e4e06ad usr/share/doc/python3-pikepdf/html/genindex.html
a4d8255c8f41ec7d12365b98451c079d usr/share/doc/python3-pikepdf/html/index.html
a0922151a7b76053bb37d1cef12cb698 usr/share/doc/python3-pikepdf/html/objects.inv
9f4064732681d6e4b7b3b7bb140405f1 usr/share/doc/python3-pikepdf/html/references/arch.html
2529b7422584ad0b6cdfc5b9e3c8aa3c usr/share/doc/python3-pikepdf/html/references/contributing.html
26bc2b38922f5245f47aa7c37761e43a usr/share/doc/python3-pikepdf/html/references/debugging.html
487f0d0c7bc93f9f7d0c81a17fb7eee7 usr/share/doc/python3-pikepdf/html/references/resources.html
fcb9d176e628d080758e098fb1fca2ed usr/share/doc/python3-pikepdf/html/releasenotes/index.html
e521ac8275204d2e6974a817554f7ceb usr/share/doc/python3-pikepdf/html/releasenotes/version0.html
4d21cec567aae207cf5fcd0832ef1338 usr/share/doc/python3-pikepdf/html/releasenotes/version1.html
c4d89ce6aa21f759fa4bfd476acbc111 usr/share/doc/python3-pikepdf/html/releasenotes/version2.html
19404ed90549efb45f1234d92122ee5e usr/share/doc/python3-pikepdf/html/releasenotes/version3.html
fe8400946ab7466151490824a983c54b usr/share/doc/python3-pikepdf/html/releasenotes/version4.html
49f2c38854381c318685d8d3977a39a8 usr/share/doc/python3-pikepdf/html/releasenotes/version5.html
8682a3246fdfe5a48b6f80c2ea5152a3 usr/share/doc/python3-pikepdf/html/releasenotes/version6.html
187a8fdb83860a563d471dd4197dbf99 usr/share/doc/python3-pikepdf/html/releasenotes/version7.html
2770f25b080634b3ca2b041b8ce5c464 usr/share/doc/python3-pikepdf/html/releasenotes/version8.html
8e415401bb4627acaebf3b6322ec71ea usr/share/doc/python3-pikepdf/html/search.html
5ae7da18aff7321840dcfcb1a22fad1d usr/share/doc/python3-pikepdf/html/searchindex.js
e3cc802c7ff5f82dd7bda8f50d626d47 usr/share/doc/python3-pikepdf/html/topics/attachments.html
42814ff46717dd0fbebff03d1b547e3e usr/share/doc/python3-pikepdf/html/topics/content_streams.html
82e0e805bcd5ee3c3a29cbd98d9b4a2a usr/share/doc/python3-pikepdf/html/topics/encoding.html
2ea65eab8e6c134658b0e75cd4738cc5 usr/share/doc/python3-pikepdf/html/topics/images.html
b5a04ebf66b20eeff7460fce05226142 usr/share/doc/python3-pikepdf/html/topics/metadata.html
e0c67bf7448aa53cdb63b47733e0a3c6 usr/share/doc/python3-pikepdf/html/topics/nametrees.html
e6988e033f89b2c4ed2c1f4f510eb43f usr/share/doc/python3-pikepdf/html/topics/objects.html
d8745484eac466e5b6e0b3cebb0a101a usr/share/doc/python3-pikepdf/html/topics/outlines.html
955a2d67691b08fa41f6684c7de382d3 usr/share/doc/python3-pikepdf/html/topics/overlays.html
637e5d661aacde9cc3095d92e3d9dc07 usr/share/doc/python3-pikepdf/html/topics/page.html
5ee3b9003dbbf0623f02fa7f3c964d3a usr/share/doc/python3-pikepdf/html/topics/pagelayout.html
ff59f4859d1947cb068f08d54b8b7de5 usr/share/doc/python3-pikepdf/html/topics/pages.html
9a22752cb4948ea3a0c847f5156e6a42 usr/share/doc/python3-pikepdf/html/topics/security.html
d4e4ff0d262b916086cdfac47130bc22 usr/share/doc/python3-pikepdf/html/topics/streams.html
64fbbad66174623788132d68fc7cad06 usr/share/doc/python3-pikepdf/html/tutorial.html

data.tar.xz
data.tar

./usr/share/doc/pikepdf-doc/changelog.Debian.gz

./usr/share/doc/pikepdf-doc/changelog.Debian

pikepdf (8.7.1+dfsg-2) unstable; urgency=medium

 * Update autopkgtest dependencies to fix test failure.

 -- Vincent Cheng <vcheng@debian.org> Mon, 20 Nov 2023 02:55:34 -0800

pikepdf (8.7.1+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Add build-dep on python3-deprecated.
 - Refresh patches.

 -- Vincent Cheng <vcheng@debian.org> Sun, 19 Nov 2023 08:20:55 -0800

pikepdf (8.5.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Wed, 11 Oct 2023 10:07:26 -0700

pikepdf (8.5.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sat, 07 Oct 2023 00:33:32 -0700

pikepdf (8.4.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sun, 10 Sep 2023 08:28:02 -0700

pikepdf (8.4.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Tue, 22 Aug 2023 03:26:44 -0700

pikepdf (8.3.2+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sat, 12 Aug 2023 14:02:47 -0700

pikepdf (8.3.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Wed, 09 Aug 2023 11:21:00 -0700

pikepdf (8.2.3+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Refresh patches.

 -- Vincent Cheng <vcheng@debian.org> Wed, 02 Aug 2023 23:24:57 -0700

pikepdf (8.2.2+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sat, 29 Jul 2023 18:08:50 -0700

pikepdf (8.2.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Tue, 25 Jul 2023 01:03:51 -0700

pikepdf (8.2.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Fri, 21 Jul 2023 22:46:27 -0700

pikepdf (8.1.1+dfsg-1) unstable; urgency=medium

 * Adopt package and add myself as Uploader. (Closes: #1017873)
 * New upstream release. (Closes: #1030340)
 - Drop docs-build-use-DEB_VERSION_UPSTREAM.patch.
 - Refresh remaining patches.
 * Add build-depends on pybuild-plugin-pyproject.
 * Update dh compat level to 13.
 * Update Standards version to 4.6.2.

 -- Vincent Cheng <vcheng@debian.org> Sun, 16 Jul 2023 22:04:06 -0700

pikepdf (6.0.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #1019694).
 * Drop python3-setuptools-scm-git-archive, python3-sphinx-panels build-deps.
 * Add Optional-patch-remove-sphinx-design.patch.
 * Extend docs-build-use-DEB_VERSION_UPSTREAM.patch to src/pikepdf/_version.py.
 * Refresh remaining patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 28 Sep 2022 14:18:59 -0700

pikepdf (5.1.1+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Cherry-pick upstream commit 4f6923f (Closes: #1009737).

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 15 Apr 2022 14:49:08 -0700

pikepdf (5.0.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 01 Mar 2022 13:13:09 -0700

pikepdf (5.0.0+dfsg-2) unstable; urgency=medium

 * Update b-d python3-toml -> python3-tomli.
 * Add autopkgtest dep on python3-tomli (Closes: #1006123).

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 20 Feb 2022 13:16:51 -0700

pikepdf (5.0.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #1005766).
 * Refresh patches.
 * Add build-deps qpdf 10.6.2, python3-sphinx-panels, python3-packaging.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 18 Feb 2022 13:13:43 -0700

pikepdf (4.2.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #996881, #1002424).
 * Update path in d/copyright src/gsl.h -> src/qpdf/gsl.h.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 23 Dec 2021 15:37:35 -0700

pikepdf (3.2.0+dfsg-2) unstable; urgency=medium

 * Drop python3-pytest-helpers-namespace from autopkgtest dependencies.
 No longer required by upstream's test suite.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 18 Oct 2021 14:35:54 -0700

pikepdf (3.2.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #996792).
 * Add build-deps on python3-toml, python3-sphinx-issues.
 * Update d/copyright for new release.
 - Drop stanzas for mp_compile.py, QIntC.hh and docs/images/pike-tree.jpg.
 - Update path docs/images/pike.{jpg->png}.
 - Add stanza for tests/resources/Gray.icc.
 * Drop drop-pybind11-from-setup.py.patch.
 No longer required.
 * Drop Fix-compatibility-with-pybind11.patch.
 Obsoleted by upstream changes.
 * Drop patches corresponding to cherry-picks from upstream.
 * Refresh remaining patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 18 Oct 2021 14:00:32 -0700

pikepdf (1.17.3+dfsg-5) unstable; urgency=medium

 * Cherry pick upstream commit 3f38f73 to fix CVE-2021-29421 (Closes: #986274).

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 09 Apr 2021 10:41:33 -0700

pikepdf (1.17.3+dfsg-4) unstable; urgency=medium

 * Cherry-pick upstream commit 7ca375cb to fix another broken text
 (Closes: #981465).
 Thanks to Jay Berkenbilt for investigation.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 01 Feb 2021 10:19:39 -0700

pikepdf (1.17.3+dfsg-3) unstable; urgency=medium

 * Fix bug number closed by previous upload.
 * Cherry-pick upstream commits 7ac9b058 and fe4b568a for compatibility
 with qpdf 10.1.0 (Closes: #980426).

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 19 Jan 2021 14:10:44 -0700

pikepdf (1.17.3+dfsg-2) unstable; urgency=medium

 [Debian Janitor]
 * Bump debhelper from old 10 to 12.
 * Set upstream metadata fields: Bug-Database, Bug-Submit.

 [Ondřej Nový]
 * d/control: Update Maintainer field with new Debian Python Team
 contact address.
 * d/control: Update Vcs-* fields with new Debian Python Team Salsa
 layout.

 [Sean Whitton]
 * Fix compatibility with pybind11 (Closes: #975202).
 Thanks to Matthias Klose for the patch.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 24 Dec 2020 22:33:32 -0700

pikepdf (1.17.3+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Update d/copyright for several new files.
 Thanks to upstream for help with this.
 - Drop tests/resources/tree* from Files-Excluded:, and Comment: field
 - Add stanzas for new test resources, src/gsl.h and src/QIntC.hh
 - Update upstream's copyright years in Files: * stanza.
 * Fix "Licence"->"License" in an existing stanza.
 * Drop disable-test_icc_extract.patch
 - Test dropped upstream.
 * Refresh remaining patches.
 * Add python3-psutil autopkgtest dependency.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 26 Jul 2020 15:47:36 -0700

pikepdf (1.13.0+dfsg-2) unstable; urgency=medium

 * Add runtime dependency on python3-pkg-resources (Closes: #965103).

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 18 Jul 2020 10:57:32 -0700

pikepdf (1.13.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Add stanza for tests/resources/outlines.pdf to d/copyright.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 17 May 2020 17:11:59 -0700

pikepdf (1.12.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 17 May 2020 16:50:08 -0700

pikepdf (1.11.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Update Files-Excluded:
 - Remove tests/resources/enron1_gs.pdf
 - Add docs/images/save-pike.jpg
 Although <https://commons.wikimedia.org/wiki/File:SaveDePike.jpg>
 says the photo is public domain, it is possible that the photographed
 sign itself is under copyright. The file is not essential so playing
 it safe.
 * Drop disable-test_docinfo_problems.patch.
 Tests have been updated to use a different file, which we have.
 * Add drop-save-pike.patch.
 * Refresh remaining patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 15 Apr 2020 16:21:33 -0700

pikepdf (1.10.3+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #955045).
 * Add docs/images/28fish.jpg to d/copyright.
 * Refresh patch.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 27 Mar 2020 08:50:15 -0700

pikepdf (1.10.2+dfsg-2) unstable; urgency=medium

 * In d/rules, when setting PYTHONPATH to build the HTML docs, add only
 the subdirectory of .pybuild corresponding to the version of Python
 which will actually be used to build the docs.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 21 Mar 2020 21:44:24 -0700

pikepdf (1.10.2+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #950138).

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 29 Feb 2020 08:56:25 -0700

pikepdf (1.10.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Refresh patch.
 * Set http{s,}_proxy for override_dh_auto_build to prevent sphinx
 attempting to fetch intersphinx inventory files.
 Thanks, LibraryStyleGuide page on Debian Wiki.
 * Fix HTML docs build:
 - Add python3-pil build-dep
 - Run dh_auto_build first, then try to build docs.
 Previously we were doing the reverse.
 - Set PYTHONPATH.
 * Drop superfluous '-O--buildsystem=pybuild'.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 27 Jan 2020 20:42:14 -0700

pikepdf (1.8.1+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #946575).
 * Fix some paths 'test'->'tests' in d/copyright.
 * Update d/copyright for new test resource.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 11 Dec 2019 11:38:08 -0700

pikepdf (1.7.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 12 Nov 2019 09:40:42 -0700

pikepdf (1.6.5+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Tighten pybind11 build-dep to require 2.4.3.
 * Refresh patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 01 Nov 2019 20:16:42 -0700

pikepdf (1.6.4+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 10 Oct 2019 10:15:17 -0700

pikepdf (1.6.3+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 05 Sep 2019 07:30:45 -0700

pikepdf (1.6.1+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Tighten libqpdf build-dep to require 8.4.2.
 * Add mp_compile.py stanza to d/copyright.
 * Refresh patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 16 Aug 2019 09:03:02 +0100

pikepdf (1.5.0.post0+dfsh-1) unstable; urgency=medium

 [Sean Whitton]
 * New upstream release.
 - Drop python3-defusedxml build-dep
 - Drop python3-pytest-runner build-dep
 + Drop rw-build-tree d/tests/control restriction
 - Tighten python3-pybind11 dependency to require 2.3.0.
 * Add drop-pybind11-from-setup.py.patch, disable-test_icc_extract.patch.
 * Drop Fix-issue-25-year-missing-leading-zero-on-some-platforms.patch,
 drop-setuptools_scm_git_archive-from-setup.py.patch and
 fix_xmp_metadata_without_xmpmeta_wrapper.patch.
 * Refresh remaining patches.
 * d/copyright updates:
 - Update Files-Excluded
 - Update upstream copyright years.
 - Add info for docs/images/pike-{release,tree}.jpg,
 tests/resources/pike-flate-jp2.pdf

 [Ondřej Nový]
 * Use debhelper-compat instead of debian/compat.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 15 Aug 2019 18:47:38 +0100

Older entries have been removed from this changelog.
To read the complete changelog use `apt changelog pikepdf-doc`.

./usr/share/doc/pikepdf-doc/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: pikepdf
Source: https://github.com/pikepdf/pikepdf
Files-Excluded: docs/images/save-pike.jpg

Files: *
Copyright: (C) 2017-2020 James R. Barlow
License: MPL-2.0
Comment:
 The file licenses-for-wheels.txt is relevant only when a binary
 artifact is produced from the combination of the source code of
 pikepdf and the source code of qpdf. Nothing in pikepdf is Apache
 licensed.

Files: src/pikepdf/models/outlines.py
Copyright: (C) 2020 Matthias Erll, (C) 2020 James R. Barlow
License: MPL-2.0

Files: debian/*
Copyright: (C) 2018 Sean Whitton <spwhitton@spwhitton.name>
License: MPL-2.0

Files: docs/images/pike.png
Copyright: Public domain
License: public-domain
 From the U.S. Fish and Wildlife Service National Image Library.
 .
 See: https://en.wikipedia.org/wiki/File:Esox_lucius1.jpg
Comment: Maximum resolution version is in debian/missing-sources/.

Files: tests/*.py
Copyright: (C) 2017 James R. Barlow
License: CC0-1.0

Files: tests/resources/*
Copyright: (C) 2017 James R. Barlow
License: CC-BY-4.0

Files: tests/resources/Gray.icc
Copyright: Kai-Uwe Behrmann <www.behrmann.name>
 Marti Maria <www.littlecms.com>
 Photogamut <www.photogamut.org>
 Graeme Gill <www.argyllcms.com>
 ColorSolutions <www.basICColor.com>
License: Zlib

Files: tests/resources/congress.pdf docs/images/congress_im0.jpg tests/resources/congress-gray.pdf
Copyright: Public domain
License: public-domain
 From US Congressional Records.
Comment: Converted from JPEG to PDF.

Files: tests/resources/content-stream-errors.pdf
Copyright: (C) 2019 Jay Berkenbilt
License: Apache-2.0
 On Debian systems the full text of the Apache-2.0 license can be
 found in /usr/share/common-licenses/Apache-2.0.

Files: tests/resources/graph*.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.
Comment:
 For -encrypted.pdf, user password is "user" and owner password is "owner".

Files: tests/resources/jbig2.pdf
Copyright: Public domain
License: public-domain
 From US Congressional Records.

Files: tests/resources/jbig2global.pdf
Copyright: (C) 2005 Ellywa
License: GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Triumph.typewriter_text_Linzensoep.gif
 Converted to PDF.

Files: tests/resources/veraPDF*.pdf
Copyright: (C) 2015 veraPDF Consortium
License: CC-BY-4.0
Comment:
 Obtained from: https://github.com/veraPDF/veraPDF-corpus

Files: tests/resources/sandwich.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0
Comment:
 Created using ocrmypdf --pdf-renderer sandwich, to test Tesseract PDF
 text encoding.
 .
 Originally obtained from: https://commons.wikimedia.org/wiki/File:LinnSequencer_hardware_MIDI_sequencer_brochure_page_2_300dpi.jpg
 .
 A copy of that JPEG is included in debian/missing-sources/.

Files: tests/resources/outlines.pdf
Copyright: (C) 2020 Matthias Erll
License: MPL-2.0
Comment:
 License assumed from LICENSE.txt in project root.

Files: docs/images/pike-cartoon.png
Copyright: (C) 2017 creozavr
License: CC0-1.0
Comment:
 Obtained from: https://pixabay.com/en/pike-fish-predator-shchuchin-2612354/

Files: docs/images/pikemen.jpg
Copyright: (C) 2009 Rama
License: CeCILL-2.0 or CC-BY-SA-2.0-FR
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Pike_square_img_3653.jpg

Files: docs/images/pike-release.jpg
Copyright: (C) 2014 Azerty197666
License: CC-BY-SA-4.0
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Release_of_a_pike.jpg

Files: docs/images/sushi.jpg
Copyright: (C) 2004 Gérald Anfossi
License: GFDL-1.2+ or CC-BY-SA-3.0
Comment: See: https://commons.wikimedia.org/wiki/File:Sushi_bento.jpg

Files: docs/images/28fish.jpg
Copyright: (C) 2014 Wellcome Library, London
License: CC-BY-4.0
Comment:
 Obtained from https://commons.wikimedia.org/wiki/File:Twenty_eight_types_of_fish._Engraving_by_R._Scott_after_T._B_Wellcome_V0022737EL.jpg
 https://wellcomecollection.org/works/hwzup9cj?wellcomeImagesUrl=/indexplus/image/V0022737EL.html
 .
 Year of copyright given above is date of upload to Wikimedia Commons.
 This may not be when the scan/photograph was actually produced by the
 Wellcome Library. The original work is from the 19th century.

License: MPL-2.0
 This Source Code Form is subject to the terms of the Mozilla Public
 License, v. 2.0.
 .
 On Debian systems the full text of the MPL-2.0 can be found in
 /usr/share/common-licenses/MPL-2.0.

License: CC0-1.0
 To the extent possible under law, the author(s) have dedicated all copyright
 and related and neighboring rights to this software to the public domain
 worldwide. This software is distributed without any warranty.
 .
 On Debian systems the full text of the CC0-1.0 license can be found
 in /usr/share/common-licenses/CC0-1.0

License: CC-BY-4.0
 Creative Commons Attribution 4.0 International Public License
 .
 By exercising the Licensed Rights (defined below), You accept and agree
 to be bound by the terms and conditions of this Creative Commons
 Attribution 4.0 International Public License ("Public License"). To the
 extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of
 these terms and conditions, and the Licensor grants You such rights in
 consideration of benefits the Licensor receives from making the
 Licensed Material available under these terms and conditions.
 .
 Section 1 -- Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.
 .
 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.
 .
 c. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 .
 d. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.
 .
 e. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.
 .
 f. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.
 .
 g. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.
 .
 h. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.
 .
 i. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.
 .
 j. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.
 .
 k. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.
 .
 Section 2 -- Scope.
 .
 a. License grant.
 .
 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:
 .
 a. reproduce and Share the Licensed Material, in whole or
 in part; and
 .
 b. produce, reproduce, and Share Adapted Material.
 .
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.
 .
 3. Term. The term of this Public License is specified in Section
 6(a).
 .
 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.
 .
 5. Downstream recipients.
 .
 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.
 .
 b. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.
 .
 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).
 .
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 .
 2. Patent and trademark rights are not licensed under this
 Public License.
 .
 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.
 .
 Section 3 -- License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the
 following conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified
 form), You must:
 .
 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:
 .
 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);
 .
 ii. a copyright notice;
 .
 iii. a notice that refers to this Public License;
 .
 iv. a notice that refers to the disclaimer of
 warranties;
 .
 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;
 .
 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and
 .
 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.
 .
 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.
 .
 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.
 .
 4. If You Share Adapted Material You produce, the Adapter's
 License You apply must not prevent recipients of the Adapted
 Material from complying with this Public License.
 .
 Section 4 -- Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that
 apply to Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;
 .
 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material; and
 .
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not
 replace Your obligations under this Public License where the Licensed
 Rights include other Copyright and Similar Rights.
 .
 Section 5 -- Disclaimer of Warranties and Limitation of Liability.
 .
 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
 .
 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
 .
 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.
 .
 Section 6 -- Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.
 .
 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or
 .
 2. upon express reinstatement by the Licensor.
 .
 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.
 .
 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.
 .
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.
 .
 Section 7 -- Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.
 .
 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.
 .
 Section 8 -- Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.
 .
 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.
 .
 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.
 .
 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: CeCILL-2.0
 CeCILL FREE SOFTWARE LICENSE AGREEMENT
 .
 Notice
 .
 This Agreement is a Free Software license agreement that is the result
 of discussions between its authors in order to ensure compliance with
 the two main principles guiding its drafting:
 .
 firstly, compliance with the principles governing the distribution
 of Free Software: access to source code, broad rights granted to
 users, secondly, the election of a governing law, French law, with
 which it is conformant, both as regards the law of torts and
 intellectual property law, and the protection that it offers to
 both authors and holders of the economic rights over software.
 .
 The authors of the CeCILL license are:
 .
 Commissariat à l'Energie Atomique - CEA, a public scientific,
 technical and industrial research establishment, having its principal
 place of business at 25 rue Leblanc, immeuble Le Ponant D, 75015
 Paris, France.
 .
 Centre National de la Recherche Scientifique - CNRS, a public
 scientific and technological establishment, having its principal place
 of business at 3 rue Michel-Ange, 75794 Paris cedex 16, France.
 .
 Institut National de Recherche en Informatique et en Automatique -
 INRIA, a public scientific and technological establishment, having its
 principal place of business at Domaine de Voluceau, Rocquencourt, BP
 105, 78153 Le Chesnay cedex, France.
 .
 Preamble
 .
 The purpose of this Free Software license agreement is to grant users
 the right to modify and redistribute the software governed by this
 license within the framework of an open source distribution model.
 .
 The exercising of these rights is conditional upon certain obligations
 for users so as to preserve this status for all subsequent
 redistributions.
 .
 In consideration of access to the source code and the rights to copy,
 modify and redistribute granted by the license, users are provided
 only with a limited warranty and the software's author, the holder of
 the economic rights, and the successive licensors only have limited
 liability.
 .
 In this respect, the risks associated with loading, using, modifying
 and/or developing or reproducing the software by the user are brought
 to the user's attention, given its Free Software status, which may
 make it complicated to use, with the result that its use is reserved
 for developers and experienced professionals having in-depth computer
 knowledge. Users are therefore encouraged to load and test the
 suitability of the software as regards their requirements in
 conditions enabling the security of their systems and/or data to be
 ensured and, more generally, to use and operate it in the same
 conditions of security. This Agreement may be freely reproduced and
 published, provided it is not altered, and that no provisions are
 either added or removed herefrom.
 .
 This Agreement may apply to any or all software for which the holder
 of the economic rights decides to submit the use thereof to its
 provisions.
 .
 Article 1 - DEFINITIONS
 .
 For the purpose of this Agreement, when the following expressions
 commence with a capital letter, they shall have the following meaning:
 .
 Agreement: means this license agreement, and its possible subsequent
 versions and annexes.
 .
 Software: means the software in its Object Code and/or Source Code
 form and, where applicable, its documentation, "as is" when the
 Licensee accepts the Agreement.
 .
 Initial Software: means the Software in its Source Code and possibly
 its Object Code form and, where applicable, its documentation, "as is"
 when it is first distributed under the terms and conditions of the
 Agreement.
 .
 Modified Software: means the Software modified by at least one
 Contribution.
 .
 Source Code: means all the Software's instructions and program lines
 to which access is required so as to modify the Software.
 .
 Object Code: means the binary files originating from the compilation
 of the Source Code.
 .
 Holder: means the holder(s) of the economic rights over the Initial
 Software.
 .
 Licensee: means the Software user(s) having accepted the Agreement.
 .
 Contributor: means a Licensee having made at least one Contribution.
 .
 Licensor: means the Holder, or any other individual or legal entity,
 who distributes the Software under the Agreement.
 .
 Contribution: means any or all modifications, corrections,
 translations, adaptations and/or new functions integrated into the
 Software by any or all Contributors, as well as any or all Internal
 Modules.
 .
 Module: means a set of sources files including their documentation
 that enables supplementary functions or services in addition to those
 offered by the Software.
 .
 External Module: means any or all Modules, not derived from the
 Software, so that this Module and the Software run in separate address
 spaces, with one calling the other when they are run.
 .
 Internal Module: means any or all Module, connected to the Software so
 that they both execute in the same address space.
 .
 GNU GPL: means the GNU General Public License version 2 or any
 subsequent version, as published by the Free Software Foundation Inc.
 .
 Parties: mean both the Licensee and the Licensor.
 .
 These expressions may be used both in singular and plural form.
 .
 Article 2 - PURPOSE
 .
 The purpose of the Agreement is the grant by the Licensor to the
 Licensee of a non-exclusive, transferable and worldwide license for
 the Software as set forth in Article 5 hereinafter for the whole term
 of the protection granted by the rights over said Software.
 .
 Article 3 - ACCEPTANCE
 .
 3.1 The Licensee shall be deemed as having accepted the terms and
 conditions of this Agreement upon the occurrence of the first of the
 following events:
 .
 (i) loading the Software by any or all means, notably, by
 downloading from a remote server, or by loading from a physical
 medium; (ii) the first time the Licensee exercises any of the
 rights granted hereunder.
 .
 3.2 One copy of the Agreement, containing a notice relating to the
 characteristics of the Software, to the limited warranty, and to the
 fact that its use is restricted to experienced users has been provided
 to the Licensee prior to its acceptance as set forth in Article 3.1
 hereinabove, and the Licensee hereby acknowledges that it has read and
 understood it.
 .
 Article 4 - EFFECTIVE DATE AND TERM
 .
 4.1 EFFECTIVE DATE
 .
 The Agreement shall become effective on the date when it is accepted
 by the Licensee as set forth in Article 3.1.
 .
 4.2 TERM
 .
 The Agreement shall remain in force for the entire legal term of
 protection of the economic rights over the Software.
 .
 Article 5 - SCOPE OF RIGHTS GRANTED
 .
 The Licensor hereby grants to the Licensee, who accepts, the following
 rights over the Software for any or all use, and for the term of the
 Agreement, on the basis of the terms and conditions set forth
 hereinafter.
 .
 Besides, if the Licensor owns or comes to own one or more patents
 protecting all or part of the functions of the Software or of its
 components, the Licensor undertakes not to enforce the rights granted
 by these patents against successive Licensees using, exploiting or
 modifying the Software. If these patents are transferred, the Licensor
 undertakes to have the transferees subscribe to the obligations set
 forth in this paragraph.
 .
 5.1 RIGHT OF USE
 .
 The Licensee is authorized to use the Software, without any limitation
 as to its fields of application, with it being hereinafter specified
 that this comprises:
 .
 permanent or temporary reproduction of all or part of the Software
 by any or all means and in any or all form.
 .
 loading, displaying, running, or storing the Software on any or
 all medium.
 .
 entitlement to observe, study or test its operation so as to
 determine the ideas and principles behind any or all constituent
 elements of said Software. This shall apply when the Licensee
 carries out any or all loading, displaying, running, transmission
 or storage operation as regards the Software, that it is entitled
 to carry out hereunder.
 .
 5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS
 .
 The right to make Contributions includes the right to translate,
 adapt, arrange, or make any or all modifications to the Software, and
 the right to reproduce the resulting software.
 .
 The Licensee is authorized to make any or all Contributions to the
 Software provided that it includes an explicit notice that it is the
 author of said Contribution and indicates the date of the creation
 thereof.
 .
 5.3 RIGHT OF DISTRIBUTION
 .
 In particular, the right of distribution includes the right to
 publish, transmit and communicate the Software to the general public
 on any or all medium, and by any or all means, and the right to
 market, either in consideration of a fee, or free of charge, one or
 more copies of the Software by any means.
 .
 The Licensee is further authorized to distribute copies of the
 modified or unmodified Software to third parties according to the
 terms and conditions set forth hereinafter.
 .
 5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION
 .
 The Licensee is authorized to distribute true copies of the Software
 in Source Code or Object Code form, provided that said distribution
 complies with all the provisions of the Agreement and is accompanied
 by:
 .
 a copy of the Agreement,
 .
 a notice relating to the limitation of both the Licensor's
 warranty and liability as set forth in Articles 8 and 9,
 .
 and that, in the event that only the Object Code of the Software is
 redistributed, the Licensee allows future Licensees unhindered access
 to the full Source Code of the Software by indicating how to access
 it, it being understood that the additional cost of acquiring the
 Source Code shall not exceed the cost of transferring the data.
 .
 5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE
 .
 When the Licensee makes a Contribution to the Software, the terms and
 conditions for the distribution of the resulting Modified Software
 become subject to all the provisions of this Agreement.
 .
 The Licensee is authorized to distribute the Modified Software, in
 source code or object code form, provided that said distribution
 complies with all the provisions of the Agreement and is accompanied
 by:
 .
 a copy of the Agreement,
 .
 a notice relating to the limitation of both the Licensor's
 warranty and liability as set forth in Articles 8 and 9,
 .
 and that, in the event that only the object code of the Modified
 Software is redistributed, the Licensee allows future Licensees
 unhindered access to the full source code of the Modified Software by
 indicating how to access it, it being understood that the additional
 cost of acquiring the source code shall not exceed the cost of
 transferring the data.
 .
 5.3.3 DISTRIBUTION OF EXTERNAL MODULES
 .
 When the Licensee has developed an External Module, the terms and
 conditions of this Agreement do not apply to said External Module,
 that may be distributed under a separate license agreement.
 .
 5.3.4 COMPATIBILITY WITH THE GNU GPL
 .
 The Licensee can include a code that is subject to the provisions of
 one of the versions of the GNU GPL in the Modified or unmodified
 Software, and distribute that entire code under the terms of the same
 version of the GNU GPL.
 .
 The Licensee can include the Modified or unmodified Software in a code
 that is subject to the provisions of one of the versions of the GNU
 GPL, and distribute that entire code under the terms of the same
 version of the GNU GPL.
 .
 Article 6 - INTELLECTUAL PROPERTY
 .
 6.1 OVER THE INITIAL SOFTWARE
 .
 The Holder owns the economic rights over the Initial Software. Any or
 all use of the Initial Software is subject to compliance with the
 terms and conditions under which the Holder has elected to distribute
 its work and no one shall be entitled to modify the terms and
 conditions for the distribution of said Initial Software.
 .
 The Holder undertakes that the Initial Software will remain ruled at
 least by this Agreement, for the duration set forth in Article 4.2.
 .
 6.2 OVER THE CONTRIBUTIONS
 .
 The Licensee who develops a Contribution is the owner of the
 intellectual property rights over this Contribution as defined by
 applicable law.
 .
 6.3 OVER THE EXTERNAL MODULES
 .
 The Licensee who develops an External Module is the owner of the
 intellectual property rights over this External Module as defined by
 applicable law and is free to choose the type of agreement that shall
 govern its distribution.
 .
 6.4 JOINT PROVISIONS
 .
 The Licensee expressly undertakes:
 .
 not to remove, or modify, in any manner, the intellectual property
 notices attached to the Software;
 .
 to reproduce said notices, in an identical manner, in the copies
 of the Software modified or not.
 .
 The Licensee undertakes not to directly or indirectly infringe the
 intellectual property rights of the Holder and/or Contributors on the
 Software and to take, where applicable, vis-à-vis its staff, any and
 all measures required to ensure respect of said intellectual property
 rights of the Holder and/or Contributors.
 .
 Article 7 - RELATED SERVICES
 .
 7.1 Under no circumstances shall the Agreement oblige the Licensor to
 provide technical assistance or maintenance services for the Software.
 .
 However, the Licensor is entitled to offer this type of services. The
 terms and conditions of such technical assistance, and/or such
 maintenance, shall be set forth in a separate instrument. Only the
 Licensor offering said maintenance and/or technical assistance
 services shall incur liability therefor.
 .
 7.2 Similarly, any Licensor is entitled to offer to its licensees,
 under its sole responsibility, a warranty, that shall only be binding
 upon itself, for the redistribution of the Software and/or the
 Modified Software, under terms and conditions that it is free to
 decide. Said warranty, and the financial terms and conditions of its
 application, shall be subject of a separate instrument executed
 between the Licensor and the Licensee.
 .
 Article 8 - LIABILITY
 .
 8.1 Subject to the provisions of Article 8.2, the Licensee shall be
 entitled to claim compensation for any direct loss it may have
 suffered from the Software as a result of a fault on the part of the
 relevant Licensor, subject to providing evidence thereof.
 .
 8.2 The Licensor's liability is limited to the commitments made under
 this Agreement and shall not be incurred as a result of in particular:
 (i) loss due the Licensee's total or partial failure to fulfill its
 obligations, (ii) direct or consequential loss that is suffered by the
 Licensee due to the use or performance of the Software, and (iii) more
 generally, any consequential loss. In particular the Parties expressly
 agree that any or all pecuniary or business loss (i.e. loss of data,
 loss of profits, operating loss, loss of customers or orders,
 opportunity cost, any disturbance to business activities) or any or
 all legal proceedings instituted against the Licensee by a third
 party, shall constitute consequential loss and shall not provide
 entitlement to any or all compensation from the Licensor.
 .
 Article 9 - WARRANTY
 .
 9.1 The Licensee acknowledges that the scientific and technical
 state-of-the-art when the Software was distributed did not enable all
 possible uses to be tested and verified, nor for the presence of
 possible defects to be detected. In this respect, the Licensee's
 attention has been drawn to the risks associated with loading, using,
 modifying and/or developing and reproducing the Software which are
 reserved for experienced users.
 .
 The Licensee shall be responsible for verifying, by any or all means,
 the suitability of the product for its requirements, its good working
 order, and for ensuring that it shall not cause damage to either
 persons or properties.
 .
 9.2 The Licensor hereby represents, in good faith, that it is entitled
 to grant all the rights over the Software (including in particular the
 rights set forth in Article 5).
 .
 9.3 The Licensee acknowledges that the Software is supplied "as is" by
 the Licensor without any other express or tacit warranty, other than
 that provided for in Article 9.2 and, in particular, without any
 warranty as to its commercial value, its secured, safe, innovative or
 relevant nature.
 .
 Specifically, the Licensor does not warrant that the Software is free
 from any error, that it will operate without interruption, that it
 will be compatible with the Licensee's own equipment and software
 configuration, nor that it will meet the Licensee's requirements.
 .
 9.4 The Licensor does not either expressly or tacitly warrant that the
 Software does not infringe any third party intellectual property right
 relating to a patent, software or any other property right. Therefore,
 the Licensor disclaims any and all liability towards the Licensee
 arising out of any or all proceedings for infringement that may be
 instituted in respect of the use, modification and redistribution of
 the Software. Nevertheless, should such proceedings be instituted
 against the Licensee, the Licensor shall provide it with technical and
 legal assistance for its defense. Such technical and legal assistance
 shall be decided on a case-by-case basis between the relevant Licensor
 and the Licensee pursuant to a memorandum of understanding. The
 Licensor disclaims any and all liability as regards the Licensee's use
 of the name of the Software. No warranty is given as regards the
 existence of prior rights over the name of the Software or as regards
 the existence of a trademark.
 .
 Article 10 - TERMINATION
 .
 10.1 In the event of a breach by the Licensee of its obligations
 hereunder, the Licensor may automatically terminate this Agreement
 thirty (30) days after notice has been sent to the Licensee and has
 remained ineffective.
 .
 10.2 A Licensee whose Agreement is terminated shall no longer be
 authorized to use, modify or distribute the Software. However, any
 licenses that it may have granted prior to termination of the
 Agreement shall remain valid subject to their having been granted in
 compliance with the terms and conditions hereof.
 .
 Article 11 - MISCELLANEOUS
 .
 11.1 EXCUSABLE EVENTS
 .
 Neither Party shall be liable for any or all delay, or failure to
 perform the Agreement, that may be attributable to an event of force
 majeure, an act of God or an outside cause, such as defective
 functioning or interruptions of the electricity or telecommunications
 networks, network paralysis following a virus attack, intervention by
 government authorities, natural disasters, water damage, earthquakes,
 fire, explosions, strikes and labor unrest, war, etc.
 .
 11.2 Any failure by either Party, on one or more occasions, to invoke
 one or more of the provisions hereof, shall under no circumstances be
 interpreted as being a waiver by the interested Party of its right to
 invoke said provision(s) subsequently.
 .
 11.3 The Agreement cancels and replaces any or all previous
 agreements, whether written or oral, between the Parties and having
 the same purpose, and constitutes the entirety of the agreement
 between said Parties concerning said purpose. No supplement or
 modification to the terms and conditions hereof shall be effective as
 between the Parties unless it is made in writing and signed by their
 duly authorized representatives.
 .
 11.4 In the event that one or more of the provisions hereof were to
 conflict with a current or future applicable act or legislative text,
 said act or legislative text shall prevail, and the Parties shall make
 the necessary amendments so as to comply with said act or legislative
 text. All other provisions shall remain effective. Similarly,
 invalidity of a provision of the Agreement, for any reason whatsoever,
 shall not cause the Agreement as a whole to be invalid.
 .
 11.5 LANGUAGE
 .
 The Agreement is drafted in both French and English and both versions
 are deemed authentic.
 .
 Article 12 - NEW VERSIONS OF THE AGREEMENT
 .
 12.1 Any person is authorized to duplicate and distribute copies of
 this Agreement.
 .
 12.2 So as to ensure coherence, the wording of this Agreement is
 protected and may only be modified by the authors of the License, who
 reserve the right to periodically publish updates or new versions of
 the Agreement, each with a separate number. These subsequent versions
 may address new issues encountered by Free Software.
 .
 12.3 Any Software distributed under a given version of the Agreement
 may only be subsequently distributed under the same version of the
 Agreement or a subsequent version, subject to the provisions of
 Article 5.3.4.
 .
 Article 13 - GOVERNING LAW AND JURISDICTION
 .
 13.1 The Agreement is governed by French law. The Parties agree to
 endeavor to seek an amicable solution to any disagreements or disputes
 that may arise during the performance of the Agreement.
 .
 13.2 Failing an amicable solution within two (2) months as from their
 occurrence, and unless emergency proceedings are necessary, the
 disagreements or disputes shall be referred to the Paris Courts having
 jurisdiction, by the more diligent Party.
 .
 CeCILL stands for Ce(a) C(nrs) I(nria) L(ogiciel) L(ibre)
 .
 Version 2.0 dated 2006-09-05.

License: CC-BY-SA-2.0-FR
 This file is licensed under the Creative Commons Attribution-Share
 Alike 2.0 France license.
 .
 You are free to:
 .
 • Share — copy and redistribute the material in any medium or format
 • Adapt — remix, transform, and build upon the material for any
 purpose, even commercially.
 .
 Under the following terms:
 .
 • Attribution — You must give appropriate credit, provide a link to
 the license, and indicate if changes were made. You may do so in
 any reasonable manner, but not in any way that suggests the
 licensor endorses you or your use.
 • ShareAlike — If you remix, transform, or build upon the material,
 you must distribute your contributions under the same license as
 the original.
 • No additional restrictions — You may not apply legal terms or
 technological measures that legally restrict others from doing
 anything the license permits.
 .
 ---- Full license text follows ----
 .
 [Creative Commons Legal Code]
 .
 Paternité - Partage Des Conditions Initiales A l'Identique 2.0
 .
 Creative Commons n'est pas un cabinet d'avocats et ne fournit pas de
 services de conseil juridique. La distribution de la présente version
 de ce contrat ne crée aucune relation juridique entre les parties au
 contrat présenté ci-après et Creative Commons. Creative Commons
 fournit cette offre de contrat-type en l'état, à seule fin
 d'information. Creative Commons ne saurait être tenu responsable des
 éventuels préjudices résultant du contenu ou de l'utilisation de ce
 contrat.
 .
 Contrat
 .
 L'Oeuvre (telle que définie ci-dessous) est mise à disposition selon
 les termes du présent contrat appelé Contrat Public Creative Commons
 (dénommé ici « CPCC » ou « Contrat »). L'Oeuvre est protégée par le
 droit de la propriété littéraire et artistique (droit d'auteur, droits
 voisins, droits des producteurs de bases de données) ou toute autre
 loi applicable. Toute utilisation de l'Oeuvre autrement
 qu'explicitement autorisée selon ce Contrat ou le droit applicable est
 interdite.
 .
 L'exercice sur l'Oeuvre de tout droit proposé par le présent contrat
 vaut acceptation de celui-ci. Selon les termes et les obligations du
 présent contrat, la partie Offrante propose à la partie Acceptante
 l'exercice de certains droits présentés ci-après, et l'Acceptant en
 approuve les termes et conditions d'utilisation.
 .
 1. Définitions
 .
 « Oeuvre » : oeuvre de l'esprit protégeable par le droit de la
 propriété littéraire et artistique ou toute loi applicable et qui
 est mise à disposition selon les termes du présent Contrat. «
 Oeuvre dite Collective » : une oeuvre dans laquelle l'oeuvre, dans
 sa forme intégrale et non modifiée, est assemblée en un ensemble
 collectif avec d'autres contributions qui constituent en
 elles-mêmes des oeuvres séparées et indépendantes. Constituent
 notamment des Oeuvres dites Collectives les publications
 périodiques, les anthologies ou les encyclopédies. Aux termes de
 la présente autorisation, une oeuvre qui constitue une Oeuvre dite
 Collective ne sera pas considérée comme une Oeuvre dite Dérivée
 (telle que définie ci-après). « Oeuvre dite Dérivée » : une
 oeuvre créée soit à partir de l'Oeuvre seule, soit à partir de
 l'Oeuvre et d'autres oeuvres préexistantes. Constituent notamment
 des Oeuvres dites Dérivées les traductions, les arrangements
 musicaux, les adaptations théâtrales, littéraires ou
 cinématographiques, les enregistrements sonores, les reproductions
 par un art ou un procédé quelconque, les résumés, ou toute autre
 forme sous laquelle l'Oeuvre puisse être remaniée, modifiée,
 transformée ou adaptée, à l'exception d'une oeuvre qui constitue
 une Oeuvre dite Collective. Une Oeuvre dite Collective ne sera pas
 considérée comme une Oeuvre dite Dérivée aux termes du présent
 Contrat. Dans le cas où l'Oeuvre serait une composition musicale
 ou un enregistrement sonore, la synchronisation de l'oeuvre avec
 une image animée sera considérée comme une Oeuvre dite Dérivée
 pour les propos de ce Contrat. « Auteur original » : la ou les
 personnes physiques qui ont créé l'Oeuvre. « Offrant » : la ou
 les personne(s) physique(s) ou morale(s) qui proposent la mise à
 disposition de l'Oeuvre selon les termes du présent Contrat. «
 Acceptant » : la personne physique ou morale qui accepte le
 présent contrat et exerce des droits sans en avoir violé les
 termes au préalable ou qui a reçu l'autorisation expresse de
 l'Offrant d'exercer des droits dans le cadre du présent contrat
 malgré une précédente violation de ce contrat. « Options du
 Contrat » : les attributs génériques du Contrat tels qu'ils ont
 été choisis par l'Offrant et indiqués dans le titre de ce Contrat
 : Paternité - Pas d'Utilisation Commerciale - Partage Des
 Conditions Initiales A l'Identique.
 .
 2. Exceptions aux droits exclusifs. Aucune disposition de ce contrat
 n'a pour intention de réduire, limiter ou restreindre les prérogatives
 issues des exceptions aux droits, de l'épuisement des droits ou
 d'autres limitations aux droits exclusifs des ayants droit selon le
 droit de la propriété littéraire et artistique ou les autres lois
 applicables.
 .
 3. Autorisation. Soumis aux termes et conditions définis dans cette
 autorisation, et ceci pendant toute la durée de protection de l'Oeuvre
 par le droit de la propriété littéraire et artistique ou le droit
 applicable, l'Offrant accorde à l'Acceptant l'autorisation mondiale
 d'exercer à titre gratuit et non exclusif les droits suivants :
 .
 reproduire l'Oeuvre, incorporer l'Oeuvre dans une ou plusieurs
 Oeuvres dites Collectives et reproduire l'Oeuvre telle
 qu'incorporée dans lesdites Oeuvres dites Collectives; créer et
 reproduire des Oeuvres dites Dérivées; distribuer des exemplaires
 ou enregistrements, présenter, représenter ou communiquer l'Oeuvre
 au public par tout procédé technique, y compris incorporée dans
 des Oeuvres Collectives; distribuer des exemplaires ou
 phonogrammes, présenter, représenter ou communiquer au public des
 Oeuvres dites Dérivées par tout procédé technique; lorsque
 l'Oeuvre est une base de données, extraire et réutiliser des
 parties substantielles de l'Oeuvre.
 .
 Les droits mentionnés ci-dessus peuvent être exercés sur tous les
 supports, médias, procédés techniques et formats. Les droits ci-dessus
 incluent le droit d'effectuer les modifications nécessaires
 techniquement à l'exercice des droits dans d'autres formats et
 procédés techniques. L'exercice de tous les droits qui ne sont pas
 expressément autorisés par l'Offrant ou dont il n'aurait pas la
 gestion demeure réservé, notamment les mécanismes de gestion
 collective obligatoire applicables décrits à l'article 4(d).
 .
 4. Restrictions. L'autorisation accordée par l'article 3 est
 expressément assujettie et limitée par le respect des restrictions
 suivantes :
 .
 L'Acceptant peut reproduire, distribuer, représenter ou
 communiquer au public l'Oeuvre y compris par voie numérique
 uniquement selon les termes de ce Contrat. L'Acceptant doit
 inclure une copie ou l'adresse Internet (Identifiant Uniforme de
 Ressource) du présent Contrat à toute reproduction ou
 enregistrement de l'Oeuvre que l'Acceptant distribue, représente
 ou communique au public y compris par voie numérique. L'Acceptant
 ne peut pas offrir ou imposer de conditions d'utilisation de
 l'Oeuvre qui altèrent ou restreignent les termes du présent
 Contrat ou l'exercice des droits qui y sont accordés au
 bénéficiaire. L'Acceptant ne peut pas céder de droits sur
 l'Oeuvre. L'Acceptant doit conserver intactes toutes les
 informations qui renvoient à ce Contrat et à l'exonération de
 responsabilité. L'Acceptant ne peut pas reproduire, distribuer,
 représenter ou communiquer au public l'Oeuvre, y compris par voie
 numérique, en utilisant une mesure technique de contrôle d'accès
 ou de contrôle d'utilisation qui serait contradictoire avec les
 termes de cet Accord contractuel. Les mentions ci-dessus
 s'appliquent à l'Oeuvre telle qu'incorporée dans une Oeuvre dite
 Collective, mais, en dehors de l'Oeuvre en elle-même, ne
 soumettent pas l'Oeuvre dite Collective, aux termes du présent
 Contrat. Si l'Acceptant crée une Oeuvre dite Collective, à la
 demande de tout Offrant, il devra, dans la mesure du possible,
 retirer de l'Oeuvre dite Collective toute référence au dit
 Offrant, comme demandé. Si l'Acceptant crée une Oeuvre dite
 Collective, à la demande de tout Auteur, il devra, dans la mesure
 du possible, retirer de l'Oeuvre dite Collective toute référence
 au dit Auteur, comme demandé. Si l'Acceptant crée une Oeuvre dite
 Dérivée, à la demande de tout Offrant, il devra, dans la mesure du
 possible, retirer de l'Oeuvre dite Dérivée toute référence au dit
 Offrant, comme demandé. Si l'Acceptant crée une Oeuvre dite
 Dérivée, à la demande de tout Auteur, il devra, dans la mesure du
 possible, retirer de l'Oeuvre dite Dérivée toute référence au dit
 Auteur, comme demandé. L'Acceptant peut reproduire, distribuer,
 représenter ou communiquer au public une Oeuvre dite Dérivée y
 compris par voie numérique uniquement sous les termes de ce
 Contrat, ou d'une version ultérieure de ce Contrat comprenant les
 mêmes Options du Contrat que le présent Contrat, ou un Contrat
 Creative Commons iCommons comprenant les mêmes Options du Contrat
 que le présent Contrat (par exemple Paternité - Pas d'Utilisation
 Commerciale - Partage Des Conditions Initiales A l'Identique 2.0
 Japon). L'Acceptant doit inclure une copie ou l'adresse Internet
 (Identifiant Uniforme de Ressource) du présent Contrat, ou d'un
 autre Contrat tel que décrit à la phrase précédente, à toute
 reproduction ou enregistrement de l'Oeuvre dite Dérivée que
 l'Acceptant distribue, représente ou communique au public y
 compris par voie numérique. L'Acceptant ne peut pas offrir ou
 imposer de conditions d'utilisation sur l'Oeuvre dite Dérivée qui
 altèrent ou restreignent les termes du présent Contrat ou
 l'exercice des droits qui y sont accordés au bénéficiaire, et doit
 conserver intactes toutes les informations qui renvoient à ce
 Contrat et à l'avertissement sur les garanties. L'Acceptant ne
 peut pas reproduire, distribuer, représenter ou communiquer au
 public y compris par voie numérique l'Oeuvre dite Dérivée en
 utilisant une mesure technique de contrôle d'accès ou de contrôle
 d'utilisation qui serait contradictoire avec les termes de cet
 Accord contractuel. Les mentions ci-dessus s'appliquent à l'Oeuvre
 dite Dérivée telle qu'incorporée dans une Oeuvre dite Collective,
 mais, en dehors de l'Oeuvre dite Dérivée en elle-même, ne
 soumettent pas l'Oeuvre Collective, aux termes du présent Contrat.
 Si l'Acceptant reproduit, distribue, représente ou communique au
 public, y compris par voie numérique, l'Oeuvre ou toute Oeuvre
 dite Dérivée ou toute Oeuvre dite Collective, il doit conserver
 intactes toutes les informations sur le régime des droits et en
 attribuer la paternité à l'Auteur Original, de manière raisonnable
 au regard au médium ou au moyen utilisé. Il doit communiquer le
 nom de l'Auteur Original ou son éventuel pseudonyme s'il est
 indiqué ; le titre de l'Oeuvre Originale s'il est indiqué ; dans
 la mesure du possible, l'adresse Internet ou Identifiant Uniforme
 de Ressource (URI), s'il existe, spécifié par l'Offrant comme
 associé à l'Oeuvre, à moins que cette adresse ne renvoie pas aux
 informations légales (paternité et conditions d'utilisation de
 l'Oeuvre). Dans le cas d'une Oeuvre dite Dérivée, il doit indiquer
 les éléments identifiant l'utilisation l'Oeuvre dans l'Oeuvre dite
 Dérivée par exemple « Traduction anglaise de l'Oeuvre par l'Auteur
 Original » ou « Scénario basé sur l'Oeuvre par l'Auteur Original
 ». Ces obligations d'attribution de paternité doivent être
 exécutées de manière raisonnable. Cependant, dans le cas d'une
 Oeuvre dite Dérivée ou d'une Oeuvre dite Collective, ces
 informations doivent, au minimum, apparaître à la place et de
 manière aussi visible que celles à laquelle apparaissent les
 informations de même nature. Dans le cas où une utilisation de
 l'Oeuvre serait soumise à un régime légal de gestion collective
 obligatoire, l'Offrant se réserve le droit exclusif de collecter
 ces redevances par l'intermédiaire de la société de perception et
 de répartition des droits compétente. Sont notamment concernés la
 radiodiffusion et la communication dans un lieu public de
 phonogrammes publiés à des fins de commerce, certains cas de
 retransmission par câble et satellite, la copie privée d'Oeuvres
 fixées sur phonogrammes ou vidéogrammes, la reproduction par
 reprographie.
 .
 5. Garantie et exonération de responsabilité
 .
 En mettant l'Oeuvre à la disposition du public selon les termes de
 ce Contrat, l'Offrant déclare de bonne foi qu'à sa
 connaissance et dans les limites d'une enquête raisonnable :
 L'Offrant a obtenu tous les droits sur l'Oeuvre nécessaires
 pour pouvoir autoriser l'exercice des droits accordés par le
 présent Contrat, et permettre la jouissance paisible et
 l'exercice licite de ces droits, ceci sans que l'Acceptant
 n'ait aucune obligation de verser de rémunération ou tout
 autre paiement ou droits, dans la limite des mécanismes de
 gestion collective obligatoire applicables décrits à l'article
 4(e); L'Oeuvre n'est constitutive ni d'une violation des
 droits de tiers, notamment du droit de la propriété littéraire
 et artistique, du droit des marques, du droit de
 l'information, du droit civil ou de tout autre droit, ni de
 diffamation, de violation de la vie privée ou de tout autre
 préjudice délictuel à l'égard de toute tierce partie. A
 l'exception des situations expressément mentionnées dans le
 présent Contrat ou dans un autre accord écrit, ou exigées par
 la loi applicable, l'Oeuvre est mise à disposition en l'état
 sans garantie d'aucune sorte, qu'elle soit expresse ou tacite,
 y compris à l'égard du contenu ou de l'exactitude de l'Oeuvre.
 .
 6. Limitation de responsabilité. A l'exception des garanties d'ordre
 public imposées par la loi applicable et des réparations imposées par
 le régime de la responsabilité vis-à-vis d'un tiers en raison de la
 violation des garanties prévues par l'article 5 du présent contrat,
 l'Offrant ne sera en aucun cas tenu responsable vis-à-vis de
 l'Acceptant, sur la base d'aucune théorie légale ni en raison d'aucun
 préjudice direct, indirect, matériel ou moral, résultant de
 l'exécution du présent Contrat ou de l'utilisation de l'Oeuvre, y
 compris dans l'hypothèse où l'Offrant avait connaissance de la
 possible existence d'un tel préjudice.
 .
 7. Résiliation
 .
 Tout manquement aux termes du contrat par l'Acceptant entraîne la
 résiliation automatique du Contrat et la fin des droits qui en
 découlent. Cependant, le contrat conserve ses effets envers les
 personnes physiques ou morales qui ont reçu de la part de
 l'Acceptant, en exécution du présent contrat, la mise à
 disposition d'Oeuvres dites Dérivées, ou d'Oeuvres dites
 Collectives, ceci tant qu'elles respectent pleinement leurs
 obligations. Les sections 1, 2, 5, 6 et 7 du contrat continuent à
 s'appliquer après la résiliation de celui-ci. Dans les limites
 indiquées ci-dessus, le présent Contrat s'applique pendant toute
 la durée de protection de l'Oeuvre selon le droit
 applicable. Néanmoins, l'Offrant se réserve à tout moment le droit
 d'exploiter l'Oeuvre sous des conditions contractuelles
 différentes, ou d'en cesser la diffusion; cependant, le recours à
 cette option ne doit pas conduire à retirer les effets du présent
 Contrat (ou de tout contrat qui a été ou doit être accordé selon
 les termes de ce Contrat), et ce Contrat continuera à s'appliquer
 dans tous ses effets jusqu'à ce que sa résiliation intervienne
 dans les conditions décrites ci-dessus.
 .
 8. Divers
 .
 A chaque reproduction ou communication au public par voie
 numérique de l'Oeuvre ou d'une Oeuvre dite Collective par
 l'Acceptant, l'Offrant propose au bénéficiaire une offre de mise à
 disposition de l'Oeuvre dans des termes et conditions identiques à
 ceux accordés à la partie Acceptante dans le présent Contrat. A
 chaque reproduction ou communication au public par voie numérique
 d'une Oeuvre dite Dérivée par l'Acceptant, l'Offrant propose au
 bénéficiaire une offre de mise à disposition du bénéficiaire de
 l'Oeuvre originale dans des termes et conditions identiques à ceux
 accordés à la partie Acceptante dans le présent Contrat. La
 nullité ou l'inapplicabilité d'une quelconque disposition de ce
 Contrat au regard de la loi applicable n'affecte pas celle des
 autres dispositions qui resteront pleinement valides et
 applicables. Sans action additionnelle par les parties à cet
 accord, lesdites dispositions devront être interprétées dans la
 mesure minimum nécessaire à leur validité et leur applicabilité.
 Aucune limite, renonciation ou modification des termes ou
 dispositions du présent Contrat ne pourra être acceptée sans le
 consentement écrit et signé de la partie compétente. Ce Contrat
 constitue le seul accord entre les parties à propos de l'Oeuvre
 mise ici à disposition. Il n'existe aucun élément annexe, accord
 supplémentaire ou mandat portant sur cette Oeuvre en dehors des
 éléments mentionnés ici. L'Offrant ne sera tenu par aucune
 disposition supplémentaire qui pourrait apparaître dans une
 quelconque communication en provenance de l'Acceptant. Ce Contrat
 ne peut être modifié sans l'accord mutuel écrit de l'Offrant et de
 l'Acceptant. Le droit applicable est le droit français.
 .
 Creative Commons n'est pas partie à ce Contrat et n'offre aucune forme
 de garantie relative à l'Oeuvre. Creative Commons décline toute
 responsabilité à l'égard de l'Acceptant ou de toute autre partie, quel
 que soit le fondement légal de cette responsabilité et quel que soit
 le préjudice subi, direct, indirect, matériel ou moral, qui
 surviendrait en rapport avec le présent Contrat. Cependant, si
 Creative Commons s'est expressément identifié comme Offrant pour
 mettre une Oeuvre à disposition selon les termes de ce Contrat,
 Creative Commons jouira de tous les droits et obligations d'un
 Offrant.
 .
 A l'exception des fins limitées à informer le public que l'Oeuvre est
 mise à disposition sous CPCC, aucune des parties n'utilisera la marque
 « Creative Commons » ou toute autre indication ou logo afférent sans
 le consentement préalable écrit de Creative Commons. Toute utilisation
 autorisée devra être effectuée en conformité avec les lignes
 directrices de Creative Commons à jour au moment de l'utilisation,
 telles qu'elles sont disponibles sur son site Internet ou sur simple
 demande.
 .
 Creative Commons peut être contacté à https://creativecommons.org/.

License: CC-BY-SA-4.0
 Attribution-ShareAlike 4.0 International
 .
 ===
 .
 Creative Commons Corporation ("Creative Commons") is not a law firm and
 does not provide legal services or legal advice. Distribution of
 Creative Commons public licenses does not create a lawyer-client or
 other relationship. Creative Commons makes its licenses and related
 information available on an "as-is" basis. Creative Commons gives no
 warranties regarding its licenses, any material licensed under their
 terms and conditions, or any related information. Creative Commons
 disclaims all liability for damages resulting from their use to the
 fullest extent possible.
 .
 Using Creative Commons Public Licenses
 .
 Creative Commons public licenses provide a standard set of terms and
 conditions that creators and other rights holders may use to share
 original works of authorship and other material subject to copyright
 and certain other rights specified in the public license below. The
 following considerations are for informational purposes only, are not
 exhaustive, and do not form part of our licenses.
 .
 Considerations for licensors: Our public licenses are
 intended for use by those authorized to give the public
 permission to use material in ways otherwise restricted by
 copyright and certain other rights. Our licenses are
 irrevocable. Licensors should read and understand the terms
 and conditions of the license they choose before applying it.
 Licensors should also secure all rights necessary before
 applying our licenses so that the public can reuse the
 material as expected. Licensors should clearly mark any
 material not subject to the license. This includes other CC-
 licensed material, or material used under an exception or
 limitation to copyright. More considerations for licensors:
 wiki.creativecommons.org/Considerations_for_licensors
 .
 Considerations for the public: By using one of our public
 licenses, a licensor grants the public permission to use the
 licensed material under specified terms and conditions. If
 the licensor's permission is not necessary for any reason--for
 example, because of any applicable exception or limitation to
 copyright--then that use is not regulated by the license. Our
 licenses grant only permissions under copyright and certain
 other rights that a licensor has authority to grant. Use of
 the licensed material may still be restricted for other
 reasons, including because others have copyright or other
 rights in the material. A licensor may make special requests,
 such as asking that all changes be marked or described.
 Although not required by our licenses, you are encouraged to
 respect those requests where reasonable. More_considerations
 for the public:
 wiki.creativecommons.org/Considerations_for_licensees
 .
 ===
 .
 Creative Commons Attribution-ShareAlike 4.0 International Public
 License
 .
 By exercising the Licensed Rights (defined below), You accept and agree
 to be bound by the terms and conditions of this Creative Commons
 Attribution-ShareAlike 4.0 International Public License ("Public
 License"). To the extent this Public License may be interpreted as a
 contract, You are granted the Licensed Rights in consideration of Your
 acceptance of these terms and conditions, and the Licensor grants You
 such rights in consideration of benefits the Licensor receives from
 making the Licensed Material available under these terms and
 conditions.
 .
 .
 Section 1 -- Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.
 .
 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.
 .
 c. BY-SA Compatible License means a license listed at
 creativecommons.org/compatiblelicenses, approved by Creative
 Commons as essentially the equivalent of this Public License.
 .
 d. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 .
 e. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.
 .
 f. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.
 .
 g. License Elements means the license attributes listed in the name
 of a Creative Commons Public License. The License Elements of this
 Public License are Attribution and ShareAlike.
 .
 h. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.
 .
 i. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.
 .
 j. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.
 .
 k. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.
 .
 l. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.
 .
 m. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.
 .
 .
 Section 2 -- Scope.
 .
 a. License grant.
 .
 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:
 .
 a. reproduce and Share the Licensed Material, in whole or
 in part; and
 .
 b. produce, reproduce, and Share Adapted Material.
 .
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.
 .
 3. Term. The term of this Public License is specified in Section
 6(a).
 .
 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.
 .
 5. Downstream recipients.
 .
 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.
 .
 b. Additional offer from the Licensor -- Adapted Material.
 Every recipient of Adapted Material from You
 automatically receives an offer from the Licensor to
 exercise the Licensed Rights in the Adapted Material
 under the conditions of the Adapter's License You apply.
 .
 c. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.
 .
 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).
 .
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 .
 2. Patent and trademark rights are not licensed under this
 Public License.
 .
 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.
 .
 .
 Section 3 -- License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the
 following conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified
 form), You must:
 .
 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:
 .
 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);
 .
 ii. a copyright notice;
 .
 iii. a notice that refers to this Public License;
 .
 iv. a notice that refers to the disclaimer of
 warranties;
 .
 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;
 .
 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and
 .
 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.
 .
 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.
 .
 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.
 .
 b. ShareAlike.
 .
 In addition to the conditions in Section 3(a), if You Share
 Adapted Material You produce, the following conditions also apply.
 .
 1. The Adapter's License You apply must be a Creative Commons
 license with the same License Elements, this version or
 later, or a BY-SA Compatible License.
 .
 2. You must include the text of, or the URI or hyperlink to, the
 Adapter's License You apply. You may satisfy this condition
 in any reasonable manner based on the medium, means, and
 context in which You Share Adapted Material.
 .
 3. You may not offer or impose any additional or different terms
 or conditions on, or apply any Effective Technological
 Measures to, Adapted Material that restrict exercise of the
 rights granted under the Adapter's License You apply.
 .
 .
 Section 4 -- Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that
 apply to Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;
 .
 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material,
 .
 including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not
 replace Your obligations under this Public License where the Licensed
 Rights include other Copyright and Similar Rights.
 .
 .
 Section 5 -- Disclaimer of Warranties and Limitation of Liability.
 .
 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
 .
 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
 .
 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.
 .
 .
 Section 6 -- Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.
 .
 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or
 .
 2. upon express reinstatement by the Licensor.
 .
 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.
 .
 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.
 .
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.
 .
 .
 Section 7 -- Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.
 .
 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.
 .
 .
 Section 8 -- Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.
 .
 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.
 .
 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.
 .
 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.
 .
 .
 ===
 .
 Creative Commons is not a party to its public licenses.
 Notwithstanding, Creative Commons may elect to apply one of its public
 licenses to material it publishes and in those instances will be
 considered the "Licensor." Except for the limited purpose of indicating
 that material is shared under a Creative Commons public license or as
 otherwise permitted by the Creative Commons policies published at
 creativecommons.org/policies, Creative Commons does not authorize the
 use of the trademark "Creative Commons" or any other trademark or logo
 of Creative Commons without its prior written consent including,
 without limitation, in connection with any unauthorized modifications
 to any of its public licenses or any other arrangements,
 understandings, or agreements concerning use of licensed material. For
 the avoidance of doubt, this paragraph does not form part of the public
 licenses.
 .
 Creative Commons may be contacted at creativecommons.org.

License: CC-BY-SA-1.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. "Licensor" means the individual or entity that offers
 the Work under the terms of this License. "Original Author" means
 the individual or entity who created the Work. "Work" means the
 copyrightable work of authorship offered under the terms of this
 License. "You" means an individual or entity exercising rights
 under this License who has not previously violated the terms of
 this License with respect to the Work, or who has received express
 permission from the Licensor to exercise rights under this License
 despite a previous violation.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works;
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of
 each Derivative Work You distribute, publicly display, publicly
 perform, or publicly digitally perform. You may not offer or
 impose any terms on the Derivative Works that alter or restrict
 the terms of this License or the recipients' exercise of the
 rights granted hereunder, and You must keep intact all notices
 that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; in the case
 of a Derivative Work, a credit identifying the use of the Work in
 the Derivative Work (e.g., "French translation of the Work by
 Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 By offering the Work for public release under this License,
 Licensor represents and warrants that, to the best of
 Licensor's knowledge after reasonable inquiry: Licensor has
 secured all rights in the Work necessary to grant the license
 rights hereunder and to permit the lawful exercise of the
 rights granted hereunder without You having any obligation to
 pay any royalties, compulsory license fees, residuals or any
 other payments; The Work does not infringe the copyright,
 trademark, publicity rights, common law rights or any other
 right of any third party or constitute defamation, invasion of
 privacy or other tortious injury to any third party. EXCEPT
 AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
 WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON
 AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER
 EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
 WARRANTIES REGARDING THE CONTENTS OR ACCURACY OF THE WORK.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
 THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN
 NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
 SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
 ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, a later version of this License with the same License
 Elements as this License, or a Creative Commons iCommons license
 that contains the same License Elements as this License
 (e.g. Attribution-ShareAlike 2.0 Japan). You must include a copy
 of, or the Uniform Resource Identifier for, this License or other
 license specified in the previous sentence with every copy or
 phonorecord of each Derivative Work You distribute, publicly
 display, publicly perform, or publicly digitally perform. You may
 not offer or impose any terms on the Derivative Works that alter
 or restrict the terms of this License or the recipients' exercise
 of the rights granted hereunder, and You must keep intact all
 notices that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; to the
 extent reasonably practicable, the Uniform Resource Identifier, if
 any, that Licensor specifies to be associated with the Work,
 unless such URI does not refer to the copyright notice or
 licensing information for the Work; and in the case of a
 Derivative Work, a credit identifying the use of the Work in the
 Derivative Work (e.g., "French translation of the Work by Original
 Author," or "Screenplay based on original Work by Original
 Author"). Such credit may be implemented in any reasonable manner;
 provided, however, that in the case of a Derivative Work or
 Collective Work, at a minimum such credit will appear where any
 other comparable authorship credit appears and in a manner at
 least as prominent as such other comparable authorship credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.5
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any credit as required by clause
 4(c), as requested. If You create a Derivative Work, upon notice
 from any Licensor You must, to the extent practicable, remove from
 the Derivative Work any credit as required by clause 4(c), as
 requested. You may distribute, publicly display, publicly
 perform, or publicly digitally perform a Derivative Work only
 under the terms of this License, a later version of this License
 with the same License Elements as this License, or a Creative
 Commons iCommons license that contains the same License Elements
 as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must
 include a copy of, or the Uniform Resource Identifier for, this
 License or other license specified in the previous sentence with
 every copy or phonorecord of each Derivative Work You distribute,
 publicly display, publicly perform, or publicly digitally
 perform. You may not offer or impose any terms on the Derivative
 Works that alter or restrict the terms of this License or the
 recipients' exercise of the rights granted hereunder, and You must
 keep intact all notices that refer to this License and to the
 disclaimer of warranties. You may not distribute, publicly
 display, publicly perform, or publicly digitally perform the
 Derivative Work with any technological measures that control
 access or use of the Work in a manner inconsistent with the terms
 of this License Agreement. The above applies to the Derivative
 Work as incorporated in a Collective Work, but this does not
 require the Collective Work apart from the Derivative Work itself
 to be made subject to the terms of this License. If you
 distribute, publicly display, publicly perform, or publicly
 digitally perform the Work or any Derivative Works or Collective
 Works, You must keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i)
 the name of the Original Author (or pseudonym, if applicable) if
 supplied, and/or (ii) if the Original Author and/or Licensor
 designate another party or parties (e.g. a sponsor institute,
 publishing entity, journal) for attribution in Licensor's
 copyright notice, terms of service or by other reasonable means,
 the name of such party or parties; the title of the Work if
 supplied; to the extent reasonably practicable, the Uniform
 Resource Identifier, if any, that Licensor specifies to be
 associated with the Work, unless such URI does not refer to the
 copyright notice or licensing information for the Work; and in the
 case of a Derivative Work, a credit identifying the use of the
 Work in the Derivative Work (e.g., "French translation of the Work
 by Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: Apache-2.0
 On Debian systems the full text of the Apache-2.0 license can be found in
 /usr/share/common-licenses/Apache-2.0.

License: Zlib
 The zlib/libpng License
 .
 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 .
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 .
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 .
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 .
 3. This notice may not be removed or altered from any source
 distribution.
 .
 NO WARRANTY
 .
 BECAUSE THE DATA IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
 FOR THE DATA, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
 PROVIDE THE DATA "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
 TO THE QUALITY AND PERFORMANCE OF THE DATA IS WITH YOU. SHOULD THE
 DATA PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
 REPAIR OR CORRECTION.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
 REDISTRIBUTE THE DATA AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
 OUT OF THE USE OR INABILITY TO USE THE DATA (INCLUDING BUT NOT LIMITED
 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
 YOU OR THIRD PARTIES OR A FAILURE OF THE DATA TO OPERATE WITH ANY OTHER
 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

./usr/share/doc/python3-pikepdf/html/_images/28fish.jpg

./usr/share/doc/python3-pikepdf/html/_images/acrobat-attachments.png

./usr/share/doc/python3-pikepdf/html/_images/congress_im0.jpg

./usr/share/doc/python3-pikepdf/html/_images/pdfcoords.svg

 (0, 0)

 +x

 +y

 MediaBo x

 Cr opBo x

 Page te xt

./usr/share/doc/python3-pikepdf/html/_images/pike-cartoon.png

./usr/share/doc/python3-pikepdf/html/_images/pike-release.jpg

./usr/share/doc/python3-pikepdf/html/_images/pike.png

./usr/share/doc/python3-pikepdf/html/_images/pikemen.jpg

./usr/share/doc/python3-pikepdf/html/_images/sushi.jpg

./usr/share/doc/python3-pikepdf/html/_sources/api/exceptions.rst.txt

Exceptions

.. autoexception:: pikepdf.PdfError

 General pikepdf-specific exception.

.. autoexception:: pikepdf.PasswordError

 Exception thrown when the supplied password is incorrect.

.. autoexception:: pikepdf.ForeignObjectError

 Exception thrown when a complex object was copied into a foreign PDF without
 using :meth:`Pdf.copy_foreign`.

.. autoexception:: pikepdf.OutlineStructureError

 Exception thrown when an ``/Outlines`` object violates constraints imposed
 by the |pdfrm|.

.. autoexception:: pikepdf.UnsupportedImageTypeError

 Exception thrown when attempting to manipulate a PDF image of a complex type
 that pikepdf does not currently support.

.. autoexception:: pikepdf.DataDecodingError

 Exception thrown when a stream object in a PDF is malformed and cannot be
 decoded.

.. autoexception:: pikepdf.DeletedObjectError

 Exception thrown when accessing a :class:`Object` that relies on a :class:`Pdf`
 that was deleted using the Python ``delete`` statement or collected by the
 Python garbage collector. To resolve this error, you must retain a reference
 to the Pdf for the whole time you may be accessing it.

 .. versionadded:: 7.0

./usr/share/doc/python3-pikepdf/html/_sources/api/filters.rst.txt

Content streams

In PDF, drawing operations are all performed in content streams that describe
the positioning and drawing order of all graphics (including text, images and
vector drawing).

.. seealso::
 :ref:`working_with_content_streams`

pikepdf (and libqpdf) provide two tools for interpreting content streams:
a parser and filter. The parser returns higher level information, conveniently
grouping all commands with their operands. The parser is useful when one wants
to retrieve information from a content stream, such as determine the position
of an element. The parser should not be used to edit or reconstruct the content
stream because some subtleties are lost in parsing.

The token filter works at a lower level, considering each token including
comments, and distinguishing different types of spaces. This allows modifying
content streams. A TokenFilter must be subclassed; the specialized version
describes how it should transform the stream of tokens.

Content stream parsers

.. autofunction:: pikepdf.parse_content_stream

.. autofunction:: pikepdf.unparse_content_stream

Content stream token filters

.. autoclass:: pikepdf.Token
 :members:

.. class:: pikepdf.TokenType

 When filtering content streams, each token is labeled according to the role
 in plays.

 Standard tokens

 .. attribute:: array_open

 .. attribute:: array_close

 .. attribute:: brace_open

 .. attribute:: brace_close

 .. attribute:: dict_open

 .. attribute:: dict_close

 These tokens mark the start and end of an array, text string, and
 dictionary, respectively.

 .. attribute:: integer

 .. attribute:: real

 .. attribute:: null

 .. attribute:: bool

 The token data represents an integer, real number, null or boolean,
 respectively.

 .. attribute:: name_

 The token is the name (pikepdf.Name) of an object. In practice, these
 are among the most interesting tokens.

 .. versionchanged:: 3.0
 In versions older than 3.0, ``.name`` was used instead. This interfered
 with semantics of the ``Enum`` object, so this was fixed.

 .. attribute:: inline_image

 An inline image in the content stream. The whole inline image is
 represented by the single token.

 Lexical tokens

 .. attribute:: comment

 Signifies a comment that appears in the content stream.

 .. attribute:: word

 Otherwise uncategorized bytes are returned as ``word`` tokens. PDF
 operators are words.

 .. attribute:: bad

 An invalid token.

 .. attribute:: space

 Whitespace within the content stream.

 .. attribute:: eof

 Denotes the end of the tokens in this content stream.

.. autoclass:: pikepdf.TokenFilter
 :members:

./usr/share/doc/python3-pikepdf/html/_sources/api/main.rst.txt

Main objects

.. autoclass:: pikepdf.Pdf
 :members:

.. function:: pikepdf.open

 Alias for :meth:`pikepdf.Pdf.open`.

.. function:: pikepdf.new

 Alias for :meth:`pikepdf.Pdf.new`.

.. class:: pikepdf.ObjectStreamMode

 Options for saving streams within PDFs, which are more a compact
 way of saving certain types of data that was added in PDF 1.5. All
 modern PDF viewers support object streams, but some third party tools
 and libraries cannot read them.

 .. attribute:: disable

 Disable the use of object streams. If any object streams exist in the
 file, remove them when the file is saved.

 .. attribute:: preserve

 Preserve any existing object streams in the original file. This is
 the default behavior.

 .. attribute:: generate

 Generate object streams.

.. class:: pikepdf.StreamDecodeLevel

 Options for decoding streams within PDFs.

 .. attribute:: none

 Do not attempt to apply any filters. Streams
 remain as they appear in the original file. Note that
 uncompressed streams may still be compressed on output. You can
 disable that by saving with ``.save(..., compress_streams=False)``.

 .. attribute:: generalized

 This is the default. libqpdf will apply
 LZWDecode, ASCII85Decode, ASCIIHexDecode, and FlateDecode
 filters on the input. When saved with
 ``compress_streams=True``, the default, the effect of this
 is that streams filtered with these older and less efficient
 filters will be recompressed with the Flate filter. As a
 special case, if a stream is already compressed with
 FlateDecode and ``compress_streams=True``, the original
 compressed data will be preserved.

 .. attribute:: specialized

 In addition to uncompressing the
 generalized compression formats, supported non-lossy
 compression will also be be decoded. At present, this includes
 the RunLengthDecode filter.

 .. attribute:: all

 In addition to generalized and non-lossy
 specialized filters, supported lossy compression filters will
 be applied. At present, this includes DCTDecode (JPEG)
 compression. Note that compressing the resulting data with
 DCTDecode again will accumulate loss, so avoid multiple
 compression and decompression cycles. This is mostly useful for
 (low-level) retrieving image data; see :class:`pikepdf.PdfImage` for
 the preferred method.

.. autoclass:: pikepdf.Encryption
 :noindex:

Object construction
===================

.. autoclass:: pikepdf.Object
 :members:

.. autoclass:: pikepdf.Name
 :members: __new__

.. autoclass:: pikepdf.String
 :members: __new__

.. autoclass:: pikepdf.Array
 :members: __new__

.. autoclass:: pikepdf.Dictionary
 :members: __new__

.. autoclass:: pikepdf.Stream
 :members: __new__

.. autoclass:: pikepdf.Operator
 :members:

Common PDF data structures
==========================

.. autoclass:: pikepdf.Matrix
 :members:
 :special-members: __init__, __matmul__, __array__

.. autoclass:: pikepdf.Rectangle
 :members:

Content stream elements
=======================

.. autoclass:: pikepdf.ContentStreamInstruction
 :members:

 Represents one complete instruction inside a content stream.

.. autoclass:: pikepdf.ContentStreamInlineImage
 :members:

 Represents an instruction to draw an inline image inside a content
 stream.

 pikepdf consolidates the BI-ID-EI sequence of operators, as appears in a PDF to
 declare an inline image, and replaces them with a single virtual content stream
 instruction with the operator "INLINE IMAGE".

Internal objects
================

These objects are returned by other pikepdf objects. They are part of the API,
but not intended to be created explicitly.

.. autoclass:: pikepdf._core.PageList
 :members:

 A ``list``-like object enumerating a range of pages in a :class:`pikepdf.Pdf`.
 It may be all of the pages or a subset.

.. autoclass:: pikepdf._core._ObjectList
 :members:

 A ``list``-like object containing multiple ``pikepdf.Object``.

.. class:: pikepdf.ObjectType

 Enumeration of object types. These values are used to implement
 pikepdf's instance type checking. In the vast majority of cases it is more
 pythonic to use ``isinstance(obj, pikepdf.Stream)`` or ``issubclass``.

 These values are low-level and documented for completeness. They are exposed
 through :attr:`pikepdf.Object._type_code`.

 .. attribute:: uninitialized

 An uninitialized object. If this appears, it is probably a bug.

 .. attribute:: reserved

 A temporary object used in creating circular references. Should not appear
 in most cases.

 .. attribute:: null

 A PDF null. In most cases, nulls are automatically converted to ``None``,
 so this should not appear.

 .. attribute:: boolean

 A PDF boolean. In most cases, booleans are automatically converted to
 ``bool``, so this should not appear.

 .. attribute:: integer

 A PDF integer. In most cases, integers are automatically converted to
 ``int``, so this should not appear. Unlike Python integers, PDF integers
 are 32-bit signed integers.

 .. attribute:: real

 A PDF real. In most cases, reals are automatically convert to
 :class:`decimal.Decimal`.

 .. attribute:: string

 A PDF string, meaning the object is a ``pikepdf.String``.

 .. attribute:: name_

 A PDF name, meaning the object is a ``pikepdf.Name``.

 .. attribute:: array

 A PDF array, meaning the object is a ``pikepdf.Array``.

 .. attribute:: dictionary

 A PDF dictionary, meaning the object is a ``pikepdf.Dictionary``.

 .. attribute:: stream

 A PDF stream, meaning the object is a ``pikepdf.Stream`` (and it also
 has a dictionary).

 .. attribute:: operator

 A PDF operator, meaning the object is a ``pikepdf.Operator``.

 .. attribute:: inlineimage

 A PDF inline image, meaning the object is the data stream of an inline
 image. It would be necessary to combine this with the implicit
 dictionary to interpret the image correctly. pikepdf automatically
 packages inline images into a more useful class, so this will not
 generally appear.

Jobs
====

.. autoclass:: pikepdf.Job
 :members:
 :special-members: __init__

./usr/share/doc/python3-pikepdf/html/_sources/api/models.rst.txt

Support models

Support models are abstracts over "raw" objects within a Pdf. For example, a page
in a PDF is a Dictionary with set to ``/Type`` of ``/Page``. The Dictionary in
that case is the "raw" object. Upon establishing what type of object it is, we
can wrap it with a support model that adds features to ensure consistency with
the PDF specification.

In version 2.x, did not apply support models to "raw" objects automatically.
Version 3.x automatically applies support models to ``/Page`` objects.

.. autoclass:: pikepdf.ObjectHelper
 :members:

.. autoclass:: pikepdf.Page
 :members:
 :inherited-members:

 Support model wrapper around a page dictionary object.

.. autoclass:: pikepdf.PdfMatrix
 :members:
 :special-members: __init__, __matmul__, __array__

.. autoclass:: pikepdf.PdfImage
 :inherited-members:

.. autoclass:: pikepdf.PdfInlineImage

.. autoclass:: pikepdf.models.PdfMetadata
 :members:

.. autoclass:: pikepdf.models.Encryption
 :members:

.. autoclass:: pikepdf.models.Outline
 :members:

.. autoclass:: pikepdf.models.OutlineItem
 :members:

.. autoclass:: pikepdf.Permissions
 :members:

.. class:: pikepdf.models.EncryptionMethod

 Describes which encryption method was used on a particular part of a
 PDF. These values are returned by :class:`pikepdf.EncryptionInfo` but
 are not currently used to specify how encryption is requested.

 .. attribute:: none

 Data was not encrypted.

 .. attribute:: unknown

 An unknown algorithm was used.

 .. attribute:: rc4

 The RC4 encryption algorithm was used (obsolete).

 .. attribute:: aes

 The AES-based algorithm was used as described in the |pdfrm|.

 .. attribute:: aesv3

 An improved version of the AES-based algorithm was used as described in the
 :doc:`Adobe Supplement to the ISO 32000 </references/resources>`, requiring
 PDF 1.7 extension level 3. This algorithm still uses AES, but allows both
 AES-128 and AES-256, and improves how the key is derived from the password.

.. autoclass:: pikepdf.models.EncryptionInfo
 :members:

.. autoclass:: pikepdf.Annotation
 :members:

 Describes an annotation in a PDF, such as a comment, underline, copy editing marks,
 interactive widgets, redactions, 3D objects, sound and video clips.

 See the |pdfrm| section 12.5.6 for the full list of annotation types
 and definition of terminology.

 .. versionadded:: 2.12

.. autoclass:: pikepdf._core.Attachments
 :members:

 This interface provides access to any files that are attached to this PDF,
 exposed as a Python :class:`collections.abc.MutableMapping` interface.

 The keys (virtual filenames) are always ``str``, and values are always
 :class:`pikepdf.AttachedFileSpec`.

 Use this interface through :attr:`pikepdf.Pdf.attachments`.

 .. versionadded:: 3.0

.. autoclass:: pikepdf.AttachedFileSpec
 :members:
 :inherited-members:
 :special-members: __init__

 In a PDF, a file specification provides name and metadata for a target file.

 Most file specifications are *simple* file specifications, and contain only
 one attached file. Call :meth:`get_file` to get the attached file:

 .. code-block:: python

 pdf = Pdf.open(...)

 fs = pdf.attachments['example.txt']
 stream = fs.get_file()

 To attach a new file to a PDF, you may construct a ``AttachedFileSpec``.

 .. code-block:: python

 pdf = Pdf.open(...)

 fs = AttachedFileSpec.from_filepath(pdf, Path('somewhere/spreadsheet.xlsx'))

 pdf.attachments['spreadsheet.xlsx'] = fs

 PDF supports the concept of having multiple, platform-specialized versions of the
 attached file (similar to resource forks on some operating systems). In theory,
 this attachment ought to be the same file, but
 encoded in different ways. For example, perhaps a PDF includes a text file encoded
 with Windows line endings (``\r\n``) and a different one with POSIX line endings
 (``\n``). Similarly, PDF allows for the possibility that you need to encode
 platform-specific filenames. pikepdf cannot directly create these, because they
 are arguably obsolete; it can provide access to them, however.

 If you have to deal with platform-specialized versions,
 use :meth:`get_all_filenames` to enumerate those available.

 Described in the |pdfrm| section 7.11.3.

 .. versionadded:: 3.0

.. autoclass:: pikepdf._core.AttachedFile
 :members:
 :inherited-members:

 An object that contains an actual attached file. These objects do not need
 to be created manually; they are normally part of an AttachedFileSpec.

 .. versionadded:: 3.0

.. autoclass:: pikepdf.NameTree
 :members:

 An object for managing *name tree* data structures in PDFs.

 A name tree is a key-value data structure. The keys are any binary strings
 (that is, Python ``bytes``). If ``str`` selected is provided as a key,
 the UTF-8 encoding of that string is tested. Name trees are (confusingly)
 not indexed by ``pikepdf.Name`` objects. They behave like
 ``DictMapping[bytes, pikepdf.Object]``.

 The keys are sorted; pikepdf will ensure that the order is preserved.

 The value may be any PDF object. Typically it will be a dictionary or array.

 Internally in the PDF, a name tree can be a fairly complex tree data structure
 implemented with many dictionaries and arrays. pikepdf (using libqpdf)
 will automatically read, repair and maintain this tree for you. There should not
 be any reason to access the internal nodes of a number tree; use this
 interface instead.

 NameTrees are used to store certain objects like file attachments in a PDF.
 Where a more specific interface exists, use that instead, and it will
 manipulate the name tree in a semantic correct manner for you.

 Do not modify the internal structure of a name tree while you have a
 ``NameTree`` referencing it. Access it only through the ``NameTree`` object.

 Names trees are described in the |pdfrm| section 7.9.6. See section 7.7.4
 for a list of PDF objects that are stored in name trees.

 .. versionadded:: 3.0

.. autoclass:: pikepdf.NumberTree
 :members:

 An object for managing *number tree* data structures in PDFs.

 A number tree is a key-value data structure, like name trees, except that the
 key is an integer. It behaves like ``Dict[int, pikepdf.Object]``.

 The keys can be sparse - not all integers positions will be populated. Keys
 are also always sorted; pikepdf will ensure that the order is preserved.

 The value may be any PDF object. Typically it will be a dictionary or array.

 Internally in the PDF, a number tree can be a fairly complex tree data structure
 implemented with many dictionaries and arrays. pikepdf (using libqpdf)
 will automatically read, repair and maintain this tree for you. There should not
 be any reason to access the internal nodes of a number tree; use this
 interface instead.

 NumberTrees are not used much in PDF. The main thing they provide is a mapping
 between 0-based page numbers and user-facing page numbers (which pikepdf
 also exposes as ``Page.label``). The ``/PageLabels`` number tree is where the
 page numbering rules are defined.

 Number trees are described in the |pdfrm| section 7.9.7. See section 12.4.2
 for a description of the page labels number tree. Here is an example of modifying
 an existing page labels number tree:

 .. code-block:: python

 pagelabels = NumberTree(pdf.Root.PageLabels)
 # Label pages starting at 0 with lowercase Roman numerals
 pagelabels[0] = Dictionary(S=Name.r)
 # Label pages starting at 6 with decimal numbers
 pagelabels[6] = Dictionary(S=Name.D)

 # Page labels will now be:
 # i, ii, iii, iv, v, 1, 2, 3, ...

 Do not modify the internal structure of a name tree while you have a
 ``NumberTree`` referencing it. Access it only through the ``NumberTree`` object.

 .. versionadded:: 5.4

./usr/share/doc/python3-pikepdf/html/_sources/api/settings.rst.txt

Settings

Some of pikepdf's global parameters can be tuned.

.. autofunction:: pikepdf.settings.get_decimal_precision

.. autofunction:: pikepdf.settings.set_decimal_precision

.. autofunction:: pikepdf.settings.set_flate_compression_level

./usr/share/doc/python3-pikepdf/html/_sources/index.rst.txt

pikepdf Documentation
=====================

.. figure:: /images/pike.png
 :align: right
 :alt: A northern pike
 :figwidth: 30%

 A northern pike, or *esox lucius*.

pikepdf is a Python library allowing creation, manipulation and repair of
PDFs. It provides a Pythonic wrapper around the C++ PDF content transformation
library, `QPDF <https://github.com/qpdf/qpdf>`_.

Python + QPDF = "py" + "qpdf" = "pyqpdf", which looks like a dyslexia test and
is no fun to type. But say "pyqpdf" out loud, and it sounds like "pikepdf".

At a glance

pikepdf is a library intended for developers who want to create, manipulate, parse,
repair, and abuse the PDF format. It supports reading and write PDFs, including
creating from scratch. Thanks to QPDF, it supports linearizing PDFs and access
to encrypted PDFs.

.. code-block:: python

 # Rotate all pages in a file by 180 degrees
 import pikepdf

 with pikepdf.Pdf.open('test.pdf') as my_pdf:
 for page in my_pdf.pages:
 page.rotate(180, relative=True)
 my_pdf.save('test-rotated.pdf')

It is a low level library that requires knowledge of PDF internals and some
familiarity with the `PDF specification
<https://opensource.adobe.com/dc-acrobat-sdk-docs/standards/pdfstandards/pdf/PDF32000_2008.pdf>`_.
It does not provide a user interface of its own.

pikepdf would help you build apps that do things like:

.. figure:: /images/pike-cartoon.png
 :align: right
 :alt: A cartoon sketch of a pike
 :figwidth: 30%

 Pike fish are tough, hard-fighting, aggressive predators.

* :ref:`Copy pages <copyother>` from one PDF into another
* :ref:`Split <splitpdf>` and :ref:`merge <mergepdf>` PDFs
* Extract content from a PDF such as :ref:`images <extract_image>`
* Replace content, such as :ref:`replacing an image <replace_image>` without
 altering the rest of the file
* Repair, reformat or :meth:`linearize <pikepdf.Pdf.save>` PDFs
* Change the size of pages and reposition content
* Optimize PDFs similar to Acrobat's features by downsampling images,
 deduplicating
* Calculate how much to charge for a scanning project based on the materials
 scanned
* Alter a PDF to meet a target specification such as PDF/A or PDF/X
* Add or modify PDF :ref:`metadata <accessmetadata>`
* Add, remove, extract, and modify PDF :ref:`attachments <attachments>`
 (i.e. embedded files)
* Create well-formed but invalid PDFs for testing purposes

What it cannot do:

.. figure:: /images/pikemen.jpg
 :align: right
 :alt: A square of pikemen, carrying pikes
 :figwidth: 30%

 Pikemen bracing for a calvary charge, carrying pikes.

.. _PyMuPDF: https://github.com/pymupdf/PyMuPDF
.. _MuPDF: https://github.com/ArtifexSoftware/mupdf
.. _pypdfium2: https://github.com/pypdfium2-team/pypdfium2
.. _python-poppler: https://github.com/cbrunet/python-poppler
.. _Ghostscript: https://github.com/ArtifexSoftware/ghostpdl

* Rasterize PDF pages for display (that is, produce an image that shows what
 a PDF page looks like at a particular resolution/zoom level) – use
 `PyMuPDF`_, `pypdfium2`_, `python-poppler`_ or `Ghostscript`_ instead
* Convert from PDF to other similar paper capture formats like epub, XPS, DjVu,
 Postscript – use `MuPDF`_ or `PyMuPDF`_
* Print to paper

If you only want to generate PDFs and not read or modify them, consider
reportlab (a "write-only" PDF generator).

Requirements
~~~~~~~~~~~~

pikepdf currently requires **Python 3.8+**. pikepdf 1.x supports Python 3.5.
pikepdf 2.x and 3.x support Python 3.6; pikepdf 4.x through 6.x support Python
3.7. Python 2.7 has never been supported.

Similar libraries
~~~~~~~~~~~~~~~~~

Unlike similar Python libraries such as pypdf, pikepdf is not pure
Python. These libraries were designed prior to Python wheels which has made Python
extension libraries much easier to work with. By leveraging the existing mature
code base of QPDF, despite being new, pikepdf is already more capable than both
in many respects – for example, it can read compress object streams, repair
damaged PDFs in many cases, and linearize PDFs. Unlike those libraries, it's not
pure Python: it is impure and proud of it.

PyMuPDF is a PDF library with impressive capabilities. However, its AGPL license
is much more restrictive than pikepdf, and its dependency on static libraries
makes it difficult to include in open source Linux or BSD distributions.

In use
~~~~~~

pikepdf is used by the same author's `OCRmyPDF
<https://github.com/jbarlow83/OCRmyPDF>`_ to inspect input PDFs, graft the
generated OCR layers on to page content, and output PDFs. Its code contains several
practical examples, particular in ``pdfinfo.py``, ``graft.py``, and
``optimize.py``. pikepdf is also used in its test suite.

.. toctree::
    :maxdepth: 2
    :caption: Introduction
    :name: intro_toc

    tutorial

.. toctree::
    :maxdepth: 1
    :caption: Release notes

    releasenotes/index.rst

.. toctree::
    :maxdepth: 2
    :caption: Topics
    :name: topics_toc

    topics/pages
    topics/page
    topics/objects
    topics/streams
    topics/content_streams
    topics/images
    topics/overlays
    topics/encoding
    topics/metadata
    topics/outlines
    topics/nametrees
    topics/attachments
    topics/pagelayout
    topics/security

.. toctree::
    :maxdepth: 2
    :caption: API
    :name: api_toc

    api/main
    api/models
    api/filters
    api/exceptions
    api/settings

.. toctree::
    :maxdepth: 2
    :caption: Reference
    :name: reference_toc

    references/arch
    references/contributing
    references/debugging
    references/resources










./usr/share/doc/python3-pikepdf/html/_sources/references/arch.rst.txt


Architecture
============

pikepdf uses `pybind11 <https://github.com/pybind/pybind11>`_ to bind the
C++ interface of QPDF. pybind11 was selected after evaluating Cython, CFFI and
SWIG as possible binding solutions.

In addition to bindings pikepdf includes support code written in a mix of C++
and Python, mainly to present a clean Pythonic interface to C++ and implement
higher level functionality.

Internals
---------

Internally the package presents a module named ``pikepdf`` from which objects
can be imported. The C++ extension module is currently named ``pikepdf._core``.
Users of ``pikepdf`` should not directly access ``_core`` since it is an
internal interface. In previous versions, this library was named ``_qpdf``.

In general, modules or objects behind an underscore are private (although they
may be returned in some situations).

Thread safety
-------------

Because of the global interpreter lock (GIL), it is safe to read pikepdf
objects across Python threads. Also because of the GIL, there may not be much
performance gain from doing so.

If one or more threads will be modifying pikepdf objects, you will have to
coordinate read and write access with a :class:`threading.Lock`.

It is not currently possible to pickle pikepdf objects or marshall them across
process boundaries (as would be required to use pikepdf in
:mod:`multiprocessing`). If this were implemented, it would not be much more
efficient than saving a full PDF and sending it to another process.
Parallelizing work (for example, by dividing work by PDF pages) can still be
achieved by having each worker process open the same file.

File handles
------------

Because of technical limitations in underlying libraries, pikepdf keeps the
source PDF file open when a content is copied from it to another PDF, even when
all Python variables pointing to the source are removed. If a PDF is being
assembled from many sources, then all of those sources are held open in memory.










./usr/share/doc/python3-pikepdf/html/_sources/references/contributing.rst.txt


=======================
Contributing guidelines
=======================

Contributions are welcome!

Big changes
===========

Please open a new issue to discuss or propose a major change. Not only is it fun
to discuss big ideas, but we might save each other's time too. Perhaps some of the
work you're contemplating is already half-done in a development branch.

Code style: Python
==================

We use PEP8, ``black`` for code formatting and ``isort`` for import sorting. The
settings for these programs are in :file:`pyproject.toml` and :file:`setup.cfg`. Pull
requests should follow the style guide. One difference we use from "black" style
is that strings shown to the user are always in double quotes (``"``) and strings
for internal uses are in single quotes (``'``).

Code style: C++
===============

The file :file:`.clang-format` contains our C++ format
based on Clang's formatter, imperfect as it is. We eagerly await a dangling parenthesis
(https://reviews.llvm.org/D33029).

In general we prefer to make our C++ look similar to Python PEP8, within reason,
because our code is primarily a Python binding. That is, variable and method names
are snake_case, class names are CamelCase. Our coding conventions are closer to
pybind11's than QPDF's. When a C++ object wraps is a Python object, it should follow
the Python naming conventions for that type of object, e.g.
``auto Decimal = py::module_::import("decimal").attr("Decimal")``
for a reference to the Python ``Decimal`` class even though it is a C++ object.

We don't like the traditional C++ .cpp/.h separation that results in a lot of
repetition. Headers that are included by only one .cpp can contain a complete class,
and get the ``-inl.h`` suffix, unless multiple inclusion is required.

Use RAII. Avoid naked pointers. Use the STL, use ``std::string`` instead of ``char *``.
Use ``#pragma once`` as a header guard rather than silly ``#ifdef``; they have
been around for 25 years.

Tests
=====

New features should come with tests that confirm their correctness.

New dependencies
================

If you are proposing a change that will require a new dependency, we
prefer dependencies that are already packaged by Debian or Red Hat. This makes
life much easier for our downstream package maintainers.

Dependencies must also be compatible with the source code license.

English style guide
===================

pikepdf is always spelled "pikepdf", and never capitalized even at the beginning
of a sentence.

Periodic allusions to fish are required, and the writer shall be energetic and
mildly amusing.

Known ports/packagers
=====================

pikepdf has been ported to many platforms already. If you are interesting in
porting to a new platform, check with
`Repology <https://repology.org/projects/?search=pikepdf>`__ to see the status
of that platform.










./usr/share/doc/python3-pikepdf/html/_sources/references/debugging.rst.txt


Debugging
=========

pikepdf does a complex job in providing bindings from Python to a C++ library,
both of which have different ideas about how to manage memory. This page
documents some methods that may help should it be necessary to debug the Python
C++ extension (``pikepdf._core``).

Using gdb to debug C++ and Python
---------------------------------

Current versions of gdb can debug Python and C++ code simultaneously. See
the Python developer's guide on `gdb Support`_. To use this effectively, a debug
build of pikepdf and QPDF should be created.

.. _gdb Support: https://devguide.python.org/gdb/

Compiling a debug build of QPDF
-------------------------------

To download QPDF and compile a debug build:

.. code-block:: bash

    # in QPDF source tree
    cd $QPDF_SOURCE_TREE
    cmake -S . -B build -DENABLE_QTC=ON -DCMAKE_BUILD_TYPE=Debug
    cmake --build build -j

Compile and link against QPDF source tree
-----------------------------------------

Build ``pikepdf._core`` against the version of QPDF above, rather than the
system version:

.. code-block:: bash

    env QPDF_SOURCE_TREE=<location of QPDF> \
      QPDF_BUILD_LIBDIR=<directory containing libqpdf.so> \
      python setup.py build_ext --inplace

The libqpdf.so file should be located in the ``libqpdf`` subdirectory of your cmake
build directory but may be in a subdirectory of that if you are using a
multi-configuration generator with cmake. In addition to building against the QPDF
source, you'll need to force your operating system to load the locally compiled
version of QPDF instead of the installed version:

.. code-block:: bash

    # Linux
    env LD_LIBRARY_PATH=<directory containing libqpdf.so> python ...

.. code-block:: bash

    # macOS - may require disabling System Integrity Protection
    env DYLD_LIBRARY_PATH=<directory containing libqpdf.so> python ...

On macOS you can make the library persistent by changing the name of the library
to use in pikepdf's binary extension module:

.. code-block:: bash

    install_name_tool -change /usr/local/lib/libqpdf*.dylib \
        $QPDF_BUILD_LIBDIR/libqpdf*.dylib \
        src/pikepdf/_core.cpython*.so

You can also run Python through a debugger (``gdb`` or ``lldb``) in this manner,
and you will have access to the source code for both pikepdf's C++ and QPDF.

Enabling QPDF tracing
---------------------

For builds of QPDF having ENABLE_QTC=ON, setting the environment variables
``TC_SCOPE=qpdf`` and ``TC_FILENAME=your_log_file.txt`` will cause libqpdf to
log debug messages to the designated file. For example:

.. code-block:: bash

    env TC_SCOPE=qpdf TC_FILENAME=libqpdf_log.txt python my_pikepdf_script.py

Valgrind
--------

Valgrind may also be helpful - see the Python `documentation`_ for information
on setting up Python and Valgrind.

.. _documentation: https://github.com/python/cpython/blob/d5d33681c1cd1df7731eb0fb7c0f297bc2f114e6/Misc/README.valgrind

Profiling pikepdf
-----------------

The standard Python profiling tools in :mod:`cProfile` work fine for many
purposes but cannot explore inside pikepdf's C++ functions.

The `py-spy`_ program can effectively profile time spent in Python or executing
C++ code and demangle many C++ names to the appropriate symbols.

Happily it also does not require recompiling in any special mode, unless one
desires more symbol information than libqpdf or the C++ standard library exports.

For best results, use py-spy to generate speedscope files and use the `speedscope`_
application to view them. py-spy's SVG output is illegible due to long C++ template
names as of this writing.

To install profiling and use profiling software:

.. code-block:: bash

    # From a virtual environment with pikepdf installed...

    # Install
    pip install py-spy
    npm install -g speedscope  # may need sudo to install this

    # Run profile on a script that executes some pikepdf code we want to profile
    py-spy record --native --format speedscope -o profile.speedscope -- python some_script.py

    # View results (this will open a browser window)
    speedscope profile.speedscope

To profile pikepdf's test suite, ensure that you run ``pytest -n0`` to disable
multiple CPU usage, since py-spy cannot trace inside child processes.

.. _py-spy: https://github.com/benfred/py-spy

.. _speedscope: https://github.com/jlfwong/speedscope

pymemtrace
----------

`pymemtrace`_ is another helpful tool for diagnosing memory leaks.

.. _pymemtrace: https://pymemtrace.readthedocs.io/en/latest/index.html









./usr/share/doc/python3-pikepdf/html/_sources/references/resources.rst.txt


Resources
=========

* `QPDF Manual`_

* `PDF 1.7`_ ISO Specification PDF 32000-1:2008

* `Adobe Supplement to ISO 32000 BaseVersion 1.7 ExtensionLevel 3`_, Adobe Acrobat 9.0, June 2008, for AESv3

* Other `Adobe extensions`_ to the PDF specification

.. _QPDF Manual: https://qpdf.readthedocs.io/

.. _PDF 1.7: https://opensource.adobe.com/dc-acrobat-sdk-docs/standards/pdfstandards/pdf/PDF32000_2008.pdf

.. _Adobe extensions: https://www.adobe.com/devnet/pdf/pdf_reference.html

.. _Adobe Supplement to ISO 32000 BaseVersion 1.7 ExtensionLevel 3: https://www.adobe.com/content/dam/acom/en/devnet/pdf/adobe_supplement_iso32000.pdf

For information about copyrights and licenses, including those associated with the
images in this documentation, see the source tree file ``.reuse/dep5``.









./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/index.rst.txt


.. _changelog:

Release notes
#############

.. figure:: /images/pike-release.jpg
    :figwidth: 30%
    :alt: pike fish being released to water
    :align: right

    Releasing a pike.

pikepdf releases use the `semantic versioning <https://semver.org>`__
policy.

The pikepdf API (as provided by ``import pikepdf``) is stable and
is in production use. Note that the C++ extension module
``pikepdf._core`` is a private interface within pikepdf that applications
should not access directly, along with any modules with a prefixed underscore.

.. toctree::
  :maxdepth: 1
  :glob:
  :reversed:

  version*










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version0.rst.txt



v0.10.2
=======

Fixes
-----

-  Fixed segfault when overwriting the pikepdf file that is currently
   open on Linux.
-  Fixed removal of an attribute metadata value when values were present
   on the same node.

v0.10.1
=======

.. _fixes-1:

Fixes
-----

-  Avoid canonical XML since it is apparently too strict for XMP.

v0.10.0
=======

.. _fixes-2:

Fixes
-----

-  Fixed several issues related to generating XMP metadata that passed
   veraPDF validation.
-  Fixed a random test suite failure for very large negative integers.
-  The lxml library is now required.

v0.9.2
======

.. _fixes-3:

Fixes
-----

-  Added all of the commonly used XML namespaces to XMP metadata
   handling, so we are less likely to name something 'ns1', etc.
-  Skip a test that fails on Windows.
-  Fixed build errors in documentation.

v0.9.1
======

.. _fixes-4:

Fixes
-----

-  Fix ``Object.write()`` accepting positional arguments it wouldn't use
-  Fix handling of XMP data with timezones (or missing timezone
   information) in a few cases
-  Fix generation of XMP with invalid XML characters if the invalid
   characters were inside a non-scalar object

v0.9.0
======

Updates
-------

-  New API to access and edit PDF metadata and make consistent edits to
   the new and old style of PDF metadata.
-  32-bit binary wheels are now available for Windows
-  PDFs can now be saved in QPDF's "qdf" mode
-  The Python package defusedxml is now required
-  The Python package python-xmp-toolkit and its dependency libexempi
   are suggested for testing, but not required

.. _fixes-5:

Fixes
-----

-  Fixed handling of filenames that contain multibyte characters on
   non-UTF-8 systems

Breaking
--------

-  The ``Pdf.metadata`` property was removed, and replaced with the new
   metadata API
-  ``Pdf.attach()`` has been removed, because the interface as
   implemented had no way to deal with existing attachments.

v0.3.7
======

-  Add API for inline images to unparse themselves

v0.3.6
======

-  Performance of reading files from memory improved to avoid
   unnecessary copies.
-  It is finally possible to use ``for key in pdfobj`` to iterate
   contents of PDF Dictionary, Stream and Array objects. Generally these
   objects behave more like Python containers should now.
-  Package API declared beta.

v0.3.5
======

.. _breaking-1:

Breaking
--------

-  ``Pdf.save(...stream_data_mode=...)`` has been dropped in favor of
   the newer ``compress_streams=`` and ``stream_decode_level``
   parameters.

.. _fixes-6:

Fixes
-----

-  A use-after-free memory error that caused occasional segfaults and
   "QPDFFakeName" errors when opening from stream objects has been
   resolved.

v0.3.4
======

.. _updates-1:

Updates
-------

-  pybind11 vendoring has ended now that v2.2.4 has been released

v0.3.3
======

.. _breaking-2:

Breaking
--------

-  libqpdf 8.2.1 is now required

.. _updates-2:

Updates
-------

-  Improved support for working with JPEG2000 images in PDFs
-  Added progress callback for saving files,
   ``Pdf.save(..., progress=)``
-  Updated pybind11 subtree

.. _fixes-7:

Fixes
-----

-  ``del obj.AttributeName`` was not implemented. The attribute
   interface is now consistent
-  Deleting named attributes now defers to the attribute dictionary for
   Stream objects, as get/set do
-  Fixed handling of JPEG2000 images where metadata must be retrieved
   from the file

v0.3.2
======

.. _updates-3:

Updates
-------

-  Added support for direct image extraction of CMYK and grayscale
   JPEGs, where previously only RGB (internally YUV) was supported
-  ``Array()`` now creates an empty array properly
-  The syntax ``Name.Foo in Dictionary()``, e.g.
   ``Name.XObject in page.Resources``, now works

v0.3.1
======

.. _breaking-3:

Breaking
--------

-  ``pikepdf.open`` now validates its keyword arguments properly,
   potentially breaking code that passed invalid arguments
-  libqpdf 8.1.0 is now required - libqpdf 8.1.0 API is now used for
   creating Unicode strings
-  If a non-existent file is opened with ``pikepdf.open``, a
   ``FileNotFoundError`` is raised instead of a generic error
-  We are now *temporarily* vendoring a copy of pybind11 since its
   main branch contains unreleased and important fixes for Python 3.7.

.. _updates-4:

Updates
-------

-  The syntax ``Name.Thing`` (e.g. ``Name.DecodeParms``) is now
   supported as equivalent to ``Name('/Thing')`` and is the recommended
   way to refer names within a PDF
-  New API ``Pdf.remove_unneeded_resources()`` which removes objects
   from each page's resource dictionary that are not used in the page.
   This can be used to create smaller files.

.. _fixes-8:

Fixes
-----

-  Fixed an error parsing inline images that have masks
-  Fixed several instances of catching C++ exceptions by value instead
   of by reference

v0.3.0
======

.. _breaking-4:

Breaking
--------

-  Modified ``Object.write`` method signature to require ``filter`` and
   ``decode_parms`` as keyword arguments
-  Implement automatic type conversion from the PDF Null type to
   ``None``
-  Removed ``Object.unparse_resolved`` in favor of
   ``Object.unparse(resolved=True)``
-  libqpdf 8.0.2 is now required at minimum

.. _updates-5:

Updates
-------

-  Improved IPython/Jupyter interface to directly export temporary PDFs
-  Updated to qpdf 8.1.0 in wheels
-  Added Python 3.7 support for Windows
-  Added a number of missing options from QPDF to ``Pdf.open`` and
   ``Pdf.save``
-  Added ability to delete a slice of pages
-  Began using Jupyter notebooks for documentation

v0.2.2
======

-  Added Python 3.7 support to build and test (not yet available for
   Windows, due to lack of availability on Appveyor)
-  Removed setter API from ``PdfImage`` because it never worked anyway
-  Improved handling of ``PdfImage`` with trivial palettes

v0.2.1
======

-  ``Object.check_owner`` renamed to ``Object.is_owned_by``
-  ``Object.objgen`` and ``Object.get_object_id`` are now public
   functions
-  Major internal reorganization with ``pikepdf.models`` becoming the
   submodule that holds support code to ease access to PDF objects as
   opposed to wrapping QPDF.

v0.2.0
======

-  Implemented automatic type conversion for ``int``, ``bool`` and
   ``Decimal``, eliminating the ``pikepdf.{Integer,Boolean,Real}``
   types. Removed a lot of associated numerical code.

Everything before v0.2.0 can be considered too old to document.










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version1.rst.txt


v1.19.4
=======

-  Modify project settings to declare no support for Python 3.9 in pikepdf 1.x.
   pybind11 upstream has indicated there are stability problems when pybind11
   2.5 (used by pikepdf 1.x) is used with Python 3.9. As such, we are marking
   Python 3.9 as unsupported by pikepdf 1.x. Python 3.9 users should switch to
   pikepdf 2.x.

v1.19.3
=======

-  Fixed an exception that occurred when building the documentation, introduced in
   the previous release.

v1.19.2
=======

-  Fixed an exception with setting metadata objects to unsupported RDF types.
   Instead we make a best effort to convert to an appropriate type.
-  Prevent creating certain illegal dictionary key names.
-  Document procedure to remove an image.

v1.19.1
=======

-  Fixed an issue with ``unparse_content_stream``: we now assume the second item
   of each step in the content stream is an ``Operator``.
-  Fixed an issue with unparsing inline images.

v1.19.0
=======

-  Learned how to export CCITT images from PDFs that have ICC profiles attached.
-  Cherry-picked a workaround to a possible use-after-free caused by pybind11
   (pybind11 PR 2223).
-  Improved test coverage of code that handles inline images.

v1.18.0
=======

-  You can now use ``pikepdf.open(...allow_overwriting_input=True)`` to allow
   overwriting the input file, which was previously forbidden because it can corrupt
   data. This is accomplished safely by loading the entire PDF into memory at the
   time it is opened rather than loading content as needed. The option is disabled by
   default, to avoid a performance hit.
-  Prevent setup.py from creating junk temporary files (finally!)

v1.17.3
=======

-  Fixed crash when ``pikepdf.Pdf`` objects are used inside generators (:issue:`114`) and
   not freed or closed before the generator exits.

v1.17.2
=======

-  Fixed issue, "seek of closed file" where JBIG2 image data could not be accessed
   (only metadata could be) when a JBIG2 was extracted from a PDF.

v1.17.1
=======

-  Fixed building against the oldest supported version of QPDF (8.4.2), and
   configure CI to test against the oldest version. (:issue:`109`)

v1.17.0
=======

-  Fixed a failure to extract PDF images, where the image had both a palette
   and colorspace set to an ICC profile. The iamge is now extracted with the
   profile embedded. (:issue:`108`)
-  Added opt-in support for memory-mapped file access, using
   ``pikepdf.open(...access_mode=pikepdf.AccessMode.mmap)``. Memory mapping
   file access performance considerably, but may make application exception
   handling more difficult.

v1.16.1
=======

-  Fixed an issue with JBIG2 extraction, where the version number of the jbig2dec
   software may be written to standard output as a side effect. This could
   interfere with test cases or software that expects pikepdf to be stdout-clean.
-  Fixed an error that occurred when updating DocumentInfo to match XMP metadata,
   when XMP metadata had unexpected empty tags.
-  Fixed setup.py to better support Python 3.8 and 3.9.
-  Documentation updates.

v1.16.0
=======

-  Added support for extracting JBIG2 images with the image API. JBIG2 images are
   converted to ``PIL.Image``. Requires a JBIG2 decoder such as jbig2dec.
-  Python 3.5 support is deprecated and will end when Python 3.5 itself reaches
   end of life, in September 2020. At the moment, some tests are skipped on Python
   3.5 because they depend on Python 3.6.
-  Python 3.9beta is supported and is known to work on Fedora 33.

v1.15.1
=======

-  Fixed a regression - ``Pdf.save(filename)`` may hold file handles open after
   the file is fully written.
-  Documentation updates.

v1.15.0
=======

-  Fixed an issue where ``Decimal`` objects of precision exceeding the
   PDF specification could be written to output files, causing some PDF viewers,
   notably Acrobat, to parse the file incorrectly. We now limit precision to
   15 digits, which ought to be enough to prevent rounding error and parsing
   errors.
-  We now refuse to create pikepdf objects from ``float`` or ``Decimal`` that are
   ``NaN`` or ``±Infinity``. These concepts have no equivalent in PDF.
-  ``pikepdf.Array`` objects now implement ``.append()`` and ``.extend()`` with
   familiar Python ``list`` semantics, making them easier to edit.

v1.14.0
=======

-  Allowed use of ``.keys()``, ``.items()`` on ``pikepdf.Stream`` objects.
-  We now warn on attempts to modify ``pikepdf.Stream.Length``, which pikepdf will
   manage on its own when the stream is serialized. In the future attempting to
   change it will become an error.
-  Clarified documentation in some areas about behavior of ``pikepdf.Stream``.

v1.13.0
=======

-  Added support for editing PDF Outlines (also known as bookmarks or the table of
   contents). Many thanks to Matthias Erll for this contribution.
-  Added support for decoding run length encoded images.
-  ``Object.read_bytes()`` and ``Object.get_stream_buffer()`` can now request decoding
   of uncommon PDF filters.
-  Fixed test suite warnings related to pytest and hypothesis.
-  Fixed build on Cygwin. Thanks to @jhgarrison for report and testing.

v1.12.0
=======

-  Microsoft Visual C++ Runtime libraries are now included in the pikepdf Windows
   wheel, to improve ease of use on Windows.
-  Defensive code added to prevent using ``.emplace()`` on objects from a
   foreign PDF without first copying the object. Previously, this would raise
   an exception when the file was saved.

v1.11.2
=======

-  Fix "error caused by missing str function of Array" (:issue:`100,101`).
-  Lots of delinting and minor fixes.

v1.11.1
=======

-  We now avoid creating an empty XMP metadata entry when files are saved.
-  Updated documentation to describe how to delete the document information
   dictionary.

v1.11.0
=======

-  Prevent creation of dictionaries with invalid names (not beginning with ``/``).
-  Allow pikepdf's build to specify a qpdf source tree, allowing one to compile
   pikepdf against an unreleased/modified version of qpdf.
-  Improved behavior of ``pages.p()`` and ``pages.remove()`` when invalid parameters
   were given.
-  Fixed compatibility with libqpdf version 10.0.1, and build official wheels
   against this version.
-  Fixed compatibility with pytest 5.x.
-  Fixed the documentation build.
-  Fixed an issue with running tests in a non-Unicode locale.
-  Fixed a test that randomly failed due to a "deadline error".
-  Removed a possibly nonfree test file.

v1.10.4
=======

-  Rebuild Python wheels with newer version of libqpdf. Fixes problems with
   opening certain password-protected files (:issue:`87`).

v1.10.3
=======

-  Fixed ``isinstance(obj, pikepdf.Operator)`` not working. (:issue:`86`)
-  Documentation updates.

v1.10.2
=======

-  Fixed an issue where pages added from a foreign PDF were added as references
   rather than copies. (:issue:`80`)
-  Documentation updates.

v1.10.1
=======

-  Fixed build reproducibility (thanks to @lamby)
-  Fixed a broken link in documentation (thanks to @maxwell-k)

v1.10.0
=======

-  Further attempts to recover malformed XMP packets.
-  Added missing functionality to extract 1-bit palette images from PDFs.

v1.9.0
======

-  Improved a few cases of malformed XMP recovery.
-  Added an ``unparse_content_stream`` API to assist with converting the previously
   parsed content streams back to binary.

v1.8.3
======

-  If the XMP metadata packet is not well-formed and we are confident that it
   is essentially empty apart from XML fluff, we fix the problem instead of
   raising an exception.

v1.8.2
======

-  Fixed an issue where QPDF 8.4.2 would report different errors from QPDF 9.0.0,
   causing a test to fail. (:issue:`71`)

v1.8.1
======

-  Fixed an issue where files opened by name may not be closed correctly. Regression
   from v1.8.0.
-  Fixed test for readable/seekable streams evaluated to always true.

v1.8.0
======

-  Added API/property to iterate all objects in a PDF: ``pikepdf.Pdf.objects``.
-  Added ``pikepdf.Pdf.check()``, to check for problems in the PDF and return a
   text description of these problems, similar to ``qpdf --check``.
-  Improved internal method for opening files so that the code is smaller and
   more portable.
-  Added missing licenses to account for other binaries that may be included in
   Python wheels.
-  Minor internal fixes and improvements to the continuous integration scripts.

v1.7.1
======

-  This release was incorrectly marked as a patch-level release when it actually
   introduced one minor new feature. It includes the API change to support
   ``pikepdf.Pdf.objects``.

v1.7.0
======

-  Shallow object copy with ``copy.copy(pikepdf.Object)`` is now supported. (Deep
   copy is not yet supported.)
-  Support for building on C++11 has been removed. A C++14 compiler is now required.
-  pikepdf now generates manylinux2010 wheels on Linux.
-  Build and deploy infrastructure migrated to Azure Pipelines.
-  All wheels are now available for Python 3.5 through 3.8.

v1.6.5
======

-  Fixed build settings to support Python 3.8 on macOS and Linux. Windows support
   for Python 3.8 is not currently tested since continuous integration providers
   have not updated to Python 3.8 yet.
-  pybind11 2.4.3 is now required, to support Python 3.8.

v1.6.4
======

-  When images were encoded with CCITTFaxDecode, type G4, with the /EncodedByteAlign
   set to true (not default), the image extracted by pikepdf would be a corrupted
   form of the original, usually appearing as a small speckling of black pixels at the
   top of the page. Saving an image with pikepdf was not affected; this problem
   only occurred when attempting to extract images. We now refuse to extract images
   with these parameters, as there is not sufficient documentation to determine
   how to extract them. This image format is relatively rare.

v1.6.3
======

-  Fixed compatibility with libqpdf 9.0.0.

   -  A new method introduced in libqpdf 9.0.0 overloaded an older method, making
      a reference to this method in pikepdf ambiguous.

   -  A test relied on libqpdf raising an exception when a pikepdf user called
      ``Pdf.save(..., min_version='invalid')``. libqpdf no longer raises an
      exception in this situation, but ignores the invalid version. In the interest
      of supporting both versions, we defer to libqpdf. The failing test is
      removed, and documentation updated.

-  Several warnings, most specific to the Visual C++ compiler, were fixed.
-  The Windows CI scripts were adjusted for the change in libqpdf ABI version.
-  Wheels are now built against libqpdf 9.0.0.
-  libqpdf 8.4.2 and 9.0.0 are both supported.

v1.6.2
======

-  Fixed another build problem on Alpine Linux - musl-libc defines ``struct FILE``
   as an incomplete type, which breaks pybind11 metaprogramming that attempts
   to reason about the type.
-  Documentation improved to mention FreeBSD port.

v1.6.1
======

-  Dropped our one usage of QPDF's C API so that we use only C++.
-  Documentation improvements.

v1.6.0
======

-  Added bindings for QPDF's page object helpers and token filters. These
   enable: filtering content streams, capturing pages as Form XObjects, more
   convenient manipulation of page boxes.
-  Fixed a logic error on attempting to save a PDF created in memory in a
   way that overwrites an existing file.
-  Fixed ``Pdf.get_warnings()`` failed with an exception when attempting to
   return a warning or exception.
-  Improved manylinux1 binary wheels to compile all dependencies from source
   rather than using older versions.
-  More tests and more coverage.
-  libqpdf 8.4.2 is required.

v1.5.0
======

-  Improved interpretation of images within PDFs that use an ICC colorspace.
   Where possible we embed the ICC profile when extracting the image, and
   profile access to the ICC profile.
-  Fixed saving PDFs with their existing encryption.
-  Fixed documentation to reflect the fact that saving a PDF without
   specifying encryption settings will remove encryption.
-  Added a test to prevent overwriting the input PDF since overwriting
   corrupts lazy loading.
-  ``Object.write(filters=, decode_parms=)`` now detects invalid parameters
   instead of writing invalid values to ``Filters`` and ``DecodeParms``.
-  We can now extract some images that had stacked compression, provided it
   is ``/FlateDecode``.
-  Add convenience function ``Object.wrap_in_array()``.

v1.4.0
======

-  Added support for saving encrypted PDFs. (Reading them has been supported
   for a long time.)
-  Added support for setting the PDF extension level as well as version.
-  Added support converting strings to and from PDFDocEncoding, by
   registering a ``"pdfdoc"`` codec.

v1.3.1
======

-  Updated pybind11 to v2.3.0, fixing a possible GIL deadlock when
   pikepdf objects were shared across threads. (:issue:`27`)
-  Fixed an issue where PDFs with valid XMP metadata but missing an
   element that is usually present would be rejected as malformed XMP.

v1.3.0
======

-  Remove dependency on ``defusedxml.lxml``, because this library is deprecated.
   In the absence of other options for XML hardening we have reverted to
   standard ``lxml``.
-  Fixed an issue where ``PdfImage.extract_to()`` would write a file in
   the wrong directory.
-  Eliminated an intermediate buffer that was used when saving to an IO
   stream (as opposed to a filename). We would previously write the
   entire output to a memory buffer and then write to the output buffer;
   we now write directly to the stream.
-  Added ``Object.emplace()`` as a workaround for when one wants to
   update a page without generating a new page object so that
   links/table of contents entries to the original page are preserved.
-  Improved documentation. Eliminated all ``arg0`` placeholder variable
   names, which appeared when the documentation generator could not read a
   C++ variable name.
-  Added ``PageList.remove(p=1)``, so that it is possible to remove
   pages using counting numbers.

v1.2.0
======

-  Implemented ``Pdf.close()`` and ``with``-block context manager, to
   allow Pdf objects to be closed without relying on ``del``.
-  ``PdfImage.extract_to()`` has a new keyword argument ``fileprefix=``,
   which to specify a filepath where an image should be extracted with
   pikepdf setting the appropriate file suffix. This simplifies the API
   for the most common case of extracting images to files.
-  Fixed an internal test that should have suppressed the extraction of
   JPEGs with a nonstandard ColorTransform parameter set. Without the
   proper color transform applied, the extracted JPEGs will typically
   look very pink. Now, these images should fail to extract as was
   intended.
-  Fixed that ``Pdf.save(object_stream_mode=...)`` was ignored if the
   default ``fix_metadata_version=True`` was also set.
-  Data from one ``Pdf`` is now copied to other ``Pdf`` objects
   immediately, instead of creating a reference that required source
   PDFs to remain available. ``Pdf`` objects no longer reference each
   other.
-  libqpdf 8.4.0 is now required
-  Various documentation improvements

v1.1.0
======

-  Added workaround for macOS/clang build problem of the wrong exception
   type being thrown in some cases.
-  Improved translation of certain system errors to their Python
   equivalents.
-  Fixed issues resulting from platform differences in
   ``datetime.strftime``. (:issue:`25`)
-  Added ``Pdf.new``, ``Pdf.add_blank_page`` and ``Pdf.make_stream``
   convenience methods for creating new PDFs from scratch.
-  Added binding for new QPDF JSON feature: ``Object.to_json``.
-  We now automatically update the XMP PDFVersion metadata field to be
   consistent with the PDF's declared version, if the field is present.
-  Made our Python-augmented C++ classes easier for Python code
   inspectors to understand.
-  Eliminated use of the ``imghdr`` library.
-  Autoformatted Python code with black.
-  Fixed handling of XMP metadata that omits the standard
   ``<x:xmpmeta>`` wrapper.

v1.0.5
======

-  Fixed an issue where an invalid date in XMP metadata would cause an
   exception when updating DocumentInfo. For now, we warn that some
   DocumentInfo is not convertible. (In the future, we should also check
   if the XMP date is valid, because it probably is not.)
-  Rebuilt the binary wheels with libqpdf 8.3.0. libqpdf 8.2.1 is still
   supported.

v1.0.4
======

-  Updates to tests/resources (provenance of one test file, replaced
   another test file with a synthetic one)

v1.0.3
======

-  Fixed regression on negative indexing of pages.

v1.0.2
======

-  Fixed an issue where invalid values such as out of range years (e.g.
   1) in DocumentInfo would raise exceptions when using DocumentInfo to
   populate XMP metadata with ``.load_from_docinfo``.

v1.0.1
======

-  Fixed an exception with handling metadata that contains the invalid
   XML entity ``&#0;`` (an escaped NUL)

v1.0.0
======

-  Changed version to 1.0.










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version2.rst.txt



v2.16.1
=======

-  ``unparse_content_stream`` is now less strict about whether elements are lists
   or tuples, matching its v2.15.1 behavior.

v2.16.0
=======

-  Performance improvement for ``unparse_content_stream``.
-  Fixed some linter warnings.
-  Tightened pybind11 dependencies so we don't accept new minor revisions automatically.
-  Updated docs on FreeBSD.

v2.15.1
=======

-  Fixed compatibility with pybind11 2.7.0 - some tests fail when previous versions of
   pikepdf are compiled with that version.
-  Fixed a coverage code exclusion.
-  Added a note missing "version added" comment to documentation.
-  Fixed license string not appearing in metadata - thanks @mara004.

v2.15.0
=======

-  Improved our ``pdfdoc`` codec to raise ``UnicodeEncodeError`` identifying the
   problem, instead of a less specific ``ValueError``. Thanks to @regebro. :issue:`218`
-  We now implement stream reader/writer and incremental encoder/decoder for
   our ``pdfdoc`` codec, making it useful in more places.
-  Fixed an issue with extracting JBIG2 images on Windows, due to Windows temporary
   file behavior. Thanks to @kraptor. :issue:`219`

v2.14.2
=======

-  Fixed a syntax error in type hints.

v2.14.1
=======

-  Fixed the ReadTheDocs documentation build, which had broken after the ``setup.cfg``
   changes in v2.13.0.
-  Amended the Makefile with steps for building Apple Silicon wheels.
-  No manual Apple Silicon release since there are no functional changes.

v2.14.0
=======

-  Implemented a major new feature: overlays (watermarks, page composition). This
   makes it easier to solve many common tasks that involve copying content from
   pages to other pages, applying watermarks, headers/footers, etc. :issue:`42`
-  Added :meth:`pikepdf.Object.with_same_owner_as` to simplify creating objects
   that have the same owner as another object.
-  Many improvements to type hints for classes implemented in C++. :issue:`213, 214`

v2.13.0
=======

-  Build system modernized to use ``setup.cfg`` instead of ``setup.py`` as much as
   reasonable.
-  The ``requirements/*.txt`` files are now deprecated. Instead use
   ``pip install pikepdf[test,docs]`` to install optional extras.
-  Extended test coverage for a few tests that affect global state, using ``pytest-forked``
   to isolate them.
-  All C++ autoformatted with clang-format.
-  We now imbue all C++ stringstreams with the C locale, to avoid formatting output
   incorrectly if another Python extension written in C++ happens to change the global
   ``std::locale``.

v2.12.2
=======

-  Rebuild wheels against libqpdf 10.3.2.
-  Enabled building Linux PyPy x86_64 wheels.
-  Fixed a minor issue where the inline images would have their abbreviations
   expanded when unparsed. While unlikely to be problematic, inline images usually
   use abbreviations in their metadata and should be kept that way.
-  Added notes to documentation about loading PDFs through Python file streams
   and cases that can lead to poor performance.

v2.12.1
=======

-  Fixed documentation typo and updated precommit settings.
-  Ongoing improvements to code coverage: now related to image handling.

v2.12.0
=======

-  Complete bindings for ``pikepdf.Annotation`` (useful for interpreting PDF
   form widgets, comments, etc.)
-  Ongoing improvements to code coverage: minor bug fixes, unreachable code removal,
   more coverage.

v2.11.4
=======

-  Fix :issue:`160`, 'Tried to call pure virtual function "TokenFilter::handle_token"';
   this was a Python/C++ reference counting problem.

v2.11.3
=======

-  Check for versions of jbig2dec that are too old to be supported (lacking the
   necessary command line arguments to extract an image from a PDF).
-  Fix setup.py typo: cmd_class changed to cmdclass.

v2.11.2
=======

-  Added missing documentation for ``Pdf.is_encrypted``.
-  Added some documentation annotations about when certain APIs were added or
   changed, going back to 2.0.

v2.11.1
=======

-  Fixed an issue with ``Object.emplace()`` not retaining the original object's
   /Parent.
-  Code coverage improvements.

v2.11.0
=======

-  Add new functions: ``Pdf.generate_appearance_streams`` and ``Pdf.flatten_annotations``,
   to support common work with PDF forms.
-  Fixed an issue with ``pip install`` on platforms that lack proper multiprocessing
   support.
-  Additional documentation improvements from @m-holger - thanks again!

v2.10.0
=======

-  Fixed a XML External Entity (XXE) processing vulnerability in PDF XMP metadata
   parsing. (Reported by Eric Therond of Sonarsource.) All users should upgrade
   to get this security update. `CVE-2021-29421 <https://nvd.nist.gov/vuln/detail/CVE-2021-29421>`__
   was assigned to this issue.
-  Bind new functions to check, when a PDF is opened, whether the password used
   to open the PDF matched the owner password, user password, or both:
   ``Pdf.user_password_matched`` and ``Pdf.owner_password_matched``.

v2.9.2
======

-  Further expansion of test coverage of several functions, and minor bug fixes
   along the way.
-  Improve parameter validation for some outline-related functions.
-  Fixed overloaded ``__repr__`` functions in ``_methods.py`` not being applied.
-  Some proofreading of the documentation by @m-holger - thanks!

v2.9.1
======

-  Further expansion of test coverage.
-  Fixed function signatures for ``_repr_mimebundle_`` functions to match IPython's
   spec.
-  Fixed some error messages regarding attempts to do strange things with
   ``pikepdf.Name``, like ``pikepdf.Name.Foo = 3``.
-  Eliminated code to handle an exception that provably does not occur.
-  Test suite is now better at closing open file handles.
-  Ensure that any demo code in README.md is valid and works.
-  Embedded QPDF version in pikepdf Python wheels increased to 10.3.1.

v2.9.0
======

-  We now issue a warning when attempting to use ``pikepdf.open`` on a ``bytes``
   object where it could be either a PDF loaded into memory or a filename.
-  ``pikepdf.Page.label`` will now return the "ordinary" page number if no special
   rules for pages are defined.
-  Many improvements to tests and test coverage. Code coverage for both Python and
   C++ is now automatically published to codecov.io; previously coverage was only
   checked on the developer's machine.
-  An obsolete private function ``Object._roundtrip`` was removed.

v2.8.0
======

-  Fixed an issue with extracting data from images that had their DecodeParms
   structured as a list of dictionaries.
-  Fixed an issue where a dangling stream object is created if we fail to create
   the requested stream dictionary.
-  Calling ``Dictionary()`` and ``Array()`` on objects which are already of that
   type returns a shallow copy rather than throwing an exception, in keeping with
   Python semantics.
-  **v2.8.0.post1**: The CI system was changed from Azure Pipelines to GitHub Actions,
   a transition we made to support generating binary wheels for more platforms.
   This post-release was the first release made with GitHub Actions. It ought to be
   functionally identical, but could different in some subtle way, for example
   because parts of it may have been built with different compiler versions.
-  **v2.8.0.post2**: The previous .post1 release caused binary wheels for Linux to
   grow much larger, causing problems for AWS Lambda who require small file sizes.
   This change strips the binaries of debug symbols, also mitigates a rare PyPy
   test failure.
-  Unfortunately, it appears that the transition from Azure Pipelines to GitHub
   Actions broke compatibility with macOS 10.13 and older. macOS 10.13 and older
   are considered end of life by Apple. No version of pikepdf v2.x ever promised
   support for macOS 10.13 – 10.14+ has always been an explicit requirement.
   It just so happens that for some time, pikepdf did actually work on 10.13.

v2.7.0
======

-  Added an option to tell ``Pdf.save`` to recompress flate streams, and a global
   option to set the flate compression level. This option can be use to force
   the recompression of flate streams if they are not well compressed.
-  Fixed "TypeError: only pages can be inserted" when attempting to an insert an
   unowned page using QPDF 10.2.0 or later.

v2.6.0
======

-  Rebuild wheels against QPDF 10.2.0.

v2.5.2
======

-  Fixed support for PyPy 3.7 on macOS.

v2.5.1
======

-  Rebuild wheels against recently released pybind11 v2.6.2.
-  Improved support for building against PyPy 3.6/7.3.1.

v2.5.0
======

-  PyPy3 is now supported.
-  Improved test coverage for some metadata issues.

v2.4.0
======

-  The DocumentInfo dictionary can now be deleted with ``del pdf.docinfo``.
-  Fixed issues with updating the ``dc:creator`` XMP metadata entry.
-  Improved error messages on attempting to encode strings containing Unicode
   surrogates.
-  Fixed a rare random test failure related to strings containing Unicode
   surrogates.

v2.3.0
======

-  Fixed two tests that failed with libqpdf 10.1.0.
-  Add new function ``pikepdf.Page.add_resource`` which helps with adding a new object
   to the /Resources dictionary.
-  Binary wheels now provide libqpdf 10.1.0.

v2.2.5
======

-  Changed how one C++ function is called to support libqpdf 10.1.0.

v2.2.4
======

-  Fixed another case where pikepdf should not be warning about metadata updates.

v2.2.3
======

-  Fixed a warning that was incorrectly issued in v2.2.2 when pikepdf updates XMP
   metadata on the user's behalf.
-  Fixed a rare test suite failure that occurred if two test files were generated with
   a different timestamp, due to timing of the tests.
-  Hopefully fixed build on Cygwin (not tested, based on user report).

v2.2.2
======

-  Fixed :issue:`150`, adding author metadata breaks PDF/A conformance. We now log an
   error when this metadata is set incorrectly.
-  Improve type checking in ocrmypdf.models.metadata module.
-  Improve documentation for custom builds.

v2.2.1
======

-  Fixed :issue:`143`, PDF/A validation with veraPDF failing due to missing prefix on
   DocumentInfo dates.

v2.2.0
======

-  Added features to look up the index of an page in the document and page labels
-  Enable parallel compiling (again)
-  Make it easier to create a ``pikepdf.Stream`` with a dictionary or from an existing
   dictionary.
-  Converted most ``.format()`` strings to f-strings.
-  Fixed incorrect behavior when assigning ``Object.stream_dict``; this use to create
   a dictionary in the wrong place instead of overriding a stream's dictionary.

v2.1.2
======

-  Fixed an issue the XMP metadata would not have a timezone set when updated.
   According to the XMP specification, the timezone should be included. Note that
   pikepdf will include the local machine timezone, unless explicitly directed
   otherwise.

v2.1.1
======

-  The previous release inadvertently changed the type of exception in certain
   situations, notably throwing ``ForeignObjectError`` when this was not the correct
   error to throw. This release fixes that.

v2.1.0
======

-  Improved error messages and documentation around ``Pdf.copy_foreign``.
-  Opt-in to mypy typing.

v2.0.0
======

This description includes changes in v2.0 beta releases.

**Breaking changes**

-  We now require at least these versions or newer:
   -  Python 3.6
   -  pybind11 2.6.0
   -  QPDF 10.0.3
   -  For macOS users, macOS 10.14 (Mojave)
-  Attempting to modifying ``Stream.Length`` will raise an exception instead of a
   warning. pikepdf automatically calculates the length of the stream when a PDF is
   saved, so there is never a reason to modify this.
-  ``pikepdf.Stream()`` can no longer parse content streams. That never made sense,
   since this class supports streams in general, and many streams are not content
   streams. Use ``pikepdf.parse_content_stream`` to a parse a content stream.
-  ``pikepdf.Permissions`` is now represented as a ``NamedTuple``. Probably not a
   concern unless some user made strong assumptions about this class and its superclass.
-  Fixed the behavior of the ``__eq__`` on several classes to return
   ``NotImplemented`` for uncomparable objects, instead of ``False``.
-  The instance variable ``PdfJpxImage.pil`` is now a private variable.


**New features**

-  Python 3.9 is supported.
-  Significantly improved type hinting, including hints for functions written in C++.
-  Documentation updates

**Deprecations**
-  ``Pdf.root`` is deprecated. Use ``Pdf.Root``.

v2.0.0b2
--------

-  We now require QPDF 10.0.3.

v2.0.0b1
--------

**Breaking changes**

-  We now require at least these versions or newer:
   -  Python 3.6
   -  pybind11 2.6.0
   -  QPDF 10.0.1
   -  For macOS users, macOS 10.14 (Mojave)
-  Attempting to modifying ``Stream.Length`` will raise an exception instead of a
   warning.
-  ``pikepdf.Stream()`` can no longer parse content streams. That never made sense,
   since this class supports streams in general, and many streams are not content
   streams. Use ``pikepdf.parse_content_stream`` to a parse a content stream.
-  ``pikepdf.Permissions`` is now represented as a ``NamedTuple``. Probably not a
   concern unless some user made strong assumptions about this class and its superclass.
-  Fixed the behavior of the ``__eq__`` on several classes to return
   ``NotImplemented`` for uncomparable objects, instead of ``False``.

**New features**

-  Python 3.9 is supported.
-  Significantly improved type hinting, including hints for functions written in C++.











./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version3.rst.txt



v3.2.0
======

-  Fixed support for outline items that have PDF 1.1-style named destinations.
   :issue:`258, 261`
-  We now issue a warning if an unnecessary password was provided when opening
   an unencrypted PDF.

v3.1.1
======

-  Fixed errors that occurred on ``import pikepdf`` for an extension module built with
   pybind11 2.8.0.

v3.1.0
======

-  Extraction of common inline image file formats is now supported.
-  Some refactoring and documentation improvements.

v3.0.0
======

Breaking changes
----------------

-  libqpdf 10.3.1 is now required and other requirements were adjusted.
-  pybind11 2.7.1 is now required.
-  **Improved page API.** ``Pdf.pages`` now returns ``Page`` instead of
   page object dictionaries, so it is no longer necessary to wrap page objects
   as in the previous idiom ``page = Page(pdf.pages[0])``. In most cases,
   if you use the Dictionary object API on a page, it will automatically do the
   right thing to the underlying dictionary.
-  **Improved content stream API.** ``parse_content_stream`` now returns a list of
   :class:`pikepdf.ContentStreamInstruction` or :class:`pikepdf.ContentStreamInlineImage`.
   These are "duck type"-compatible with the previous data structure but may
   affect code that strongly depended on the return types. ``unparse_content_stream``
   still accepts the same inputs.
-  ``TokenType.name`` and ``ObjectType.name`` were renamed to
   ``TokenType.name_`` and ``ObjectType.name_``, respectively. Unfortunately,
   Python's ``Enum`` class (of which these are both a subclass) uses the ``.name``
   attribute in a special way that interfered.
-  Deprecated or private functions were removed:
   -  ``Object.page_contents_*`` (use ``Page.contents_*``)
   -  ``Object.images`` (use ``Page.images``)
   -  ``Page._attach`` (use the new attachment API)
   -  ``Stream(obj=)`` (deprecated ``obj`` parameter removed)
   -  ``Pdf.root`` (use ``Pdf.Root``)
   -  ``Pdf._process`` (use ``Pdf.open(BytesIO(...))`` instead)
-  :meth:`pikepdf.Page.calc_form_xobject_placement` previously returned ``str`` when
   it should have returned ``bytes``. It now returns the correct type.
-  :func:`pikepdf.open` and :func:`pikepdf.save`, and their counterparts in
   :class:`pikepdf.Pdf`, now expect keyword arguments for all except the first parameter.
-  Some other functions have stricter typing, required keyword arguments, etc.,
   for clarity.
-  If a calculating the ``repr()`` of a page, we now describe a reference to that
   page rather than printing the page's representation. This makes the output
   of ``repr(obj)`` more useful when examining data structures that reference
   many pages, such as ``/Outlines``.
-  Build scripts and wheel building updated.
-  We now internally use a different API call to close a PDF in libqpdf. This
   may change the behavior of attempts to manipulate a PDF after it has been
   closed. In any case, accessing a closed file was never supported.

New functionality
-----------------

-  Added :class:`pikepdf.NameTree`. We now bind to QPDF's Name Tree API, for
   manipulating these complex and important data structures.
-  We now support adding and removing PDF attachments. :issue:`209`
-  Improved support for PDF images that use special printer colorspaces such as
   DeviceN and Separation, and support extracting more types of images. :issue:`237`
-  Improved error message when ``Pdf.save()`` is called on PDFs without a known
   source file.
-  Many documentation fixes to StreamParser, return types, PdfImage.
-  ``x in pikepdf.Array()`` is now supported; previously this construct raised a
   TypeError. :issue:`232`
-  It is now possible to test our cibuildwheel configuration on a local machine.

Fixes
-----

-  ``repr(pikepdf.Stream(...))`` now returns syntax matching what the constructor
   expects.
-  Fixed certain wrong exception types that occurred when attempting to extract
   special printer colorspace images.
-  Lots of typing fixes.










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version4.rst.txt



v4.5.0
======

-  Fixed gcc linker error with linking to a source-compiled version of qpdf. Thanks @jerkenbilt.
-  Fixed dead/obsolete link to old QPDF manual. Thanks @m-holger.
-  Rebuild binary wheels against qpdf 10.5.0. Note 10.6.0 has been released but
   requires further changes so does not work yet.
-  Removed some workarounds to support now-unsupported versions of pybind11.
-  Adjusted hypothesis test settings so it does not randomly fail on PyPy.
-  Mention vector vs raster images in documentation.
-  JBIG2 decoding is now more tightly integrated. In particular, we can now decode
   more types of JBIG2 image and they can be decoded using either the object or
   image interface.
-  Switch to tomli for TOML parsing.
-  Refactor image tests to use hypothesis more effectively and use more random issues,
   fixing many errors along the way.

v4.4.1
======

-  Fixed two instances of a Python object being copied without the GIL held.
   May have caused some instability. Thanks @rwgk.

v4.4.0
======

-  Further improvements to handling of 2- and 4-bit per component images. Major
   refactoring of relevant code and improved testing.

v4.3.1
======

-  Mark pybind11 2.9 as supported. Thanks @QuLogic.

v4.3.0
======

-  Improved support for images with bits per component set to values between 2 and 7
   inclusive.
-  Additional types of runtime errors produced by libqpdf are now resolved to
   ``DataDecodingError`` for improved error message clarity.
-  Improved typing and documentation for several modules.
-  Replaced all internal uses of deprecated standard library module distutils
   with the third party packaging library. This was all for version number checking.
-  Maintainers: python3-packaging is now required for installation.

v4.2.0
======

-  Fixed incorrect default rectangle handling in ``Page.add_overlay`` and
   ``Page.add_underlay``. Thanks @sjahu. :issue:`277`.
-  Fixed ``Page.add_overlay`` not scaling to larger target sizes automatically.
   Thanks @bordaigorl. :issue:`276`.
-  ``pikepdf._core.ObjectHelper`` is now registered as a base class from which other
   helper classes are derived such as ``pikepdf.Page``.
-  Prevented implicit conversion of ObjectHelper to Object through their inclusion
   as for example, parameters to a ``pikepdf.Array``. This functionality was never
   intended, and was a side effect of certain ObjectHelper subclasses defining an
   iterable interface that made their conversion possible. :issue:`282`

v4.1.0
======

-  Declared support for pybind11 2.8.x.
-  Wheels are now built against libqpdf 10.4.0.
-  Wheels are now built for macOS Apple Silicon and Python 3.10.

v4.0.2
======

-  Fixed equality and copy operators for ``pikepdf.Page``. :issue:`271`
-  Fixed equality test on ``pikepdf.Stream`` objects - objects that are not identical
   but have equal data now compare as equal.
-  Deprecated the use of ``copy_foreign`` for copying ``pikepdf.Page``.

v4.0.1
======

-  Fixed documentation build reproducibility. (Thanks to Chris Lamb and Sean Whitton.)
-  Fixed issue where file attachments not located in the current working directory
   would be created with a directory name.
-  Removed some references to Python 3.6.
-  Added some fixes to typing hints from @cherryblossom000.

v4.0.0
======

Breaking changes
----------------

-  Python 3.10 is supported.
-  Dropped support for Python 3.6, since it is reaching end of life soon. We will
   backport critical fixes to pikepdf 3.x until Python 3.6 reaches end of life in
   December 2021.
-  We now require C++17 and generate wheels for manylinux2014 Linux targets. We had
   to drop support for manylinux2010, our previous target, since some of our
   dependencies like Pillow are no longer supporting manylinux2010.










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version5.rst.txt


v5.6.1
======

-  Made treatment of CCITT image photometry ignore ``BlackIs1``, since this seems
   more consistent with other programs.

v5.6.0
======

-  Improved support for extracting the contents of inline images.
-  Marked some "always should have been private" functions as deprecated with removal
   planned for v6, mainly in pikepdf.models.image.
-  Fixed all Python documentation style inconsistencies.

v5.5.0
======

-  Fixed undefined behavior on creating NameTree on direct object. Thanks @willangley.
-  Fixed sdist with coverage build.
-  Added support for specifying QPDF's library build directory, for compatibility
   with QPDF's transition to cmake.
-  ``QPDF_*`` environment variables will modify build paths even when ``CFLAGS`` is
   defined.
-  Fixed rare case where GIL was not held while discarding a certain exception.
-  Now using cibuildwheel 2.9.0.
-  Many typo fixes. Thanks @PabloAlexis611.

v5.4.2
======

-  Fixed ``Pages.__eq__`` not returning NotImplemented when it ought to.
-  Fixed possible problems with ``NameTree`` and ``NumberTree.__eq__`` operators.
-  Changed to SPDX license headers throughout.

v5.4.1
======

-  Chores. Fixed ReadTheDocs build, updated versions, fixed a test warning, improved
   coverage, modernized type annotations.

v5.4.0
======

-  New feature: ``pikepdf.Job`` bindings to QPDFJob API.
-  New feature: ``pikepdf.NumberTree`` to support manipulation of number trees,
   mainly for applying custom page labels.
-  Many improvements to ``pikepdf.NameTree`` including the ability to instantiate
   a new name tree.
-  Several memory leaks were fixed.
-  Rebuilt against pybind11 2.10.0.

v5.3.2
======

-  Build system requires changed to setuptools-scm 7.0.5, which includes a fix to
   an issue where pikepdf source distribution reported a version of "0.0" when installed.

v5.3.1
======

-  Fixed issue with parsing inline images, causing loss of data after
   inline images were encountered in a content stream. The issue only affects
   content streams parsed with ``parse_content_stream``; saved PDFs were not
   affected. :issue:`299`
-  Build system requires changed to setuptools-scm 7.0.3, and
   setuptools-scm-git-archive is now longer required.

v5.3.0
======

-  Binary wheels for Linux aarch64 are now being rolled automatically. 🎉
-  Refactor JBIG2 handling to make JBIG2 decoders more testable and pluggable.
-  Fixed some typing issues around ``ObjectHelper``.
-  Exposed some pikepdf settings that were attached to the private ``_qpdf`` module
   in a new ``pikepdf.settings`` module.

v5.2.0
======

-  Avoid a few versions of setuptools_scm that were found to cause build issues. :issue:`359`
-  Improved an unhelpful error message when attemping to save a file with invalid
   encryption settings. :issue:`341`
-  Added a workaround for XMP metadata blocks that are missing the expected namespace
   tag. :issue:`349`
-  Minor improvements to code coverage, type checking, and removed some deprecated
   private methods.

v5.1.5
======

-  Fixed removal of necessary package ``packaging``. Needed for import.

v5.1.4
======

-  Reorganized release notes so they are better presented in Sphinx documentation.
-  Remove all upper bound version constraints.
-  Replace documentation package sphinx-panels with sphinx-design. Downstream
   maintainers will need to adjust this in documentation.
-  Removed use of deprecated pkg_resources and replaced with importlib (and, where
   necessary for backward compatibility, importlib_metadata).
-  Fixed some broken links in the documentation and READMEs.

v5.1.3
======

-  Fixed issue with saving files that contained JBIG2 images with null DecodeParms.
   :issue:`317`
-  Use cibuildwheel 2.4.0 and update settings to publish PyPy 3.8 binary wheels for
   manylinux platforms.

v5.1.2
======

-  Fixed test suite failures with Pillow 9.1.0. :issue:`328`

v5.1.1
======

-  Fixes to pyproject.toml to support PEP-621 changes. :issue:`323`
-  Fixed assuming Homebrew was present on certain macOS systems; and more generally,
   turn off setup shims when it seems like a maintainer is involved. :issue:`322`

v5.1.0
======

-  Rebuild against QPDF 10.6.3.
-  Improvements to Makefile for Apple Silicon wheels.

v5.0.1
======

-  Fixed issue where Pdf.check() would report a failure if JBIG2 decoder was not
   installed and the PDF contains JBIG2 content.

v5.0.0
======

-  Some errors and inconsistencies are in the "pdfdoc" encoding provided by pikepdf
   have been corrected, in conjunction with fixes in libqpdf.
-  libqpdf 10.6.2 is required.
-  Previously, looking up the number of a page, given the page, required a linear
   search of all pages. We now use a newer QPDF API that allows quicker lookups.










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version6.rst.txt


v6.2.9
======

- Redo v6.2.8 to avoid confusion around v6.2.8 and its post releases. The release of v6.2.8 was botched by unexpected
  failures third party packages and hitting the 10 GB storage limit on PyPI.

v6.2.8
======

- Rebuild binary wheels to improve support for Windows 32-bit.
- Drop PyPy3.7 from wheel builds, since dependencies (lxml, Pillow) no longer provide it.

v6.2.7
======

- Fixed some tests that randomly failed on Windows due to newline handling issues.

v6.2.6
======

- Rebuild binary wheels for certain platforms they were blocked from release by lxml not releasing compatible wheels.
  Mainly to take advantage of Windows 64-bit.

v6.2.5
======

- Rebuild binary wheels using qpdf 11.2.0.

v6.2.4
======

- Removed a debug message during mmap.

v6.2.3
======

- Fixed errors when using AccessMode.mmap. Thanks @zachgoulet.

v6.2.2
======

- Fixed noisy log message.
- Made some flakey tests less flakey.
- Fixed deprecated information in setup.cfg. Thanks @mgorny.

v6.2.1
======

- Rebuild binary wheels using zlib 1.2.13. Source build unchanged.

v6.2.0
======

- Add new keyword argument ``Pdf.save(..., deterministic_id=True)`` for saving
  bit-for-bit reproducible PDFs. Thanks @josch for PR.

v6.1.0
======

- Rebuild wheels with qpdf 11.1.1. No new functionality.

v6.0.2
======

- Fixed large increase in binary wheel file size for manylinux wheels.
- Provide macOS and Linux wheels for Python 3.11.

v6.0.1
======

- Use qpdf 11.1.0, which fixes problems with building pikepdf on Windows.

v6.0.0
======

- pikepdf 6.0.0 was released to align with backward incompatible changes in qpdf 11.
- Remove deprecated APIs. Mostly these were public APIs that had no business being
  public.
  - Several functions in pikepdf.jbig2
  - Some helper functions in pikepdf.models.image
  - The property PdfImage.is_inline. (Use isinstance PdfInlineImage instead.)
  - Attempting to copy pages using the ``.copy_foreign`` method now raises an exception. Use The ``Pdf.pages`` interface to copy pages.











./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version7.rst.txt


v7.2.0
======

- Improved Object.repr() to avoid printing the entire contents of large object trees
  such as those in PDFs with structural element trees.
- Fixed typing of NumberTree.
- Improved matrix documentation, interoperability with numpy, and added matrix inverse.
- Documentation improvements.

v7.1.2
======

- Fixed possible segfault if a PDF is opened and accessed without being assigned to a
  variable. :issue:`465`

v7.1.1
======

- Add workaround to fix release issue on manylinux-aarch64.
- Improved documentation of Pdf.check().

v7.1.0
======

**New features**

- ``PdfMetadata.register_xml_namespace`` allows registering new XML namespaces for
  PDFs with more complex XMP metadata. :issue:`436`
- The list of XMP namespaces registered by default was expanded to include several
  more common namespaces. :issue:`436`
- Fixed issues creating TIFF images with CCITT Group 3. :issue:`437,401`
- Updated README. :issue:`432`
- Note: due to what is believed to be a change in a third party dependency, the
  manylinux-aarch64 image for this release failed to build. As such, this particular
  wheel is not available.

v7.0.0
======

pikepdf 7 introduces a subtle change to how it holds objects from the libqpdf C++ library:
dependent objects no longer keep their parent alive.

The main consequence is that constructs such as the following

.. code-block:: python

    def make_obj_and_return():
        pdf = pikepdf.new()
        obj = pdf.make_stream(b'some data')
        return obj

    ...
    obj = make_obj_and_return()
    obj.read_bytes()

will not work as previously - ``obj.read_bytes()`` will return a
``DeletedObjectError``, an exception that now occurs when accessing an object that was
garbage collected.

In the vast majority of cases, no changes are needed. In most cases, a ``with`` block
surrounding access to an opened pikepdf will be sufficient to ensure any objects
from that PDF are kept alive.

The benefits to pikepdf from this change are considerable. Reference counting is
simplified and some possible memory leaks or circular references are avoided. In many
cases, where pikepdf previously used a C++ shared_ptr, it can now used a
lighterweight unique_ptr.

**Breaking changes**

- Support for Python 3.7 is dropped.
- Child objects no longer keep their source Pdf alive, as outlined above.
- libqpdf 11.2.0 or newer is required.
- The C++ binding layer has been renamed from ``pikepdf._qpdf`` to ``pikepdf._core``.
  This has always been a private API but we are making note of the change anyway.
  For the moment, a Python module named ``_qpdf`` still exists and imports all of the
  modules in ``_core``. This compatibility shim will be removed in the next major
  release.

**New features**

- Added Page.form_xobjects, which returns all Form XObjects that are used in a page.
- Accessing Page.resources will now create an empty /Resources dictionary is none
  previously existed.

**Fixes**

- Fixed an issue with extracting images that were compressed with multiple compression
  filters that also had custom decode parameters.

**Packaging changes**

- setuptools >= 61 is now required, since we use pyproject.toml and have discarded
  setup.cfg.
- We now include manylinux's libjpeg-turbo instead of compiling libjpeg.










./usr/share/doc/python3-pikepdf/html/_sources/releasenotes/version8.rst.txt


v8.7.1
======

- Fixed ``pikepdf.Matrix.rotated()`` so it now rotates in the advertised direction.

v8.7.0
======

- ``pikepdf.PdfMatrix`` is now deprecated, in favor of ``pikepdf.Matrix``. The former,
  unfortunately, implemented some operations backwards compared to the PDF reference
  manual. The new class fixes these issues, and adds more functionality, promoting
  transformation matrix to first class objects. ``PdfMatrix`` is now deprecated and
  will be removed in the next major release.
- Improve behavior around truthiness of ``pikepdf.Name``.

v8.6.0
======

- Implemented Page.artbox and Page.bleedbox to access these page dimension boxes.

v8.5.3
======

- Fixed exception on certain ``PdfImage.__repr__`` when the image's mode was invalid.
- Fixed some minor issues that caused code coverage to miss some covered lines.
- Removed some unused code.

v8.5.2
======

- Rebuilt wheels with libqpdf 11.6.3, which solves a potential data loss issue,
  albeit in rare circumstances. See `QPDF issue #1050 <https://github.com/qpdf/qpdf/issues/1050>`_.
- Fixed unclear return values of pikepdf._core.set/get* functions. The set functions
  now return the current value.
- Fixed minor typing issues.

v8.5.1
======

- Added building of Python 3.12 aarch64 images.
- Added building of musllinux_1_2 aarch64 images.
- Tweaked exception handler of ``atomic_overwrite``.

v8.5.0
======

- We now require Pillow 10.0.1, due a serious security vulnerability in all earlier
  versions of that dependency. The vulnerability concerns WebP images, which are
  likely not involved in PDF processing, but we have updated the dependency anyway
  as a precaution. As a consequence, we no longer build binary wheels for PyPy 3.8.
  CPython 3.8 is still supported on all platforms.
- The embedded files/attachments API now supports describing the relationship of the
  attached file (AFRelationship).

v8.4.1
======

- Fixed an issue with a monochrome that decoded with colors inverted. :issue:`517`

v8.4.0
======

- Added support for musllinux_1_2 (Alpine Linux 3.16) on x64.

v8.3.2
======

- Added _core.pyi typing hints, which were missing from wheels.

v8.3.1
======

- Fixed saving file opened from BytesIO object on Windows. :issue:`510`

v8.3.0
======

- Mark Python 3.12 as supported and release wheels for it.

v8.2.3
======

- Added a build test for Python 3.12 pre-release versions.
- Marked a test as xfail that currently fails on Python 3.12.

v8.2.2
======

- Added docs/ directory back to source distribution. :issue:`503`

v8.2.1
======

- Fixed a build issue where pikepdf would install its C++ source files into the
  site-packages directory. :issue:`447`

v8.2.0
======

- Removed uses of deprecated function datetime.utcnow(). :issue:`499`
- Adjusted timeline of potentially flaky hypothesis test.
- Various documentation fixes. Thanks @m-holger.
- PyPy 3.10 is now supported on some platforms.
- PyPy 3.8 support will be dropped in the next major release.

v8.1.1
======

- Fixed a Unicode test that randomly fails on Windows.

v8.1.0
======

- Not released due to build failure.
- Fixed sdist, which was mysteriously missing some files that were previously included. :issue:`490`
- Some documentation and README updates to improve visibility of release notes. :issue:`488`
- Fixed issue where an output file could be corrupted if the process was interrupted while writing. :issue:`462`

v8.0.0
======

- master branch renamed to main.
- QPDF 11.5.0 is now required.
- Some other Python dependencies have been updated.
- Dropped setuptools-scm in favor of a manually set version number and script
  to update it. This change was necessary to support delegating part of the build
  to Cirrus CI.
- Adjusted stream preview (with ``__repr__``) so it does not attempt to decompress
  very long streams.
- Fixed error when attempting to convert XMP metadata to DocumentInfo when the
  author was omitted.
- Added a method to add items to the document table of contents.
- Previously, we built all Apple Silicon (aarch64) wheels as a manual step,
  causing errors and delays in their release compared to other wheels. We now
  build them automatically on Cirrus CI.
- Changed to building manylinux-aarch64 wheels on Cirrus CI.
- Since Pillow (Python imaging library), a major dependency, has dropped support
  for 32-bit wheels on Windows and Linux, we have done the same. You can still build
  32-bit versions from source.
- Some documentation changes and improvements. Thanks @m-holger.










./usr/share/doc/python3-pikepdf/html/_sources/topics/attachments.rst.txt


.. _attachments:

Attaching files to a PDF
************************

.. versionadded:: 3.0

You can attach (or if you prefer, embed) any file to a PDF, including
other PDFs. As a quick example, let's attach pikepdf's README.md file
to one of its test files.

.. ipython::

    In [1]: from pikepdf import Pdf, AttachedFileSpec, Name, Dictionary, Array

    In [1]: from pathlib import Path

    In [1]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

    In [1]: filespec = AttachedFileSpec.from_filepath(pdf, Path('../README.md'))

    In [1]: pdf.attachments['README.md'] = filespec

    In [1]: pdf.attachments

This creates an attached file named ``README.md``, which holds the data in ``filespec``.
Now we can retrieve the data.

.. ipython::

    In [1]: pdf.attachments['README.md']

    In [1]: file = pdf.attachments['README.md'].get_file()

    In [1]: file.read_bytes()[:50]

If the data used to create an attachment is in memory:

.. ipython::

    In [1]: memfilespec = AttachedFileSpec(pdf, b'Some text', mime_type='text/plain')

    In [1]: pdf.attachments['plain.txt'] = memfilespec


General notes on attached files
-------------------------------

* If the main PDF is encrypted, any embedded files will be encrypted with the same
  encryption settings.

* PDF viewers tend to display attachment filenames in alphabetical order. Use prefixes
  if you want to control the display order.

* The ``AttachedFileSpec`` will capture all of the data when created, so the file object
  used to create the data can be closed.

* Each attachment is a :class:`pikepdf.AttachedFileSpec`. An attachment usually contains only
  one :class:`pikepdf.AttachedFile`, but might contain multiple objects of this
  type. Usually, multiple versions are used to provide different versions of the
  same file for alternate platforms, such as Windows and macOS versions of a file.
  Newer PDFs rarely provide multiple versions.

How to find attachments in a PDF viewer
---------------------------------------

Your PDF viewer should have an attachments panel that shows available attachments.

.. figure:: /images/acrobat-attachments.png
  :alt: Screenshot of attachments panel in Acrobat DC on Windows

  Attachments in Adobe Acrobat DC.

Attachments added to ``Pdf.attachments`` will be shown here.

You may find it useful to set ``pdf.root.PageMode = Name.UseAttachments``. This
tells the PDF viewer to open a pane that lists all attachments in the PDF. Note
that it is up to the PDF viewer to implement and honor this request.

Creating attachment annotations
-------------------------------

You can also create PDF Annotations and Actions that contain attached files.

Here is an example of an annotation that displays an icon. Clicking the icon
prompt the user to view the attached document.

.. ipython::

  In [1]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

  In [1]: filespec = AttachedFileSpec.from_filepath(pdf, Path('../README.md'))

  In [1]: pushpin = Dictionary(
     ...:     Type=Name.Annot,
     ...:     Subtype=Name.FileAttachment,
     ...:     Name=Name.GraphPushPin,
     ...:     FS=filespec.obj,
     ...:     Rect=[2*72, 9*72, 3*72, 10*72],
     ...: )

  In [1]: pdf.pages[0].Annots = pdf.make_indirect(Array([
     ...:     pushpin
     ...: ]))

Files that are referenced as Annotations and Actions do not need to be added
to ``Pdf.attachments``. If they are, the file will be attached twice.










./usr/share/doc/python3-pikepdf/html/_sources/topics/content_streams.rst.txt


.. _working_with_content_streams:

Working with content streams
============================

A content stream is a stream object associated with either a page or a Form
XObject that describes where and how to draw images, vectors, and text. (These
PDF streams have nothing to do with Python I/O streams.)

Content streams are binary data that can be thought of as a list of operators
and zero or more operands. Operands are given first, followed by the operator.
It is a stack-based language, loosely based on PostScript. (It's not actually
PostScript, but sometimes well-meaning people mistakenly say that it is!)
Like HTML, it has a precise grammar, and also like (pure) HTML, it has no loops,
conditionals or variables.

A typical example is as follows (with additional whitespace and PostScript-style
``%``-comments):

::

  q                   % 1. Push graphics stack.
  100 0 0 100 0 0 cm  % 2. The 6 numbers are the operands, followed by cm operator.
                      %    This configures the current transformation matrix.
  /Image1 Do          % 3. Draw the object named /Image1 from the /Resources
                      %    dictionary.
  Q                   % 4. Pop graphics stack.


The pattern ``q, cm, <drawing commands>, Q`` is extremely common. The drawing
commands may recurse with another ``q, cm, ..., Q``.

pikepdf provides a C++ optimized content stream parser and a filter. The parser
is best used for reading and interpreting content streams; the filter is better
for low level editing.

Pretty-printing content streams
-------------------------------

To pretty-print a content stream, you can use parse and then unparse it. This
converts it from binary data form to pikepdf objects and back. In the process,
the content stream is cleaned up. Every instruction will be separated by a line
break.

.. ipython:: python

  with pikepdf.open("../tests/resources/congress.pdf") as pdf:
      page = pdf.pages[0]
      instructions = pikepdf.parse_content_stream(page)
      data = pikepdf.unparse_content_stream(instructions)
      print(data.decode('ascii'))

.. note::

  Content streams are not always decodable to ASCII. This one just happens to be.


How content streams draw images
-------------------------------

This example prints a typical content stream from a real file, which like the
contrived example above, displays an actual image.

.. ipython:: python

  with pikepdf.open("../tests/resources/congress.pdf") as pdf:
      page = pdf.pages[0]
      commands = []
      for operands, operator in pikepdf.parse_content_stream(page):
          print(f"Operands {operands}, operator {operator}")
          if operator == pikepdf.Operator('cm'):
              matrix = pikepdf.Matrix(operands)
          commands.append([operands, operator])

PDF content streams are stateful. The commands ``q``, ``cm`` and ``Q``
manipulate the current transform matrix (CTM) which describes where we will draw
next. *In most cases* you have to track every manipulation of the CTM to figure
out what will happen, even to answer a question like, "where will this image
be drawn, and how big will it be?"

But *in this simple case*, we can read the matrix directly. The decimal numbers
200.0 and 304.0 establish the width and height at which the image should be drawn,
in PDF points (1/72" or about 0.35 mm). The pixel dimensions of the image have
no effect. If we substituted that image for another, the new image would be
drawn in the same location on the page, painted into the 200 × 304 rectangle
regardless of its pixel dimensions.

Editing a content stream
------------------------

Let's continue with the file above and center the image on the page, and reduce
its size by 50%. Because we can! For that, we need to rewrite the second command
in the content stream.

We take the original matrix (``matrix``) and then translated it to the center
of this page. We're currently in a coordinate system where (0, 0) is the bottom
left corner of the page, and (1, 1) is the top right corner. Without actually
having to track the image's position, we can translate it by 0.25 of its
dimensions (to create a border of 25% all around) and then scale it by 0.5.
(We could also scale by 50%, and then translate by 50%, which would be 25% in
the full image coordinate system.)

.. ipython:: python

  new_matrix = matrix.translated(0.25, 0.25).scaled(0.5, 0.5)
  new_matrix

On an important note, the PDF coordinate system is nailed to the **bottom left**
corner of the page, and on y-axis, **up is positive**. That is, the coordinate
system is more like the first quadrant of a Cartesian graph than the
**down is positive** convention normally used in pixel graphics:

.. figure:: /images/pdfcoords.svg
   :align: center
   :alt: PDF positive-up coordinate system
   :figwidth: 50%

(Some PDF programs insert a command to "flip" the coordinate system, by
translating to the top left corner and scaling by (1, -1).)

After calculating our new matrix, we need to insert it back into the parsed
content stream, "unparse" it to binary data, and replace the old content
stream.

.. ipython:: python

  commands[1][0] = pikepdf.Array(new_matrix)
  new_content_stream = pikepdf.unparse_content_stream(commands)
  new_content_stream
  page.Contents = pdf.make_stream(new_content_stream)

  # You could save the file here to see it
  # pdf.save(...)

.. note::

  To rotate an image, first translate it so that the image is centered at (0, 0),
  rotate then apply the rotate, then translate it to its new center position.
  This is because rotations occur around (0, 0).

.. note::

  In this illustration, the page's MediaBox is located at (0, 0) for simplicity.
  The MediaBox can be offset from the origin, and code that edits content streams
  may need to account for this relatively condition.

Editing content streams robustly
--------------------------------

The stateful nature of PDF content streams makes editing them complicated. Edits
like the example above will work when the input file is known to have a fixed
structure (that is, the state at the time of editing is known). You can always
prepend content to the top of the content stream, since the initial state is
known. And you can often append content to the end the stream, since the final
state is predictable if every ``q`` (push state) has a matching ``Q`` (pop
state).

Otherwise, you must track the graphics state and maintain a stack of states.

Most applications will end up parsing the content stream into a higher level
representation that is easier edit and then serializing it back, totally
rewriting the content stream. Content streams should be thought of as an
output format.

Extracting text from PDFs
-------------------------

If you guessed that the content streams were the place to look for text inside a
PDF – you'd be correct. Unfortunately, extracting the text is fairly difficult
because content stream actually specifies as a font and glyph numbers to use.
Sometimes, there is a 1:1 transparent mapping between Unicode numbers and glyph
numbers, and dump of the content stream will show the text. In general, you
cannot rely on there being a transparent mapping; in fact, it is perfectly legal
for a font to specify no Unicode mapping at all, or to use an unconventional
mapping (when a PDF contains a subsetted font for example).

**We strongly recommend against trying to scrape text from the content stream.**

pikepdf does not currently implement text extraction. We recommend `pdfminer.six <https://github.com/pdfminer/pdfminer.six>`_, a
read-only text extraction tool. If you wish to write PDFs containing text, consider
`reportlab <https://www.reportlab.com/opensource/>`_.










./usr/share/doc/python3-pikepdf/html/_sources/topics/encoding.rst.txt


Character encoding
******************

.. epigraph::

    | There are three hard problems in computer science:
    | 1) Converting from PDF,
    | 2) Converting to PDF, and
    | 3) O̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳Ҙ҉҉҉ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃O̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳Ҙ҉҉҉ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃

    -- `Marseille Folog <https://twitter.com/fogus/status/1024657831084085248>`_

In most circumstances, pikepdf performs appropriate encodings and
decodings on its own, or returns :class:`pikepdf.String` if it is not clear
whether to present data as a string or binary data.

``str(pikepdf.String)`` is performed by inspecting the binary data. If the
binary data begins with a UTF-16 byte order mark, then the data is
interpreted as UTF-16 and returned as a Python ``str``. Otherwise, the data
is returned as a Python ``str``, if the binary data will be interpreted as
PDFDocEncoding and decoded to ``str``. Again, in most cases this is correct
behavior and will operate transparently.

Some functions are available in circumstances where it is necessary to force
a particular conversion.

PDFDocEncoding
==============

The PDF specification defines PDFDocEncoding, a character encoding used only
in PDFs. This encoding matches ASCII for code points 32 through 126 (0x20 to
0x7e). At all other code points, it is not ASCII and cannot be treated as
equivalent. If you look at a PDF in a binary file viewer (hex editor), a string
surrounded by parentheses such as ``(Hello World)`` is usually using
PDFDocEncoding.

When pikepdf is imported, it automatically registers ``"pdfdoc"`` as a codec
with the standard library, so that it may be used in string and byte
conversions.

.. code-block:: python

    "•".encode('pdfdoc') == b'\x81'

Other Python PDF libraries may register their own ``pdfdoc`` codecs. Unfortunately,
the order of imports will determine which codec "wins" and gets mapped
to the ``'pdfdoc'`` string. Fortunately, these implementations should be
quite compatible with each other anyway since they do the same things.

pikepdf also registers ``'pdfdoc_pikepdf'``, if you want to ensure use of
pikepdf's codec, i.e. ``s.encode('pdfdoc_pikepdf')``.

.. versionchanged:: 5.0.0
    Some issues with the conversion of obscure characters in PDFDocEncoding
    were fixed. Older versions of pikepdf may not convert PDFDocEncoding
    in all cases.

Other codecs
============

Two other codecs are commonly used in PDFs, but they are already part of the
standard library.

**WinAnsiEncoding** is identical Windows Code Page 1252, and may be converted
using the ``"cp1252"`` codec.

**MacRomanEncoding** may be converted using the ``"macroman"`` codec.










./usr/share/doc/python3-pikepdf/html/_sources/topics/images.rst.txt


Working with images
===================

PDFs embed images as binary stream objects within the PDF's data stream. The
stream object's dictionary describes properties of the image such as its
dimensions and color space. The same image may be drawn multiple times on
multiple pages, at different scales and positions.

In some cases such as JPEG2000, the standard file format of the image
is used verbatim, even when the file format contains headers and information
that is repeated in the stream dictionary. In other cases such as for
PNG-style encoding, the image file format is not used directly.

pikepdf currently has no facility to embed new images into PDFs. We recommend
img2pdf instead, because it does the job so well. pikepdf instead allows
for image inspection and lossless/transcode free (where possible) "pdf2img".

pikepdf also cannot extract vector images, that is images produced through a
combination of PDF drawing commands. These are produced by a content stream,
or sometimes a Form XObject. Unfortunately there may not be anything in the
PDF that indicates a particular sequence of operations produces an image,
and that sequence is not necessarily all in the same place. To extract a
vector image, use a PDF viewer/editor to crop to that image.

Playing with images
-------------------

pikepdf provides a helper class :class:`~pikepdf.PdfImage` for manipulating
images in a PDF. The helper class helps manage the complexity of the image
dictionaries.

.. ipython::

    In [1]: from pikepdf import Pdf, PdfImage, Name

    In [1]: example = Pdf.open('../tests/resources/congress.pdf')

    In [1]: page1 = example.pages[0]

    In [1]: list(page1.images.keys())

    In [1]: rawimage = page1.images['/Im0']  # The raw object/dictionary

    In [1]: pdfimage = PdfImage(rawimage)

    In [1]: type(pdfimage)

In Jupyter (or IPython with a suitable backend) the image will be
displayed.

|im0|

.. |im0| image:: /images/congress_im0.jpg
  :width: 2in

You can also inspect the properties of the image. The parameters are similar
to Pillow's.

.. ipython::

    In [1]: pdfimage.colorspace

    In [1]: pdfimage.width, pdfimage.height

.. note::

    ``.width`` and ``.height`` are the resolution of the image in pixels, not
    the size of the image in page coordinates. The size of the image in page
    coordinates is determined by the content stream.

.. _extract_image:

Extracting images
-----------------

Extracting images is straightforward. :meth:`~pikepdf.PdfImage.extract_to` will
extract images to a specified file prefix. The extension is determined while
extracting and appended to the filename. Where possible, ``extract_to``
writes compressed data directly to the stream without transcoding. (Transcoding
lossy formats like JPEG can reduce their quality.)

.. ipython::
    :verbatim:

    In [1]: pdfimage.extract_to(fileprefix='image')
    Out[1]: 'image.jpg'

It also possible to extract to a writable Python stream using
``.extract_to(stream=...`)``.

You can also retrieve the image as a Pillow image (this will transcode):

.. ipython::

    In [1]: type(pdfimage.as_pil_image())

Another way to view the image is using Pillow's ``Image.show()`` method.

Not all image types can be extracted. Also, some PDFs describe an image with a
mask, with transparency effects. pikepdf can only extract the images
themselves, not rasterize them exactly as they would appear in a PDF viewer. In
the vast majority of cases, however, the image can be extracted as it appears.

.. note::

    This simple example PDF displays a single full page image. Some PDF creators
    will paint a page using multiple images, and features such as layers,
    transparency and image masks. Accessing the first image on a page is like an
    HTML parser that scans for the first ``<img src="">`` tag it finds. A lot
    more could be happening. There can be multiple images drawn multiple times
    on a page, vector art, overdrawing, masking, and transparency. A set of
    resources can be grouped together in a "Form XObject" (not to be confused
    with a PDF Form), and drawn at all once. Images can be referenced by
    multiple pages.

.. _replace_image:

Replacing an image
------------------

In this example we extract an image and replace it with a grayscale
equivalent.

.. ipython::

    In [1]: import zlib

    In [1]: rawimage = pdfimage.obj

    In [1]: pillowimage = pdfimage.as_pil_image()

    In [1]: grayscale = pillowimage.convert('L')

    In [1]: grayscale = grayscale.resize((32, 32))

    In [1]: rawimage.write(zlib.compress(grayscale.tobytes()), filter=Name("/FlateDecode"))

    In [1]: rawimage.ColorSpace = Name("/DeviceGray")

    In [1]: rawimage.Width, rawimage.Height = 32, 32

Notes on this example:

* It is generally possible to use ``zlib.compress()`` to
  generate compressed image data, although this is not as efficient as using
  a program that knows it is preparing a PDF.

* In general we can resize an image to any scale. The PDF content stream
  specifies where to draw an image and at what scale.

* This example would replace all occurrences of the image if it were used
  multiple times in a PDF.

Removing an image
-----------------

The easy way to remove an image is to replace it with a 1x1 pixel transparent image.
A transparent image can be created by setting the ``/ImageMask`` to true.

Note that, if an image is referenced on multiple pages, this procedure only updates
the occurrence on one page. If all references to the image are deleted, it should
not be included in the output file.

.. ipython::

  In [1]: pdf = pikepdf.open('../tests/resources/sandwich.pdf')

  In [1]: page = pdf.pages[0]

  In [1]: image_name, image = next(iter(page.images.items()))

  In [1]: new_image = pdf.make_stream(b'\xff')

  In [1]: new_image.Width, new_image.Height = 1, 1

  In [1]: new_image.BitsPerComponent = 1

  In [1]: new_image.ImageMask = True

  In [1]: new_image.Decode = [0, 1]

  In [1]: page.Resources.XObject[image_name] = new_image










./usr/share/doc/python3-pikepdf/html/_sources/topics/metadata.rst.txt


.. _metadata:

Metadata
========

PDF has two different types of metadata: XMP metadata, and DocumentInfo, which
is deprecated and removed as of PDF 2.0, but still relevant. For backward
compatibility, both should contain the same content. pikepdf provides a convenient
interface that coordinates edits to both, but is limited to the most common
metadata features.

XMP (Extensible Metadata Platform) Metadata is a metadata specification in XML
format that is used many formats other than PDF. For full information on XMP,
see Adobe's `XMP Developer Center <https://www.adobe.com/devnet/xmp.html>`_.
The `XMP Specification`_ also provides useful information.

pikepdf can read compound metadata quantities, but can only modify scalars. For
more complex changes consider using the ``python-xmp-toolkit`` library and its
libexempi dependency; but note that it is not capable of synchronizing changes
to the older DocumentInfo metadata.

.. _XMP Specification: https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf

Automatic metadata updates
--------------------------

By default pikepdf will create a XMP metadata block and set ``pdf:PDFVersion``
to a value that matches the PDF version declared elsewhere in the PDF, whenever
a PDF is saved. To suppress this behavior, save with
``pdf.save(..., fix_metadata_version=False)``.

Also by default, :meth:`Pdf.open_metadata()` will synchronize the XMP metadata
with the older document information dictionary. This behavior can also be
adjusted using keyword arguments.

.. _accessmetadata:

Accessing metadata
------------------

The XMP metadata stream is attached the PDF's root object, but to simplify
management of this, use :meth:`pikepdf.Pdf.open_metadata`. The returned
:class:`pikepdf.models.PdfMetadata` object may be used for reading, or entered
with a ``with`` block to modify and commit changes. If you use this interface,
pikepdf will synchronize changes to new and old metadata.

A PDF must still be saved after metadata is changed.

.. ipython::

  In [1]: pdf = pikepdf.open('../tests/resources/sandwich.pdf')

  In [2]: meta = pdf.open_metadata()

  In [3]: meta['xmp:CreatorTool']
  Out[3]: 'ocrmypdf 5.3.3 / Tesseract OCR-PDF 3.05.01'

If no XMP metadata exists, an empty XMP metadata container will be created.

Open metadata in a ``with`` block to open it for editing. When the block is
exited, changes are committed (updating XMP and the Document Info dictionary)
and attached to the PDF object. The PDF must still be saved. If an exception
occurs in the block, changes are discarded.

.. ipython::

  In [4]: with pdf.open_metadata() as meta:
     ...:     meta['dc:title'] = "Let's change the title"
     ...:

The list of available metadata fields may be found in the `XMP Specification`_.

Removing metadata items
-----------------------

After opening metadata, use ``del meta['dc:title']`` to delete a metadata entry.

To remove all of a PDF's metadata records, don't use ``pdf.open_metadata``.
Instead, use ``del pdf.Root.Metadata`` and ``del pdf.docinfo``
to remove the XMP and document info metadata, respectively.

Checking PDF/A conformance
--------------------------

The metadata interface can also test if a file **claims** to be conformant
to the PDF/A specification.

.. ipython::

  In [9]: pdf = pikepdf.open('../tests/resources/veraPDF test suite 6-2-10-t02-pass-a.pdf')

  In [10]: meta = pdf.open_metadata()

  In [11]: meta.pdfa_status
  Out[11]: '1B'

.. note::

  Note that this property merely *tests* if the file claims to be conformant to
  the PDF/A standard. Use a tool such as `veraPDF`_ (official tool), or third party
  web services such as `PDFEN`_ or 3-HEIGHTS™ PDF `VALIDATOR`_ to verify conformance.

.. _veraPDF: https://verapdf.org/

.. _PDFEN: https://www.pdfen.com/pdf-a-validator

.. _VALIDATOR: https://www.pdf-online.com/osa/validate.aspx

Notice for application developers
---------------------------------

If you are using pikepdf to create some kind of PDF application, you should
update the fields ``xmp:CreatorTool`` and ``pdf:Producer``. You could, for
example, set ``xmp:CreatorTool`` to your application's name and version, and
``pdf:Producer`` to pikepdf. Refer to Adobe's documentation to decide what
describes the circumstances.

This will help PDF developers identify the application that generated a
particular PDF and is valuable debugging information.

Low-level XMP metadata access
-----------------------------

You can read the raw XMP metadata if desired. For example, one could extract it and
edit it using the full featured ``python-xmp-toolkit`` library.

.. ipython::

   In [1]: xmp = pdf.Root.Metadata.read_bytes()

   In [1]: type(xmp)
   Out[1]: bytes

   In [1]: print(xmp.decode())

Editing XMP with a generic XML library is probably not worth the trouble; the
semantics are fairly complex.

.. warning::

  Manually changes to XMP stream object will not be synchronized with live
  PdfMetadata object or the DocumentInfo block.

The Document Info dictionary
----------------------------

The Document Info block is an older, now deprecated object in which metadata
may be stored. The Document Info is not attached to the /Root object.
It may be accessed using the ``.docinfo`` property. If no Document Info exists,
touching the ``.docinfo`` will properly initialize an empty one.

Here is an example of a Document Info block.

.. ipython::

  In [12]: pdf = pikepdf.open('../tests/resources/sandwich.pdf')

  In [12]: pdf.docinfo
  Out[12]:
  pikepdf.Dictionary({
    "/CreationDate": "D:20170911132748-07'00'",
    "/Creator": "ocrmypdf 5.3.3 / Tesseract OCR-PDF 3.05.01",
    "/ModDate": "D:20170911132748-07'00'",
    "/Producer": "GPL Ghostscript 9.21"
  })

It is permitted in pikepdf to directly interact with Document Info as with
other PDF dictionaries. However, it is better to use ``.open_metadata()``
because that interface will apply changes to both XMP and Document Info in a
consistent manner.

You may copy from data from a Document Info object in the current PDF or another
PDF into XMP metadata using :meth:`~pikepdf.models.PdfMetadata.load_from_docinfo`.










./usr/share/doc/python3-pikepdf/html/_sources/topics/nametrees.rst.txt


Name trees
**********

A name trees is a compound data structure in a PDFs, composed from primitive data
types, namely PDF dictionaries and arrays. pikepdf provides an interface that
significantly simplifies this complex data structure, making it as simple as
manipulating any Python dictionary.

In many cases, the |pdfrm| specifies that some information is stored in a name
tree. To access and manipulate those objects, use :class:`pikepdf.NameTree`.

Some objects that are stored in name trees include the objects in
``Pdf.Root.Names``:

* ``Dests``: named destinations
* ``URLS``: URLs
* ``JavaScript``: embedded PDF JavaScript
* ``Pages``: named pages
* ``IDS``: digital identifiers

Attached files (or embedded files) are managed in a name tree, but pikepdf
provides an interface specifically for managing them. Use that instead.

.. ipython::

    In [1]: from pikepdf import Pdf, Page, NameTree

    In [1]: pdf = Pdf.open('../tests/resources/outlines.pdf')

    In [1]: nt = NameTree(pdf.Root.Names.Dests)

    In [1]: print([k for k in nt.keys()])

    In [1]: nt['2'][0].objgen, nt['2'][1], nt['2'][2]










./usr/share/doc/python3-pikepdf/html/_sources/topics/objects.rst.txt


Object model
************

This section covers the object model pikepdf uses in more detail.

A :class:`pikepdf.Object` is a Python wrapper around a C++ ``QPDFObjectHandle``
which, as the name suggests, is a handle (or pointer) to a data structure in
memory, or possibly a reference to data that exists in a file. Importantly, an
object can be a scalar quantity (like a string) or a compound quantity (like a
list or dict, that contains other objects). The fact that the C++ class involved
here is an object *handle* is an implementation detail; it shouldn't matter for
a pikepdf user.

The simplest types in PDFs are directly represented as Python types: ``int``,
``bool``, and ``None`` stand for PDF integers, booleans and the "null".
:class:`~decimal.Decimal` is used for floating point numbers in PDFs. If a
value in a PDF is assigned a Python ``float``, pikepdf will convert it to
``Decimal``.

Types that are not directly convertible to Python are represented as
:class:`pikepdf.Object`, a compound object that offers a superset of possible
methods, some of which only if the underlying type is suitable. Use the
:abbr:`EAFP (easier to ask forgiveness than permission)` idiom, or
``isinstance`` to determine the type more precisely. This partly reflects the
fact that the PDF specification allows many data fields to be one of several
types.

For convenience, the ``repr()`` of a ``pikepdf.Object`` will display a
Python expression that replicates the existing object (when possible), so it
will say:

.. code-block:: python

    >>> catalog_name = pdf.Root.Type
    pikepdf.Name("/Catalog")
    >>> isinstance(catalog_name, pikepdf.Name)
    True
    >>> isinstance(catalog_name, pikepdf.Object)
    True


Making PDF objects
==================

You may construct a new object with one of the classes:

*   :class:`pikepdf.Array`
*   :class:`pikepdf.Dictionary`
*   :class:`pikepdf.Name` - the type used for keys in PDF Dictionary objects
*   :class:`pikepdf.String` - a text string
    (treated as ``bytes`` and ``str`` depending on context)

These may be thought of as subclasses of ``pikepdf.Object``. (Internally they
**are** ``pikepdf.Object``.)

There are a few other classes for special PDF objects that don't
map to Python as neatly.

*   ``pikepdf.Operator`` - a special object involved in processing content
    streams
*   ``pikepdf.Stream`` - a special object similar to a ``Dictionary`` with
    binary data attached
*   ``pikepdf.InlineImage`` - an image that is embedded in content streams

The great news is that it's often unnecessary to construct ``pikepdf.Object``
objects when working with pikepdf. Python types are transparently *converted* to
the appropriate pikepdf object when passed to pikepdf APIs – when possible.
However, pikepdf sends ``pikepdf.Object`` types back to Python on return calls,
in most cases, because pikepdf needs to keep track of objects that came from
PDFs originally.

Object lifecycle and memory management
======================================

As mentioned above, a :class:`pikepdf.Object` may reference data that is lazily
loaded from its source :class:`pikepdf.Pdf`. Closing the `Pdf` with
:meth:`pikepdf.Pdf.close` will invalidate some objects, depending on whether
or not the data was loaded, and other implementation details that may change.
Generally speaking, a :class:`pikepdf.Pdf` should be held open until it is no
longer needed, and objects that were derived from it may or may not be usable
after it is closed.

Simple objects (booleans, integers, decimals, ``None``) are copied directly
to Python as pure Python objects.

For PDF stream objects, use :meth:`pikepdf.Object.read_bytes()` to obtain a
copy of the object as pure bytes data, if this information is required after
closing a PDF.

When objects are copied from one :class:`pikepdf.Pdf` to another, the
underlying data is copied immediately into the target. As such it is possible
to merge hundreds of `Pdf` into one, keeping only a single source at a time and the
target file open.

Indirect objects
================

PDF has two ways to represented a PDF dictionary that contains another dictionary:
it can contain the inner dictionary, or provide a reference to another object.
In the PDF file itself, most objects have an object number that is for referencing.

pikepdf hides the details about whether an object is directly or indirectly
referenced, since in many situations it does not matter and manually testing each
object to see if it needs to be dereferenced before accessing it is tedious.
However, you may need to create indirect references. Sometimes, the |pdfrm|
specifically requires that a value be an indirect object.

You can use :attr:`pikepdf.Object.is_indirect` to check if an object is actually
an indirect reference. If you require an indirect object, use
:meth:`pikepdf.Pdf.make_indirect` to attach the dictionary to a `Pdf` and return
an indirect copy of it. Direct objects are not attached to any particular `Pdf`
and can be copied from one to another, just like scalars. Indirect objects
must be attached.

Stream objects are always indirect objects, and must always be attached to a
PDF.

Object helpers
==============

pikepdf also provides :class:`pikepdf.ObjectHelper` and various subclasses of
this class. Usually these are wrappers around a :class:`pikepdf.Dictionary` with
special rules applicable to that type of dictionary. :class:`pikepdf.Page` is
an example of an object helper. The underlying object can be accessed with
:attr:`pikepdf.ObjectHelper.obj`.









./usr/share/doc/python3-pikepdf/html/_sources/topics/outlines.rst.txt


.. _outlines:

Outlines
========
Outlines (sometimes also called *bookmarks*) are shown in a the PDF viewer
aside of the page, allowing for navigation within the document.

Creating outlines
-----------------
Outlines can be created from scratch, e.g. when assembling a set of PDF files
into a single document.

The following example adds outline entries referring to the 1st, 3rd and 9th page
of an existing PDF.

.. ipython::
    :verbatim:

    In [1]: from pikepdf import Pdf, OutlineItem

    In [1]: pdf = Pdf.open('document.pdf')

    In [1]: with pdf.open_outline() as outline:
       ...:     outline.root.extend([
       ...:         # Page counts are zero-based
       ...:         OutlineItem('Section One', 0),
       ...:         OutlineItem('Section Two', 2),
       ...:         OutlineItem('Section Three', 8)
       ...:     ])

    In [1]: pdf.save('document_with_outline.pdf')

Another example, for automatically adding an entry for each file in a merged document:

.. ipython::
    :verbatim:

    In [1]: from glob import glob

    In [1]: pdf = Pdf.new()

    In [1]: page_count = 0

    In [1]: with pdf.open_outline() as outline:
       ...:     for file in glob('*.pdf'):
       ...:         src = Pdf.open(file)
       ...:         oi = OutlineItem(file, page_count)
       ...:         outline.root.append(oi)
       ...:         page_count += len(src.pages)
       ...:         pdf.pages.extend(src.pages)

    In [1]: pdf.save('merged.pdf')

Editing outlines
----------------
Existing outlines can be edited. Entries can be moved and renamed without affecting
the targets they refer to.

Destinations
------------
Destinations tell the PDF viewer where to go when navigating through outline items.
The simplest case is a reference to a page, together with the page location, e.g.
``Fit`` (default). However, named destinations can also be assigned.

The PDF specification allows for either use of a destination (``Dest`` attribute) or
an action (``A`` attribute), but not both on the same element. ``OutlineItem`` elements
handle this as follows:

* When creating new outline entries passing in a page number or reference name,
  the ``Dest`` attribute is used.
* When editing an existing entry with an assigned action, it is left as-is, unless a
  ``destination`` is set. The latter is preferred if both are present.

Creating a more detailed destination with page location:

.. ipython::
    :verbatim:

    In [1]: oi = OutlineItem('First', 0, 'FitB', top=1000)

The above will call ``make_page_destination`` when saving to a ``Pdf`` document,
roughly equivalent to the following:

.. ipython::
    :verbatim:

    In [1]: oi.destination = make_page_destination(pdf, 0, 'FitB', top=1000)

Outline structure
------------------
For nesting outlines, add items to the ``children`` list of another ``OutlineItem``.

.. ipython::
    :verbatim:

    In [1]: with pdf.open_outline() as outline:
       ...:     main_item = OutlineItem('Main', 0)
       ...:     outline.root.append(main_item)
       ...:     main_item.children.append(OutlineItem('A', 1))










./usr/share/doc/python3-pikepdf/html/_sources/topics/overlays.rst.txt


.. _overlays:

Overlays, underlays, watermarks, n-up
=====================================

You can use pikepdf to overlay pages or other content on top of other pages.

This might be used to do watermarks (typically an underlay, drawn before everything
else), n-up (compositing multiple individual pages on a large page, such as converting
slides from a presentation to 4-up for reading and printing).

If you are looking to merge pages from different PDFs, see :ref:`mergepdf`.

In this example we use :meth:`pikepdf.Page.add_overlay` to draw a thumbnail of
of the second page onto the first page.

.. ipython::
    :verbatim:

    In [1]: from pikepdf import Pdf, Page, Rectangle

    In [1]: pdf = Pdf.open(...)

    In [1]: destination_page = Page(pdf.pages[0])

    In [1]: thumbnail = Page(pdf.pages[1])

    In [1]: destination_page.add_overlay(thumbnail, Rectangle(0, 0, 300, 300))

    In [1]: pdf.save("page1_with_page2_thumbnail.pdf")

The :class:`pikepdf.Rectangle` specifies the position on the target page into which
the other page can be drawn. The object will be drawn centered in a way that
fills as much space as possible while preserving aspect ratio.

Use :meth:`pikepdf.Page.add_underlay` instead if you want content drawn underneath.
It is possible content drawn this way will be overdrawn by other objects.

Use :attr:`pikepdf.Page.trimbox` to get a page's dimensions.

``add_overlay`` will copy content across ``Pdf`` objects as needed, and can copy
other pages or other Form XObjects.

``add_overlay`` also preserves aspect ratio.
Use :meth:`pikepdf.Page.as_form_xobject` and
:meth:`pikepdf.Page.calc_form_xobject_placement` if you want more precise control
over placement.

Composition works using Form XObjects, which is how PDF captures of a group of
related objects for drawing. Some very basic PDF software may not support them,
or may fail to detect images contained within.

When perform n-up composition, it will work better to create your composition
within the existing document, rather than in a new document. Transforming the
existing document will ensure that metadata, annotations and hyperlinks are
preserved. For example, to convert 16 slides to 4×4-up pages for printing,
add four pages onto the end of the file, draw the slides onto the target pages,
and then delete the slides.

By default, ``add_overlay`` encapsulates the existing content stream in a way
that ensures the transformation matrix is first reset, since this behavior
aligns with user expectations. This adds a ``q/Q`` pair to (push/pop graphics
stack) to existing content streams. To disable this (usually desired) behavior
use ``push_stack=False``.










./usr/share/doc/python3-pikepdf/html/_sources/topics/page.rst.txt


.. _work_with_pages:

Working with pages
==================

This section details with how to view and edit the contents of a page.

pikepdf is not an ideal tool for producing new PDFs from scratch -- and there are
many good tools for that, as mentioned elsewhere. pikepdf is better at inspecting,
editing and transforming existing PDFs.

Pages in PDFs are wrappers around dictionary objects.

.. ipython::

    In [1]: from pikepdf import Pdf, Page

    In [1]: example = Pdf.open('../tests/resources/congress.pdf')

    In [1]: page1 = example.pages[0]

    In [1]: page1

The page's ``/Contents`` key contains instructions for drawing the page content.
This is a :doc:`content stream <streams>`, which is a stream object
that follows special rules.

Also attached to this page is a ``/Resources`` dictionary, which contains a
single XObject image. The image is compressed with the ``/DCTDecode`` filter,
meaning it is encoded with the :abbr:`DCT (discrete cosine transform)`, so it is
a JPEG. pikepdf has special APIs for :doc:`working with images <images>`.

The ``/MediaBox`` describes the bounding box of the page in PDF pt units
(1/72" or 0.35 mm).

You *can* access the page dictionary data structure directly, but it's fairly
complicated. There are a number of rules, optional values and implied values.
To do so, you would access the ``page1.obj`` property, which returns the
underlying dictionary object that holds the page data.

.. note::

    In pikepdf 2.x, the raw dictionary object was returned, and it was
    necessary to manually wrap it with the support model:
    ``page = Page(pdf.pages[0])``. This is no longer necessary, but also
    harmless.

Page boxes
----------

.. ipython::

    In [1]: page1.trimbox

``Page`` will resolve implicit information. For example, ``page.trimbox``
will return an appropriate trim box for this page, which in this case is
equal to the media box. This happens even if the page does not define
a trim box.










./usr/share/doc/python3-pikepdf/html/_sources/topics/pagelayout.rst.txt


.. _pagelayout:

Default appearance in PDF viewers
*********************************

Using pikepdf you can control the initial page layout and page mode, that is,
how a PDF will appear by default when loaded in a PDF viewer.

These settings are changed written to the PDF's root object. Note that the PDF
viewer may ignore them and user preferences may override, etc.

.. code-block:: python

    from pikepdf import Pdf, Dictionary, Name
    with Pdf.open('input.pdf') as pdf:
        pdf.root.PageLayout = Name.SinglePage
        pdf.root.PageMode = Name.FullScreen
        pdf.save('output.pdf')

For reference, the tables below provide summarize the available options.

.. list-table:: PageLayout definitions
    :widths: 20 80
    :header-rows: 1

    * - Value
      - Meaning
    * - Name.SinglePage
      - Display one page at a time (default)
    * - Name.OneColumn
      - Display the pages in one column
    * - Name.TwoColumnLeft
      - Display the pages in two columns, with odd-numbered pages on the left
    * - Name.TwoColumnRight
      - Display the pages in two columns, with odd-numbered pages on the right
    * - Name.TwoPageLeft
      - Display the pages two at a time, with odd-numbered pages on the left
    * - Name.TwoPageRight
      - Display the pages two at a time, with odd-numbered pages on the right

.. list-table:: PageMode definitions
    :widths: 20 80
    :header-rows: 1

    * - Value
      - Meaning
    * - Name.UseNone
      - Neither document outline nor thumbnail images visible (default)
    * - Name.UseOutlines
      - Document outline visible
    * - Name.UseThumbs
      - Thumbnail images visible
    * - Name.FullScreen
      - Full-screen mode, with no menu bar, window controls, or any other window visible
    * - Name.UseOC
      - Optional content group panel visible
    * - Name.UseAttachments
      - Attachments panel visible









./usr/share/doc/python3-pikepdf/html/_sources/topics/pages.rst.txt


.. _docassembly:

PDF split, merge, and document assembly
***************************************

This section discusses working with PDF pages: splitting, merging, copying,
deleting. We're treating pages as a unit, rather than working with the content of
individual pages.

Let’s continue with ``fourpages.pdf`` from the :ref:`tutorial`.

.. ipython::

    In [1]: from pikepdf import Pdf

    In [2]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

.. note::

    In some parts of the documentation we skip closing ``Pdf`` objects for brevity.
    In production code, you should open them in a ``with`` block or explicitly
    close them.

.. _splitpdf:

Split a PDF into single page PDFs
---------------------------------

All we need are new PDFs to hold the destination pages.

.. ipython::
    :verbatim:

    In [1]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

    In [5]: for n, page in enumerate(pdf.pages):
       ...:     dst = Pdf.new()
       ...:     dst.pages.append(page)
       ...:     dst.save(f'{n:02d}.pdf')

.. note::

    This example will transfer data associated with each page, so
    that every page stands on its own. It will *not* transfer some metadata
    associated with the PDF as a whole, such as the list of bookmarks.

.. _mergepdf:

Merge (concatenate) PDF from several PDFs
-----------------------------------------

In this example, we create an empty ``Pdf`` which will be the container for all
the others.

If you are looking to combine multiple PDF pages into a single page, see
:ref:`overlays`.

.. ipython::
    :verbatim:

    In [1]: from glob import glob

    In [1]: pdf = Pdf.new()

    In [1]: for file in glob('*.pdf'):
       ...:     src = Pdf.open(file)
       ...:     pdf.pages.extend(src.pages)

    In [1]: pdf.save('merged.pdf')

This code sample is enough to merge most PDFs, but there are some things it
does not do that a more sophisticated function might do. One could call
:meth:`pikepdf.Pdf.remove_unreferenced_resources` to remove unreferenced objects
from the pages' ``/Resources`` dictionaries. It may also be necessary to chose the
most recent version of all source PDFs. Here is a more sophisticated example:

.. ipython::
    :verbatim:

    In [1]: from glob import glob

    In [1]: pdf = Pdf.new()

    In [1]: version = pdf.pdf_version

    In [1]: for file in glob('*.pdf'):
       ...:     src = Pdf.open(file)
       ...:     version = max(version, src.pdf_version)
       ...:     pdf.pages.extend(src.pages)

    In [1]: pdf.remove_unreferenced_resources()

    In [1]: pdf.save('merged.pdf', min_version=version)

This improved example would still leave metadata blank. It's up to you
to decide how to combine metadata from multiple PDFs.

Reversing the order of pages
----------------------------

Suppose the file was scanned backwards. We can easily reverse it in
place - maybe it was scanned backwards, a common problem with automatic
document scanners.

.. ipython::

    In [1]: pdf.pages.reverse()

.. ipython::

    In [1]: pdf

Pretty nice, isn’t it? But the pages in this file already were in correct
order, so let’s put them back.

.. ipython::

    In [1]: pdf.pages.reverse()

.. _copyother:

Copying pages from other PDFs
-----------------------------

Now, let’s add some content from another file. Because ``pdf.pages`` behaves
like a list, we can use ``pages.extend()`` on another file's pages.

.. ipython::

    In [1]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

    In [1]: appendix = Pdf.open('../tests/resources/sandwich.pdf')

    In [2]: pdf.pages.extend(appendix.pages)

We can use ``pages.insert()`` to insert into one of more pages into a specific
position, bumping everything else ahead.

Copying pages between ``Pdf`` objects will create a shallow copy of the source
page within the target ``Pdf``, rather than the typical Python behavior of
creating a reference. Therefore modifying ``pdf.pages[-1]`` will not affect
``appendix.pages[0]``. (Normally, assigning objects between Python lists creates
a reference, so that the two objects are identical, ``list[0] is list[1]``.)

.. ipython::

    In [3]: graph = Pdf.open('../tests/resources/graph.pdf')

    In [4]: pdf.pages.insert(1, graph.pages[0])

    In [5]: len(pdf.pages)

We can also replace specific pages with assignment (or slicing).

.. ipython::

    In [1]: congress = Pdf.open('../tests/resources/congress.pdf')

    In [1]: pdf.pages[2].objgen

    In [1]: pdf.pages[2] = congress.pages[0]

    In [1]: pdf.pages[2].objgen

The method above will break any indirect references (such as table of contents
entries and hyperlinks) within ``pdf`` to ``pdf.pages[2]``. Perhaps that is the
behavior you want, if the replacement means those references are no longer
valid. This is shown by the change in :attr:`pikepdf.Object.objgen`.

Emplacing pages
~~~~~~~~~~~~~~~

Perhaps the PDF you are working with has a table of contents or internal hyperlinks,
meaning that there are indirect references to a specific page object. If you
want change the content of a page object while preserving references to it,
use :meth:`pikepdf.Object.emplace`, which will delete all of the content of
the target and replace it with the content of the source, thus preserving
indirect references to the page. (Think of this as demolishing the interior
of a house, but keeping it at the same address.)

.. ipython::

 In [1]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

 In [1]: congress = Pdf.open('../tests/resources/congress.pdf')

 In [1]: pdf.pages[2].objgen

 In [1]: pdf.pages.append(congress.pages[0]) # Transfer page to new pdf

 In [1]: pdf.pages[2].emplace(pdf.pages[-1])

 In [1]: del pdf.pages[-1] # Remove donor page

 In [1]: pdf.pages[2].objgen

Copying pages within a PDF

As you may have guessed, we can assign pages to copy them within a ``Pdf``:

.. ipython::

 In [1]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

 In [1]: pdf.pages[3] = pdf.pages[0] # The last shall be made first

As above, copying a page creates a shallow copy rather than a Python object
reference.

Also as above :meth:`pikepdf.Object.emplace` can be used to create a copy that
preserves the functionality of indirect references within the PDF.

Using counting numbers

Because PDF pages are usually numbered in counting numbers (1, 2, 3…),
pikepdf provides a convenience accessor ``.p()`` that uses counting
numbers:

.. ipython::
 :verbatim:

 In [1]: pdf.pages.p(1) # The first page in the document

 In [1]: pdf.pages[0] # Also the first page in the document

 In [1]: pdf.pages.remove(p=1) # Remove first page in the document

To avoid confusion, the ``.p()`` accessor does not accept Python slices,
and ``.p(0)`` raises an exception. It is also not possible to delete using it.

PDFs may define their own numbering scheme or different numberings for
different sections, such as using Roman numerals for an introductory section.
``.pages`` does not look up this information.

Accessing page labels

If a PDF defines custom page labels, such as a typical report with preface material
beginning with Roman numerals (i, ii, iii...), body using Arabic numerals (1, 2, 3...),
and an appendix using some other convention (A-1, A-2, ...), you can look up the
page label as follows:

.. ipython::
 :verbatim:

 In [1]: pdf.pages[1].label
 Out[1]: 'i'

There is currently no API to help with modifying the ``pdf.Root.PageLabels`` data
structure, which contains the label definitions.

Pages information from Root

.. warning::

 It's possible to obtain page information through :attr:`pikepdf.Pdf.Root`
 object but **not recommended**. (In PDF parlance, this is the ``/Root``
 object).

 The internal consistency of the various ``/Page`` and ``/Pages`` is not
 guaranteed when accessed in this manner, and in some PDFs the data structure
 for these is fairly complex. Use the ``.pages`` interface instead.

./usr/share/doc/python3-pikepdf/html/_sources/topics/security.rst.txt

.. _security:

PDF security

Password security
=================

Password security in PDFs is widely supported, including by pikepdf. Unfortunately,
its security has limitations and may offer more security theatre than real
security, depending on your needs.

Note the following limitations of password security in PDFs:

- anyone with the user password *or* the owner password can open the PDF, extract
 its contents, and produce a visually identical PDF;
- if the user password is an empty string, everyone has the user password;
- setting a user password and leaving the owner password blank is useless;
- the only thing you can not do if you have the user password and not the owner
 password is create a new PDF encrypted with the same owner password;
- ``pikepdf.Permissions`` restrictions depend entirely on the PDF viewer software
 to enforce the restrictions – libraries like pikepdf can bypass those restrictions;
- cracking PDF passwords is easier than many other forms of cracking because
 a motivated person has unlimited chances to guess the password on a static file.

While the AES encryption algorithm is strong, password-protected PDFs have
significant practical weaknesses.

In view of all of this, the most useful option is to set the owner password to a
strong password, and the user password to blank. This allows anyone to view the PDF
while allowing you to prove that you (or your software's user) generated the PDF by
producing the strong owner password.

Unicode in passwords

For widest compatibility, passwords should be composed of only characters in the
ASCII character set, since the |pdfrm| is unclear about how non-ASCII
passwords are supposed to be encoded. See the documentation on :meth:`pikepdf.Pdf.save`
for more details. pikepdf encodes passwords as UTF-8.

PDF content restrictions
========================

If you are developing a PDF application, you should enforce the restrictions in
:class:`pikepdf.Permissions`, and not permit people who have only the user password
to access restricted content. If the PDF is opened with the owner password,
any content may be accessed without enforcing restrictions.
:attr:`pikepdf.Pdf.user_password_matched` and :attr:`pikepdf.Pdf.owner_password_matched`
can be used to check which password opened the PDF.

It is up to the application developer to implement the restrictions. pikepdf or
any PDF manipulation library can be used to bypass restrictions.

Digital signatures and certificates
===================================

PDFs signed with a digital signature can mitigate some of these security issues.
pikepdf does not support digital signatures at this time.

./usr/share/doc/python3-pikepdf/html/_sources/topics/streams.rst.txt

Stream objects
==============

A :class:`pikepdf.Stream` object works like a PDF dictionary with some encoded
bytes attached. The dictionary is metadata that describes how the stream is
encoded. PDF can, and regularly does, use a variety of encoding filters. A
stream can be encoded with one or more filters. Images are a type of stream
object.

This is not the same type of object as Python's file-like I/O objects, which are
sometimes called streams.

Most of the interesting content in a PDF (images and content streams) are
inside stream objects.

Because the PDF specification unfortunately defines several terms that involve the
word *stream*, let's attempt to clarify:

.. figure:: /images/28fish.jpg
 :figwidth: 30%
 :align: right
 :alt: Image of many species of fish

 When it comes to taxonomy, software developers have it easy.

stream object
 A PDF object that contains binary data and a metadata dictionary that describes
 it, represented as :class:`pikepdf.Stream`, a subclass of :class:`pikepdf.Object`.
 In HTML this is equivalent to a ``<object>`` tag with attributes and data.

object stream
 A stream object (not a typo, an object stream really is a type of stream
 object) in a PDF that contains a number of other objects in a
 PDF, grouped together for better compression. In pikepdf there is an option
 to save PDFs with this feature enabled to improve compression. Otherwise,
 this is just a detail about how PDF files are encoded. When object streams
 are present, pikepdf automatically decompresses them as necessary; no special
 steps are needed to access a PDF that contains object streams.

content stream
 A stream object that contains some instructions to draw graphics
 and text on a page, or inside a Form XObject, and in some other situations.
 In HTML this is equivalent to the HTML file itself. Content streams only draw
 one page (or canvas, for a Form XObject). Each page needs its own content stream
 to draw its contents.

Form XObject
 A group of images, text and drawing commands that can be rendered elsewhere
 in a PDF as a group. This is often used when a group of objects are needed
 at different scales or on multiple pages. In HTML this is like an ``<svg>``.
 It is not a fillable PDF form (although a fillable PDF form could involve
 Form XObjects).

(Python) stream
 A stream is another name for a file object or file-like object, as described
 in the Python :mod:`io` module.

Reading stream objects

Fortunately, :meth:`pikepdf.Stream.read_bytes` will apply all filters
and decode the uncompressed bytes, or throw an error if this is not possible.
:meth:`pikepdf.Stream.read_raw_bytes` provides access to the compressed bytes.

Three types of stream object are particularly noteworthy: content streams,
which describe the order of drawing operators; images; and XMP metadata.
pikepdf provides helper functions for working with these types of streams.

Reading stream objects as a Python I/O streams
--

You were warned about terminology.

To preserve our remaining sanity, you cannot access a
stream object as a file-like object directly.

To efficiently access a ``pikepdf.Stream`` as a Python file object, you may do:

.. code-block:: python

 pdf.pages[0].Contents.page_contents_coalesce()
 filelike_object = BytesIO(pdf.pages[0].Contents.get_stream_buffer())

./usr/share/doc/python3-pikepdf/html/_sources/tutorial.rst.txt

.. _tutorial:

Tutorial

.. figure:: images/pike-cartoon.png
 :figwidth: 30%
 :align: right

This brief tutorial should give you an introduction and orientation to pikepdf's
paradigm and syntax. From there, we refer to you various topics.

Opening and saving PDFs

In contrast to better known PDF libraries, pikepdf uses a single object to
represent a PDF, whether reading, writing or merging. We have cleverly named
this :class:`pikepdf.Pdf`. In this documentation, a ``Pdf`` is a class that
allows manipulate the PDF, meaning the "file" (whether it exists in memory or on
a file system).

.. code-block:: python

 from pikepdf import Pdf

 with Pdf.open('sample.pdf') as pdf:
 pdf.save('output.pdf')

You may of course use ``from pikepdf import Pdf as ...`` if the short class
name conflicts or ``from pikepdf import Pdf as PDF`` if you prefer uppercase.

:func:`pikepdf.open` is a shorthand for :meth:`pikepdf.Pdf.open`.

The PDF class API follows the example of the widely-used
`Pillow image library <https://pillow.readthedocs.io/en/latest/>`_. For clarity
there is no default constructor since the arguments used for creation and
opening are different. To make a new empty PDF, use :func:`Pdf.new()` not ``Pdf()``.

``Pdf.open()`` also accepts seekable streams as input, and :meth:`pikepdf.Pdf.save()` accepts
streams as output. :class:`pathlib.Path` objects are fully supported wherever
pikepdf accepts a filename.

Creating PDFs

Using :meth:`pikepdf.Pdf.new`, you can create a new PDF from scratch. pikepdf
is not primarily a PDF generation library - you may find other libraries easier
to use for that purpose. However, pikepdf does provide a few useful functions
for creating PDFs.

.. code-block:: python

 from pikepdf import Pdf

 pdf = Pdf.new()
 pdf.add_blank_page()
 pdf.save('blank_page.pdf')

Inspecting pages

Manipulating pages is fundamental to PDFs. pikepdf presents the pages in a PDF
through the :attr:`pikepdf.Pdf.pages` property, which follows the ``list``
protocol. As such page numbers begin at 0.

Let’s open a simple PDF that contains four pages.

.. ipython::

 In [1]: from pikepdf import Pdf

 In [2]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

How many pages?

.. ipython::

 In [2]: len(pdf.pages)

pikepdf integrates with IPython and Jupyter's rich object APIs so that you can
view PDFs, PDF pages, or images within PDF in a IPython window or Jupyter
notebook. This makes it easier to test visual changes.

.. ipython::
 :verbatim:

 In [1]: pdf
 Out[1]: « In Jupyter you would see the PDF here »

 In [1]: pdf.pages[0]
 Out[1]: « In Jupyter you would see an image of the PDF page here »

You can also examine individual pages, which we’ll explore in the next
section. Suffice to say that you can access pages by indexing them and
slicing them.

.. ipython::
 :verbatim:

 In [1]: pdf.pages[0]
 Out[1]: « In Jupyter you would see an image of the PDF page here »

.. note::

 :meth:`pikepdf.Pdf.open` can open almost all types of encrypted PDF! Just
 provide the ``password=`` keyword argument.

For more details on document assembly, see
:ref:`PDF split, merge and document assembly <docassembly>`.

PDF dictionaries

In PDFs, the main data structure is the **dictionary**, a key-value data
structure much like a Python ``dict`` or ``attrdict``. The major difference is
that the keys can only be **names**, and the values can only be PDF types, including
other dictionaries.

PDF dictionaries are represented as :class:`pikepdf.Dictionary` objects, and names
are of type :class:`pikepdf.Name`.

.. ipython::

 In [1]: from pikepdf import Pdf

 In [1]: example = Pdf.open('../tests/resources/congress.pdf')

 In [1]: example.Root # Show the document's root dictionary

Page dictionaries

A page in a PDF is just a dictionary with certain required keys that is
referenced by the PDF's "page tree". (pikepdf manages the page tree for you,
and wraps page dictionaries to provide special functions
that help with managing pages.) A :class:`pikepdf.Page` is a wrapper around a PDF
page dictionary that provides many useful functions for working on pages.

.. ipython::

 In [1]: from pikepdf import Pdf

 In [1]: example = Pdf.open('../tests/resources/congress.pdf')

 In [1]: page1 = example.pages[0]

 In [1]: obj_page1 = page1.obj

 In [1]: obj_page1

repr() output

Let's observe the page's ``repr()`` output:

.. ipython::

 In [1]: repr(page1)

The angle brackets in the output indicate that this object cannot be constructed
with a Python expression because it contains a reference. When angle brackets
are omitted from the ``repr()`` of a pikepdf object, then the object can be
replicated with a Python expression, such as ``eval(repr(x)) == x``. Pages
typically have indirect references to themselves and other pages, so they
cannot be represented as an expression.

Item and attribute notation

Dictionary keys may be looked up using attributes (``page1.Type``) or
keys (``page1['/Type']``).

.. ipython::

 In [1]: page1.Type # preferred notation for standard PDF names

 In [1]: page1['/Type'] # also works

By convention, pikepdf uses attribute notation for standard names (the names
that are normally part of a dictionary, according to the |pdfrm|),
and item notation for names that may not always appear. For example, the images
belong to a page always appear at ``page.Resources.XObject`` but the names
of images are arbitrarily chosen by whatever software generates the PDF (``/Im0``,
in this case). (Whenever expressed as strings, names begin with ``/``.)

.. ipython::
 :verbatim:

 In [1]: page1.Resources.XObject['/Im0']

Item notation here would be quite cumbersome:
``['/Resources']['/XObject]['/Im0']`` (not recommended).

Attribute notation is convenient, but not robust if elements are missing. For
elements that are not always present, you can use ``.get()``, which behaves like
``dict.get()`` in core Python. A library such as `glom
<https://github.com/mahmoud/glom>`_ might help when working with complex
structured data that is not always present.

(For now, we'll set aside what a page's ``Resources.XObject``
are for. See :ref:`Working with pages <work_with_pages>` for details.)

Deleting pages

Removing pages is easy too.

.. ipython::

 In [1]: del pdf.pages[1:3] # Remove pages 2-3 labeled "second page" and "third page"

.. ipython::

 In [1]: len(pdf.pages)

Saving changes

Naturally, you can save your changes with :meth:`pikepdf.Pdf.save`.
``filename`` can be a :class:`pathlib.Path`, which we accept everywhere.

.. ipython::
 :verbatim:

 In [1]: pdf.save('output.pdf')

You may save a file multiple times, and you may continue modifying it after
saving. For example, you could create an unencrypted version of document, then
apply a watermark, and create an encrypted version.

.. note::

 You may not overwrite the input file (or whatever Python object provides the
 data) when saving or at any other time. pikepdf assumes it will have
 exclusive access to the input file or input data you give it to, until
 ``pdf.close()`` is called.

Saving secure PDFs
^^^^^^^^^^^^^^^^^^

To save an encrypted (password protected) PDF, use a :class:`pikepdf.Encryption`
object to specify the encryption settings. By default, pikepdf selects the
strongest security handler and algorithm (AES-256), but allows full access to
modify file contents. A :class:`pikepdf.Permissions` object can be used to
specify restrictions.

.. ipython::
 :verbatim:

 In [1]: no_extracting = pikepdf.Permissions(extract=False)

 In [1]: pdf.save('encrypted.pdf', encryption=pikepdf.Encryption(
 ...: user="user password", owner="owner password", allow=no_extracting
 ...:))

Refer to our :ref:`security documentation <security>` for more information on
user/owner passwords and PDF permissions.

Running QPDF through Jobs
^^^^^^^^^^^^^^^^^^^^^^^^^

pikepdf can access all of the features of the qpdf command line program, and
can even execute qpdf-like command lines.

.. ipython::
 :verbatim:

 In [1]: from pikepdf import Job

 In [1]: Job(['pikepdf', '--check', '../tests/resources/fourpages.pdf'])

You can also specify jobs in QPDF Job JSON:

.. ipython::
 :verbatim:

 In [1]: job_json = {'inputFile': '../tests/resources/fourpages.pdf', 'check': ''}

 In [1]: Job(job_json).run()

Next steps

Have a look at pikepdf topics that interest you, or jump to our detailed API
reference...

./usr/share/doc/python3-pikepdf/html/_static/_sphinx_javascript_frameworks_compat.js

/* Compatability shim for jQuery and underscores.js.
 *
 * Copyright Sphinx contributors
 * Released under the two clause BSD licence
 */

/**
 * small helper function to urldecode strings
 *
 * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL
 */
jQuery.urldecode = function(x) {
 if (!x) {
 return x
 }
 return decodeURIComponent(x.replace(/\+/g, ' '));
};

/**
 * small helper function to urlencode strings
 */
jQuery.urlencode = encodeURIComponent;

/**
 * This function returns the parsed url parameters of the
 * current request. Multiple values per key are supported,
 * it will always return arrays of strings for the value parts.
 */
jQuery.getQueryParameters = function(s) {
 if (typeof s === 'undefined')
 s = document.location.search;
 var parts = s.substr(s.indexOf('?') + 1).split('&');
 var result = {};
 for (var i = 0; i < parts.length; i++) {
 var tmp = parts[i].split('=', 2);
 var key = jQuery.urldecode(tmp[0]);
 var value = jQuery.urldecode(tmp[1]);
 if (key in result)
 result[key].push(value);
 else
 result[key] = [value];
 }
 return result;
};

/**
 * highlight a given string on a jquery object by wrapping it in
 * span elements with the given class name.
 */
jQuery.fn.highlightText = function(text, className) {
 function highlight(node, addItems) {
 if (node.nodeType === 3) {
 var val = node.nodeValue;
 var pos = val.toLowerCase().indexOf(text);
 if (pos >= 0 &&
 !jQuery(node.parentNode).hasClass(className) &&
 !jQuery(node.parentNode).hasClass("nohighlight")) {
 var span;
 var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg");
 if (isInSVG) {
 span = document.createElementNS("http://www.w3.org/2000/svg", "tspan");
 } else {
 span = document.createElement("span");
 span.className = className;
 }
 span.appendChild(document.createTextNode(val.substr(pos, text.length)));
 node.parentNode.insertBefore(span, node.parentNode.insertBefore(
 document.createTextNode(val.substr(pos + text.length)),
 node.nextSibling));
 node.nodeValue = val.substr(0, pos);
 if (isInSVG) {
 var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect");
 var bbox = node.parentElement.getBBox();
 rect.x.baseVal.value = bbox.x;
 rect.y.baseVal.value = bbox.y;
 rect.width.baseVal.value = bbox.width;
 rect.height.baseVal.value = bbox.height;
 rect.setAttribute('class', className);
 addItems.push({
 "parent": node.parentNode,
 "target": rect});
 }
 }
 }
 else if (!jQuery(node).is("button, select, textarea")) {
 jQuery.each(node.childNodes, function() {
 highlight(this, addItems);
 });
 }
 }
 var addItems = [];
 var result = this.each(function() {
 highlight(this, addItems);
 });
 for (var i = 0; i < addItems.length; ++i) {
 jQuery(addItems[i].parent).before(addItems[i].target);
 }
 return result;
};

/*
 * backward compatibility for jQuery.browser
 * This will be supported until firefox bug is fixed.
 */
if (!jQuery.browser) {
 jQuery.uaMatch = function(ua) {
 ua = ua.toLowerCase();

 var match = /(chrome)[\/]([\w.]+)/.exec(ua) ||
 /(webkit)[\/]([\w.]+)/.exec(ua) ||
 /(opera)(?:.*version|)[\/]([\w.]+)/.exec(ua) ||
 /(msie) ([\w.]+)/.exec(ua) ||
 ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) ||
 [];

 return {
 browser: match[1] || "",
 version: match[2] || "0"
 };
 };
 jQuery.browser = {};
 jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true;
}

./usr/share/doc/python3-pikepdf/html/_static/basic.css

/*
 * basic.css
 * ~~~~~~~~~
 *
 * Sphinx stylesheet -- basic theme.
 *
 * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS.
 * :license: BSD, see LICENSE for details.
 *
 */

/* -- main layout --- */

div.clearer {
 clear: both;
}

div.section::after {
 display: block;
 content: '';
 clear: left;
}

/* -- relbar -- */

div.related {
 width: 100%;
 font-size: 90%;
}

div.related h3 {
 display: none;
}

div.related ul {
 margin: 0;
 padding: 0 0 0 10px;
 list-style: none;
}

div.related li {
 display: inline;
}

div.related li.right {
 float: right;
 margin-right: 5px;
}

/* -- sidebar --- */

div.sphinxsidebarwrapper {
 padding: 10px 5px 0 10px;
}

div.sphinxsidebar {
 float: left;
 width: 230px;
 margin-left: -100%;
 font-size: 90%;
 word-wrap: break-word;
 overflow-wrap : break-word;
}

div.sphinxsidebar ul {
 list-style: none;
}

div.sphinxsidebar ul ul,
div.sphinxsidebar ul.want-points {
 margin-left: 20px;
 list-style: square;
}

div.sphinxsidebar ul ul {
 margin-top: 0;
 margin-bottom: 0;
}

div.sphinxsidebar form {
 margin-top: 10px;
}

div.sphinxsidebar input {
 border: 1px solid #98dbcc;
 font-family: sans-serif;
 font-size: 1em;
}

div.sphinxsidebar #searchbox form.search {
 overflow: hidden;
}

div.sphinxsidebar #searchbox input[type="text"] {
 float: left;
 width: 80%;
 padding: 0.25em;
 box-sizing: border-box;
}

div.sphinxsidebar #searchbox input[type="submit"] {
 float: left;
 width: 20%;
 border-left: none;
 padding: 0.25em;
 box-sizing: border-box;
}

img {
 border: 0;
 max-width: 100%;
}

/* -- search page --- */

ul.search {
 margin: 10px 0 0 20px;
 padding: 0;
}

ul.search li {
 padding: 5px 0 5px 20px;
 background-image: url(file.png);
 background-repeat: no-repeat;
 background-position: 0 7px;
}

ul.search li a {
 font-weight: bold;
}

ul.search li p.context {
 color: #888;
 margin: 2px 0 0 30px;
 text-align: left;
}

ul.keywordmatches li.goodmatch a {
 font-weight: bold;
}

/* -- index page -- */

table.contentstable {
 width: 90%;
 margin-left: auto;
 margin-right: auto;
}

table.contentstable p.biglink {
 line-height: 150%;
}

a.biglink {
 font-size: 1.3em;
}

span.linkdescr {
 font-style: italic;
 padding-top: 5px;
 font-size: 90%;
}

/* -- general index --- */

table.indextable {
 width: 100%;
}

table.indextable td {
 text-align: left;
 vertical-align: top;
}

table.indextable ul {
 margin-top: 0;
 margin-bottom: 0;
 list-style-type: none;
}

table.indextable > tbody > tr > td > ul {
 padding-left: 0em;
}

table.indextable tr.pcap {
 height: 10px;
}

table.indextable tr.cap {
 margin-top: 10px;
 background-color: #f2f2f2;
}

img.toggler {
 margin-right: 3px;
 margin-top: 3px;
 cursor: pointer;
}

div.modindex-jumpbox {
 border-top: 1px solid #ddd;
 border-bottom: 1px solid #ddd;
 margin: 1em 0 1em 0;
 padding: 0.4em;
}

div.genindex-jumpbox {
 border-top: 1px solid #ddd;
 border-bottom: 1px solid #ddd;
 margin: 1em 0 1em 0;
 padding: 0.4em;
}

/* -- domain module index --- */

table.modindextable td {
 padding: 2px;
 border-collapse: collapse;
}

/* -- general body styles --- */

div.body {
 min-width: 360px;
 max-width: 800px;
}

div.body p, div.body dd, div.body li, div.body blockquote {
 -moz-hyphens: auto;
 -ms-hyphens: auto;
 -webkit-hyphens: auto;
 hyphens: auto;
}

a.headerlink {
 visibility: hidden;
}

a:visited {
 color: #551A8B;
}

h1:hover > a.headerlink,
h2:hover > a.headerlink,
h3:hover > a.headerlink,
h4:hover > a.headerlink,
h5:hover > a.headerlink,
h6:hover > a.headerlink,
dt:hover > a.headerlink,
caption:hover > a.headerlink,
p.caption:hover > a.headerlink,
div.code-block-caption:hover > a.headerlink {
 visibility: visible;
}

div.body p.caption {
 text-align: inherit;
}

div.body td {
 text-align: left;
}

.first {
 margin-top: 0 !important;
}

p.rubric {
 margin-top: 30px;
 font-weight: bold;
}

img.align-left, figure.align-left, .figure.align-left, object.align-left {
 clear: left;
 float: left;
 margin-right: 1em;
}

img.align-right, figure.align-right, .figure.align-right, object.align-right {
 clear: right;
 float: right;
 margin-left: 1em;
}

img.align-center, figure.align-center, .figure.align-center, object.align-center {
 display: block;
 margin-left: auto;
 margin-right: auto;
}

img.align-default, figure.align-default, .figure.align-default {
 display: block;
 margin-left: auto;
 margin-right: auto;
}

.align-left {
 text-align: left;
}

.align-center {
 text-align: center;
}

.align-default {
 text-align: center;
}

.align-right {
 text-align: right;
}

/* -- sidebars -- */

div.sidebar,
aside.sidebar {
 margin: 0 0 0.5em 1em;
 border: 1px solid #ddb;
 padding: 7px;
 background-color: #ffe;
 width: 40%;
 float: right;
 clear: right;
 overflow-x: auto;
}

p.sidebar-title {
 font-weight: bold;
}

nav.contents,
aside.topic,
div.admonition, div.topic, blockquote {
 clear: left;
}

/* -- topics -- */

nav.contents,
aside.topic,
div.topic {
 border: 1px solid #ccc;
 padding: 7px;
 margin: 10px 0 10px 0;
}

p.topic-title {
 font-size: 1.1em;
 font-weight: bold;
 margin-top: 10px;
}

/* -- admonitions --- */

div.admonition {
 margin-top: 10px;
 margin-bottom: 10px;
 padding: 7px;
}

div.admonition dt {
 font-weight: bold;
}

p.admonition-title {
 margin: 0px 10px 5px 0px;
 font-weight: bold;
}

div.body p.centered {
 text-align: center;
 margin-top: 25px;
}

/* -- content of sidebars/topics/admonitions -------------------------------- */

div.sidebar > :last-child,
aside.sidebar > :last-child,
nav.contents > :last-child,
aside.topic > :last-child,
div.topic > :last-child,
div.admonition > :last-child {
 margin-bottom: 0;
}

div.sidebar::after,
aside.sidebar::after,
nav.contents::after,
aside.topic::after,
div.topic::after,
div.admonition::after,
blockquote::after {
 display: block;
 content: '';
 clear: both;
}

/* -- tables -- */

table.docutils {
 margin-top: 10px;
 margin-bottom: 10px;
 border: 0;
 border-collapse: collapse;
}

table.align-center {
 margin-left: auto;
 margin-right: auto;
}

table.align-default {
 margin-left: auto;
 margin-right: auto;
}

table caption span.caption-number {
 font-style: italic;
}

table caption span.caption-text {
}

table.docutils td, table.docutils th {
 padding: 1px 8px 1px 5px;
 border-top: 0;
 border-left: 0;
 border-right: 0;
 border-bottom: 1px solid #aaa;
}

th {
 text-align: left;
 padding-right: 5px;
}

table.citation {
 border-left: solid 1px gray;
 margin-left: 1px;
}

table.citation td {
 border-bottom: none;
}

th > :first-child,
td > :first-child {
 margin-top: 0px;
}

th > :last-child,
td > :last-child {
 margin-bottom: 0px;
}

/* -- figures --- */

div.figure, figure {
 margin: 0.5em;
 padding: 0.5em;
}

div.figure p.caption, figcaption {
 padding: 0.3em;
}

div.figure p.caption span.caption-number,
figcaption span.caption-number {
 font-style: italic;
}

div.figure p.caption span.caption-text,
figcaption span.caption-text {
}

/* -- field list styles --- */

table.field-list td, table.field-list th {
 border: 0 !important;
}

.field-list ul {
 margin: 0;
 padding-left: 1em;
}

.field-list p {
 margin: 0;
}

.field-name {
 -moz-hyphens: manual;
 -ms-hyphens: manual;
 -webkit-hyphens: manual;
 hyphens: manual;
}

/* -- hlist styles -- */

table.hlist {
 margin: 1em 0;
}

table.hlist td {
 vertical-align: top;
}

/* -- object description styles --- */

.sig {
	font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace;
}

.sig-name, code.descname {
 background-color: transparent;
 font-weight: bold;
}

.sig-name {
	font-size: 1.1em;
}

code.descname {
 font-size: 1.2em;
}

.sig-prename, code.descclassname {
 background-color: transparent;
}

.optional {
 font-size: 1.3em;
}

.sig-paren {
 font-size: larger;
}

.sig-param.n {
	font-style: italic;
}

/* C++ specific styling */

.sig-inline.c-texpr,
.sig-inline.cpp-texpr {
	font-family: unset;
}

.sig.c .k, .sig.c .kt,
.sig.cpp .k, .sig.cpp .kt {
	color: #0033B3;
}

.sig.c .m,
.sig.cpp .m {
	color: #1750EB;
}

.sig.c .s, .sig.c .sc,
.sig.cpp .s, .sig.cpp .sc {
	color: #067D17;
}

/* -- other body styles --- */

ol.arabic {
 list-style: decimal;
}

ol.loweralpha {
 list-style: lower-alpha;
}

ol.upperalpha {
 list-style: upper-alpha;
}

ol.lowerroman {
 list-style: lower-roman;
}

ol.upperroman {
 list-style: upper-roman;
}

:not(li) > ol > li:first-child > :first-child,
:not(li) > ul > li:first-child > :first-child {
 margin-top: 0px;
}

:not(li) > ol > li:last-child > :last-child,
:not(li) > ul > li:last-child > :last-child {
 margin-bottom: 0px;
}

ol.simple ol p,
ol.simple ul p,
ul.simple ol p,
ul.simple ul p {
 margin-top: 0;
}

ol.simple > li:not(:first-child) > p,
ul.simple > li:not(:first-child) > p {
 margin-top: 0;
}

ol.simple p,
ul.simple p {
 margin-bottom: 0;
}

aside.footnote > span,
div.citation > span {
 float: left;
}
aside.footnote > span:last-of-type,
div.citation > span:last-of-type {
 padding-right: 0.5em;
}
aside.footnote > p {
 margin-left: 2em;
}
div.citation > p {
 margin-left: 4em;
}
aside.footnote > p:last-of-type,
div.citation > p:last-of-type {
 margin-bottom: 0em;
}
aside.footnote > p:last-of-type:after,
div.citation > p:last-of-type:after {
 content: "";
 clear: both;
}

dl.field-list {
 display: grid;
 grid-template-columns: fit-content(30%) auto;
}

dl.field-list > dt {
 font-weight: bold;
 word-break: break-word;
 padding-left: 0.5em;
 padding-right: 5px;
}

dl.field-list > dd {
 padding-left: 0.5em;
 margin-top: 0em;
 margin-left: 0em;
 margin-bottom: 0em;
}

dl {
 margin-bottom: 15px;
}

dd > :first-child {
 margin-top: 0px;
}

dd ul, dd table {
 margin-bottom: 10px;
}

dd {
 margin-top: 3px;
 margin-bottom: 10px;
 margin-left: 30px;
}

.sig dd {
 margin-top: 0px;
 margin-bottom: 0px;
}

.sig dl {
 margin-top: 0px;
 margin-bottom: 0px;
}

dl > dd:last-child,
dl > dd:last-child > :last-child {
 margin-bottom: 0;
}

dt:target, span.highlighted {
 background-color: #fbe54e;
}

rect.highlighted {
 fill: #fbe54e;
}

dl.glossary dt {
 font-weight: bold;
 font-size: 1.1em;
}

.versionmodified {
 font-style: italic;
}

.system-message {
 background-color: #fda;
 padding: 5px;
 border: 3px solid red;
}

.footnote:target {
 background-color: #ffa;
}

.line-block {
 display: block;
 margin-top: 1em;
 margin-bottom: 1em;
}

.line-block .line-block {
 margin-top: 0;
 margin-bottom: 0;
 margin-left: 1.5em;
}

.guilabel, .menuselection {
 font-family: sans-serif;
}

.accelerator {
 text-decoration: underline;
}

.classifier {
 font-style: oblique;
}

.classifier:before {
 font-style: normal;
 margin: 0 0.5em;
 content: ":";
 display: inline-block;
}

abbr, acronym {
 border-bottom: dotted 1px;
 cursor: help;
}

.translated {
 background-color: rgba(207, 255, 207, 0.2)
}

.untranslated {
 background-color: rgba(255, 207, 207, 0.2)
}

/* -- code displays --- */

pre {
 overflow: auto;
 overflow-y: hidden; /* fixes display issues on Chrome browsers */
}

pre, div[class*="highlight-"] {
 clear: both;
}

span.pre {
 -moz-hyphens: none;
 -ms-hyphens: none;
 -webkit-hyphens: none;
 hyphens: none;
 white-space: nowrap;
}

div[class*="highlight-"] {
 margin: 1em 0;
}

td.linenos pre {
 border: 0;
 background-color: transparent;
 color: #aaa;
}

table.highlighttable {
 display: block;
}

table.highlighttable tbody {
 display: block;
}

table.highlighttable tr {
 display: flex;
}

table.highlighttable td {
 margin: 0;
 padding: 0;
}

table.highlighttable td.linenos {
 padding-right: 0.5em;
}

table.highlighttable td.code {
 flex: 1;
 overflow: hidden;
}

.highlight .hll {
 display: block;
}

div.highlight pre,
table.highlighttable pre {
 margin: 0;
}

div.code-block-caption + div {
 margin-top: 0;
}

div.code-block-caption {
 margin-top: 1em;
 padding: 2px 5px;
 font-size: small;
}

div.code-block-caption code {
 background-color: transparent;
}

table.highlighttable td.linenos,
span.linenos,
div.highlight span.gp { /* gp: Generic.Prompt */
 user-select: none;
 -webkit-user-select: text; /* Safari fallback only */
 -webkit-user-select: none; /* Chrome/Safari */
 -moz-user-select: none; /* Firefox */
 -ms-user-select: none; /* IE10+ */
}

div.code-block-caption span.caption-number {
 padding: 0.1em 0.3em;
 font-style: italic;
}

div.code-block-caption span.caption-text {
}

div.literal-block-wrapper {
 margin: 1em 0;
}

code.xref, a code {
 background-color: transparent;
 font-weight: bold;
}

h1 code, h2 code, h3 code, h4 code, h5 code, h6 code {
 background-color: transparent;
}

.viewcode-link {
 float: right;
}

.viewcode-back {
 float: right;
 font-family: sans-serif;
}

div.viewcode-block:target {
 margin: -1px -10px;
 padding: 0 10px;
}

/* -- math display -- */

img.math {
 vertical-align: middle;
}

div.body div.math p {
 text-align: center;
}

span.eqno {
 float: right;
}

span.eqno a.headerlink {
 position: absolute;
 z-index: 1;
}

div.math:hover a.headerlink {
 visibility: visible;
}

/* -- printout stylesheet --- */

@media print {
 div.document,
 div.documentwrapper,
 div.bodywrapper {
 margin: 0 !important;
 width: 100%;
 }

 div.sphinxsidebar,
 div.related,
 div.footer,
 #top-link {
 display: none;
 }
}

./usr/share/doc/python3-pikepdf/html/_static/documentation_options.js

const DOCUMENTATION_OPTIONS = {
 VERSION: '8.7.1',
 LANGUAGE: 'en',
 COLLAPSE_INDEX: false,
 BUILDER: 'html',
 FILE_SUFFIX: '.html',
 LINK_SUFFIX: '.html',
 HAS_SOURCE: true,
 SOURCELINK_SUFFIX: '.txt',
 NAVIGATION_WITH_KEYS: false,
 SHOW_SEARCH_SUMMARY: true,
 ENABLE_SEARCH_SHORTCUTS: true,
};

./usr/share/doc/python3-pikepdf/html/_static/file.png

./usr/share/doc/python3-pikepdf/html/_static/minus.png

./usr/share/doc/python3-pikepdf/html/_static/pike-cartoon.png

./usr/share/doc/python3-pikepdf/html/_static/plus.png

./usr/share/doc/python3-pikepdf/html/_static/pygments.css

pre { line-height: 125%; }
td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #eeffcc; }
.highlight .c { color: #408090; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #007020; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #007020 } /* Comment.Preproc */
.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #333333 } /* Generic.Output */
.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #007020 } /* Keyword.Pseudo */
.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #902000 } /* Keyword.Type */
.highlight .m { color: #208050 } /* Literal.Number */
.highlight .s { color: #4070a0 } /* Literal.String */
.highlight .na { color: #4070a0 } /* Name.Attribute */
.highlight .nb { color: #007020 } /* Name.Builtin */
.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
.highlight .no { color: #60add5 } /* Name.Constant */
.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #007020 } /* Name.Exception */
.highlight .nf { color: #06287e } /* Name.Function */
.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #bb60d5 } /* Name.Variable */
.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #208050 } /* Literal.Number.Bin */
.highlight .mf { color: #208050 } /* Literal.Number.Float */
.highlight .mh { color: #208050 } /* Literal.Number.Hex */
.highlight .mi { color: #208050 } /* Literal.Number.Integer */
.highlight .mo { color: #208050 } /* Literal.Number.Oct */
.highlight .sa { color: #4070a0 } /* Literal.String.Affix */
.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
.highlight .sc { color: #4070a0 } /* Literal.String.Char */
.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
.highlight .sx { color: #c65d09 } /* Literal.String.Other */
.highlight .sr { color: #235388 } /* Literal.String.Regex */
.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
.highlight .ss { color: #517918 } /* Literal.String.Symbol */
.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #06287e } /* Name.Function.Magic */
.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */

./usr/share/doc/python3-pikepdf/html/api/exceptions.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions				PdfError

				PasswordError

				ForeignObjectError

				OutlineStructureError

				UnsupportedImageTypeError

				DataDecodingError

				DeletedObjectError

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Exceptions

				
 View page source

Exceptions

				
exception pikepdf.PdfError

				General pikepdf-specific exception.

				
exception pikepdf.PasswordError

				Exception thrown when the supplied password is incorrect.

				
exception pikepdf.ForeignObjectError

				Exception thrown when a complex object was copied into a foreign PDF without
using Pdf.copy_foreign().

				
exception pikepdf.OutlineStructureError

				Indicates an error in the outline data structure.

Exception thrown when an /Outlines object violates constraints imposed
by the PDF 1.7 Reference Manual.

				
exception pikepdf.UnsupportedImageTypeError

				This image is formatted in a way pikepdf does not supported.

Exception thrown when attempting to manipulate a PDF image of a complex type
that pikepdf does not currently support.

				
exception pikepdf.DataDecodingError

				Exception thrown when a stream object in a PDF is malformed and cannot be
decoded.

				
exception pikepdf.DeletedObjectError

				Exception thrown when accessing a Object that relies on a Pdf
that was deleted using the Python delete statement or collected by the
Python garbage collector. To resolve this error, you must retain a reference
to the Pdf for the whole time you may be accessing it.

New in version 7.0.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/api/filters.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams				Content stream parsers				parse_content_stream()

				unparse_content_stream()

				Content stream token filters				Token				Token.raw_value

				Token.type_

				Token.value

				pikepdf.TokenType				pikepdf.TokenType.array_open

				pikepdf.TokenType.array_close

				pikepdf.TokenType.brace_open

				pikepdf.TokenType.brace_close

				pikepdf.TokenType.dict_open

				pikepdf.TokenType.dict_close

				pikepdf.TokenType.integer

				pikepdf.TokenType.real

				pikepdf.TokenType.null

				pikepdf.TokenType.bool

				pikepdf.TokenType.name_

				pikepdf.TokenType.inline_image

				pikepdf.TokenType.comment

				pikepdf.TokenType.word

				pikepdf.TokenType.bad

				pikepdf.TokenType.space

				pikepdf.TokenType.eof

				TokenFilter				TokenFilter.handle_token()

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Content streams

				
 View page source

Content streams

In PDF, drawing operations are all performed in content streams that describe
the positioning and drawing order of all graphics (including text, images and
vector drawing).

See also

Working with content streams

pikepdf (and libqpdf) provide two tools for interpreting content streams:
a parser and filter. The parser returns higher level information, conveniently
grouping all commands with their operands. The parser is useful when one wants
to retrieve information from a content stream, such as determine the position
of an element. The parser should not be used to edit or reconstruct the content
stream because some subtleties are lost in parsing.

The token filter works at a lower level, considering each token including
comments, and distinguishing different types of spaces. This allows modifying
content streams. A TokenFilter must be subclassed; the specialized version
describes how it should transform the stream of tokens.

Content stream parsers

				
pikepdf.parse_content_stream(page_or_stream, operators='')

				Parse a PDF content stream into a sequence of instructions.

A PDF content stream is list of instructions that describe where to render
the text and graphics in a PDF. This is the starting point for analyzing
PDFs.

If the input is a page and page.Contents is an array, then the content
stream is automatically treated as one coalesced stream.

Each instruction contains at least one operator and zero or more operands.

This function does not have anything to do with opening a PDF file itself or
processing data from a whole PDF. It is for processing a specific object inside
a PDF that is already opened.

				Parameters:

								page_or_stream (Object | Page) – A page object, or the content
stream attached to another object such as a Form XObject.

				operators (str) – A space-separated string of operators to whitelist.
For example ‘q Q cm Do’ will return only operators
that pertain to drawing images. Use ‘BI ID EI’ for inline images.
All other operators and associated tokens are ignored. If blank,
all tokens are accepted.

				Return type:

				list[ContentStreamInstruction | ContentStreamInlineImage]

Example

>>> with pikepdf.Pdf.open(input_pdf) as pdf:
>>> page = pdf.pages[0]
>>> for operands, command in parse_content_stream(page):
>>> print(command)

Changed in version 3.0: Returns a list of ContentStreamInstructions instead of a list
of (operand, operator) tuples. The returned items are duck-type compatible
with the previous returned items.

				
pikepdf.unparse_content_stream(instructions)

				Convert collection of instructions to bytes suitable for storing in PDF.

Given a parsed list of instructions/operand-operators, convert to bytes suitable
for embedding in a PDF. In PDF the operator always follows the operands.

				Parameters:

				instructions (Collection[UnparseableContentStreamInstructions]) – collection of instructions such as is returned
by parse_content_stream()

				Returns:

				A binary content stream, suitable for attaching to a Pdf.
To attach to a Pdf, use Pdf.make_stream()`().

				Return type:

				bytes

Changed in version 3.0: Now accept collections that contain any mixture of
ContentStreamInstruction, ContentStreamInlineImage, and the older
operand-operator tuples from pikepdf 2.x.

Content stream token filters

				
class pikepdf.Token

								
property raw_value

				The binary representation of a token.

				Return type:

				bytes

				
property type_

				Returns the type of token.

				Return type:

				pikepdf.TokenType

				
property value

				Interprets the token as a string.

				Return type:

				str or bytes

				
class pikepdf.TokenType

				When filtering content streams, each token is labeled according to the role
in plays.

Standard tokens

				
array_open

				

				
array_close

				

				
brace_open

				

				
brace_close

				

				
dict_open

				

				
dict_close

				These tokens mark the start and end of an array, text string, and
dictionary, respectively.

				
integer

				

				
real

				

				
null

				

				
bool

				The token data represents an integer, real number, null or boolean,
respectively.

				
name_

				The token is the name (pikepdf.Name) of an object. In practice, these
are among the most interesting tokens.

Changed in version 3.0: In versions older than 3.0, .name was used instead. This interfered
with semantics of the Enum object, so this was fixed.

				
inline_image

				An inline image in the content stream. The whole inline image is
represented by the single token.

Lexical tokens

				
comment

				Signifies a comment that appears in the content stream.

				
word

				Otherwise uncategorized bytes are returned as word tokens. PDF
operators are words.

				
bad

				An invalid token.

				
space

				Whitespace within the content stream.

				
eof

				Denotes the end of the tokens in this content stream.

				
class pikepdf.TokenFilter

								
handle_token(self: pikepdf.TokenFilter, token: pikepdf.Token = pikepdf.Token()) → object

				Handle a pikepdf.Token.

This is an abstract method that must be defined in a subclass
of TokenFilter. The method will be called for each token.
The implementation may return either None to discard the
token, the original token to include it, a new token, or an
iterable containing zero or more tokens. An implementation may
also buffer tokens and release them in groups (for example, it
could collect an entire PDF command with all of its operands,
and then return all of it).

The final token will always be a token of type TokenType.eof,
(unless an exception is raised).

If this method raises an exception, the exception will be
caught by C++, consumed, and replaced with a less informative
exception. Use pikepdf.Pdf.get_warnings() to view the
original.

				Return type:

				None or list or pikepdf.Token

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/api/main.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects				Pdf				Pdf.Root

				Pdf.add_blank_page()

				Pdf.allow

				Pdf.attachments

				Pdf.check()

				Pdf.check_linearization()

				Pdf.close()

				Pdf.copy_foreign()

				Pdf.docinfo

				Pdf.encryption

				Pdf.filename

				Pdf.flatten_annotations()

				Pdf.generate_appearance_streams()

				Pdf.get_object()

				Pdf.get_warnings()

				Pdf.is_encrypted

				Pdf.is_linearized

				Pdf.make_indirect()

				Pdf.make_stream()

				Pdf.new()

				Pdf.objects

				Pdf.open()

				Pdf.open_metadata()

				Pdf.open_outline()

				Pdf.owner_password_matched

				Pdf.pages

				Pdf.pdf_version

				Pdf.remove_unreferenced_resources()

				Pdf.save()

				Pdf.show_xref_table()

				Pdf.trailer

				Pdf.user_password_matched

				pikepdf.open()

				pikepdf.new()

				pikepdf.ObjectStreamMode				pikepdf.ObjectStreamMode.disable

				pikepdf.ObjectStreamMode.preserve

				pikepdf.ObjectStreamMode.generate

				pikepdf.StreamDecodeLevel				pikepdf.StreamDecodeLevel.none

				pikepdf.StreamDecodeLevel.generalized

				pikepdf.StreamDecodeLevel.specialized

				pikepdf.StreamDecodeLevel.all

				Object construction				Object				Object.append()

				Object.as_dict()

				Object.as_list()

				Object.emplace()

				Object.extend()

				Object.get()

				Object.get_raw_stream_buffer()

				Object.get_stream_buffer()

				Object.is_owned_by()

				Object.is_rectangle

				Object.items()

				Object.keys()

				Object.objgen

				Object.parse()

				Object.read_bytes()

				Object.read_raw_bytes()

				Object.same_owner_as()

				Object.stream_dict

				Object.to_json()

				Object.unparse()

				Object.with_same_owner_as()

				Object.wrap_in_array()

				Object.write()

				Name				Name.__new__()

				String				String.__new__()

				Array				Array.__new__()

				Dictionary				Dictionary.__new__()

				Stream				Stream.__new__()

				Operator

				Common PDF data structures				Matrix				Matrix.__array__()

				Matrix.__init__()

				Matrix.__matmul__()

				Matrix.as_array()

				Matrix.encode()

				Matrix.inverse()

				Matrix.rotated()

				Matrix.scaled()

				Matrix.shorthand

				Matrix.transform()

				Matrix.translated()

				Rectangle				Rectangle.as_array()

				Rectangle.height

				Rectangle.llx

				Rectangle.lly

				Rectangle.lower_left

				Rectangle.lower_right

				Rectangle.upper_left

				Rectangle.upper_right

				Rectangle.urx

				Rectangle.ury

				Rectangle.width

				Content stream elements				ContentStreamInstruction				ContentStreamInstruction.operands

				ContentStreamInstruction.operator

				ContentStreamInlineImage				ContentStreamInlineImage.iimage

				ContentStreamInlineImage.operands

				ContentStreamInlineImage.operator

				Internal objects				PageList				PageList.append()

				PageList.extend()

				PageList.from_objgen()

				PageList.index()

				PageList.insert()

				PageList.p()

				PageList.remove()

				PageList.reverse()

				_ObjectList				_ObjectList.append()

				_ObjectList.clear()

				_ObjectList.count()

				_ObjectList.extend()

				_ObjectList.insert()

				_ObjectList.pop()

				_ObjectList.remove()

				pikepdf.ObjectType				pikepdf.ObjectType.uninitialized

				pikepdf.ObjectType.reserved

				pikepdf.ObjectType.null

				pikepdf.ObjectType.boolean

				pikepdf.ObjectType.integer

				pikepdf.ObjectType.real

				pikepdf.ObjectType.string

				pikepdf.ObjectType.name_

				pikepdf.ObjectType.array

				pikepdf.ObjectType.dictionary

				pikepdf.ObjectType.stream

				pikepdf.ObjectType.operator

				pikepdf.ObjectType.inlineimage

				Jobs				Job				Job.__init__()

				Job.check_configuration()

				Job.create_pdf()

				Job.creates_output

				Job.encryption_status

				Job.exit_code

				Job.has_warnings

				Job.job_json_schema()

				Job.json_out_schema()

				Job.message_prefix

				Job.run()

				Job.write_pdf()

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Main objects

				
 View page source

Main objects

				
class pikepdf.Pdf

				In-memory representation of a PDF

				
property Root

				The /Root object of the PDF.

				
add_blank_page(*, page_size=(612.0, 792.0))

				Add a blank page to this PDF.

If pages already exist, the page will be added to the end. Pages may be
reordered using Pdf.pages.

The caller may add content to the page by modifying its objects after creating
it.

				Parameters:

				page_size (tuple) – The size of the page in PDF units (1/72 inch or 0.35mm).
Default size is set to a US Letter 8.5” x 11” page.

				Return type:

				Page

				
property allow: Permissions

				Report permissions associated with this PDF.

By default these permissions will be replicated when the PDF is
saved. Permissions may also only be changed when a PDF is being saved,
and are only available for encrypted PDFs. If a PDF is not encrypted,
all operations are reported as allowed.

pikepdf has no way of enforcing permissions.

				
property attachments

				Returns a mapping that provides access to all files attached to this PDF.

PDF supports attaching (or embedding, if you prefer) any other type of file,
including other PDFs. This property provides read and write access to
these objects by filename.

				Returns:

				pikepdf.Attachments

				
check()

				Check if PDF is syntactically well-formed.

Similar to qpdf --check, checks for syntax
or structural problems in the PDF. This is mainly useful to PDF
developers and may not be informative to the average user. PDFs with
these problems still render correctly, if PDF viewers are capable of
working around the issues they contain. In many cases, pikepdf can
also fix the problems.

An example problem found by this function is a xref table that is
missing an object reference. A page dictionary with the wrong type of
key, such as a string instead of an array of integers for its mediabox,
is not the sort of issue checked for. If this were an XML checker, it
would tell you if the XML is well-formed, but could not tell you if
the XML is valid XHTML or if it can be rendered as a usable web page.

This function also attempts to decompress all streams in the PDF.
If no JBIG2 decoder is available and JBIG2 images are presented,
a warning will occur that JBIG2 cannot be checked.

This function returns a list of strings describing the issues. The
text is subject to change and should not be treated as a stable API.

				Returns:

				Empty list if no issues were found. List of issues as text strings
if issues were found.

				Return type:

				list[str]

				
check_linearization(self: pikepdf.Pdf, stream: object = sys.stderr) → bool

				Reports information on the PDF’s linearization.

				Parameters:

				stream – A stream to write this information too; must
implement .write() and .flush() method. Defaults to
sys.stderr.

				Returns:

				True if the file is correctly linearized, and False if
the file is linearized but the linearization data contains errors
or was incorrectly generated.

				Raises:

				RuntimeError – If the PDF in question is not linearized at all.

				
close()

				Close a Pdf object and release resources acquired by pikepdf.

If pikepdf opened the file handle it will close it (e.g. when opened with a file
path). If the caller opened the file for pikepdf, the caller close the file.
with blocks will call close when exit.

pikepdf lazily loads data from PDFs, so some pikepdf.Object may
implicitly depend on the pikepdf.Pdf being open. This is always the
case for pikepdf.Stream but can be true for any object. Do not close
the Pdf object if you might still be accessing content from it.

When an Object is copied from one Pdf to another, the Object is
copied into the destination Pdf immediately, so after accessing all desired
information from the source Pdf it may be closed.

Changed in version 3.0: In pikepdf 2.x, this function actually worked by resetting to a very short
empty PDF. Code that relied on this quirk may not function correctly.

				Return type:

				None

				
copy_foreign(*args, **kwargs)

				Overloaded function.

				copy_foreign(self: pikepdf.Pdf, h: pikepdf.Object) -> pikepdf.Object

Copy an Object from a foreign Pdf and return a reference to the copy.

The object must be owned by a different Pdf from this one.

If the object has previously been copied, return a reference to
the existing copy, even if that copy has been modified in the meantime.

If you want to copy a page from one PDF to another, use:
pdf_b.pages[0] = pdf_a.pages[0]. That interface accounts for the
complexity of copying pages.

This function is used to copy a pikepdf.Object that is owned by
some other Pdf into this one. This is performs a deep (recursive) copy
and preserves all references that may exist in the foreign object. For
example, if

>>> object_a = pdf.copy_foreign(object_x)
>>> object_b = pdf.copy_foreign(object_y)
>>> object_c = pdf.copy_foreign(object_z)

and object_z is a shared descendant of both object_x and object_y
in the foreign PDF, then object_c is a shared descendant of both
object_a and object_b in this PDF. If object_x and object_y
refer to the same object, then object_a and object_b are the
same object.

It also copies all pikepdf.Stream objects. Since this may copy
a large amount of data, it is not done implicitly. This function does
not copy references to pages in the foreign PDF - it stops at page
boundaries. Thus, if you use copy_foreign() on a table of contents
(/Outlines dictionary), you may have to update references to pages.

Direct objects, including dictionaries, do not need copy_foreign().
pikepdf will automatically convert and construct them.

				Note:

				pikepdf automatically treats incoming pages from a foreign PDF as
foreign objects, so Pdf.pages does not require this treatment.

				See also:

				QPDF::copyForeignObject

Changed in version 2.1: Error messages improved.

				copy_foreign(self: pikepdf.Pdf, arg0: pikepdf.Page) -> pikepdf.Page

				
property docinfo: Dictionary

				Access the (deprecated) document information dictionary.

The document information dictionary is a brief metadata record that can
store some information about the origin of a PDF. It is deprecated and
removed in the PDF 2.0 specification (not deprecated from the
perspective of pikepdf). Use the .open_metadata() API instead, which
will edit the modern (and unfortunately, more complicated) XMP metadata
object and synchronize changes to the document information dictionary.

This property simplifies access to the actual document information
dictionary and ensures that it is created correctly if it needs to be
created.

A new, empty dictionary will be created if this property is accessed
and dictionary does not exist. (This is to ensure that convenient code
like pdf.docinfo[Name.Title] = "Title" will work when the dictionary
does not exist at all.)

You can delete the document information dictionary by deleting this property,
del pdf.docinfo. Note that accessing the property after deleting it
will re-create with a new, empty dictionary.

Changed in version 2.4: Added support for del pdf.docinfo.

				
property encryption: EncryptionInfo

				Report encryption information for this PDF.

Encryption settings may only be changed when a PDF is saved.

				
property filename

				The source filename of an existing PDF, when available.

				
flatten_annotations(self: pikepdf.Pdf, mode: str = 'all') → None

				Flattens all PDF annotations into regular PDF content.

Annotations are markup such as review comments, highlights, proofreading
marks. User data entered into interactive form fields also counts as an
annotation.

When annotations are flattened, they are “burned into” the regular
content stream of the document and the fact that they were once annotations
is deleted. This can be useful when preparing a document for printing,
to ensure annotations are printed, or to finalize a form that should
no longer be changed.

				Parameters:

				mode – One of the strings 'all', 'screen', 'print'. If
omitted or set to empty, treated as 'all'. 'screen'
flattens all except those marked with the PDF flag /NoView.
'print' flattens only those marked for printing.

New in version 2.11.

				
generate_appearance_streams(self: pikepdf.Pdf) → None

				Generates appearance streams for AcroForm forms and form fields.

Appearance streams describe exactly how annotations and form fields
should appear to the user. If omitted, the PDF viewer is free to
render the annotations and form fields according to its own settings,
as needed.

For every form field in the document, this generates appearance
streams, subject to the limitations of QPDF’s ability to create
appearance streams.

When invoked, this method will modify the Pdf in memory. It may be
best to do this after the Pdf is opened, or before it is saved,
because it may modify objects that the user does not expect to be
modified.

If Pdf.Root.AcroForm.NeedAppearances is False or not present, no
action is taken (because no appearance streams need to be generated).
If True, the appearance streams are generated, and the NeedAppearances
flag is set to False.

				See:

				https://github.com/qpdf/qpdf/blob/bf6b9ba1c681a6fac6d585c6262fb2778d4bb9d2/include/qpdf/QPDFFormFieldObjectHelper.hh#L216

New in version 2.11.

				
get_object(*args, **kwargs)

				Overloaded function.

				get_object(self: pikepdf.Pdf, objgen: Tuple[int, int]) -> pikepdf.Object

Look up an object by ID and generation number

				Return type:

				pikepdf.Object

				get_object(self: pikepdf.Pdf, objid: int, gen: int) -> pikepdf.Object

Look up an object by ID and generation number

				Return type:

				pikepdf.Object

				
get_warnings(self: pikepdf.Pdf) → list

				

				
property is_encrypted

				Returns True if the PDF is encrypted.

For information about the nature of the encryption, see
Pdf.encryption.

				
property is_linearized

				Returns True if the PDF is linearized.

Specifically returns True iff the file starts with a linearization
parameter dictionary. Does no additional validation.

				
make_indirect(*args, **kwargs)

				Overloaded function.

				make_indirect(self: pikepdf.Pdf, h: pikepdf.Object) -> pikepdf.Object

Attach an object to the Pdf as an indirect object

Direct objects appear inline in the binary encoding of the PDF.
Indirect objects appear inline as references (in English, “look
up object 4 generation 0”) and then read from another location in
the file. The PDF specification requires that certain objects
are indirect - consult the PDF specification to confirm.

Generally a resource that is shared should be attached as an
indirect object. pikepdf.Stream objects are always
indirect, and creating them will automatically attach it to the
Pdf.

				See Also:

				pikepdf.Object.is_indirect()

				Return type:

				pikepdf.Object

				make_indirect(self: pikepdf.Pdf, obj: object) -> pikepdf.Object

Encode a Python object and attach to this Pdf as an indirect object.

				Return type:

				pikepdf.Object

				
make_stream(data, d=None, **kwargs)

				Create a new pikepdf.Stream object that is attached to this PDF.

				See:

				pikepdf.Stream.__new__()

				Parameters:

				data (bytes) –

				Return type:

				Stream

				
static new() → pikepdf.Pdf

				Create a new, empty PDF.

This is best when you are constructing a PDF from scratch.

In most cases, if you are working from an existing PDF, you should open the
PDF using pikepdf.Pdf.open() and transform it, instead of a creating
a new one, to preserve metadata and structural information. For example,
if you want to split a PDF into two parts, you should open the PDF and
transform it into the desired parts, rather than creating a new PDF and
copying pages into it.

				
property objects

				Return an iterable list of all objects in the PDF.

After deleting content from a PDF such as pages, objects related
to that page, such as images on the page, may still be present.

				Return type:

				pikepdf._ObjectList

				
open(*, password='', hex_password=False, ignore_xref_streams=False, suppress_warnings=True, attempt_recovery=True, inherit_page_attributes=True, access_mode=<AccessMode.default: 0>, allow_overwriting_input=False)

				Open an existing file at filename_or_stream.

If filename_or_stream is path-like, the file will be opened for reading.
The file should not be modified by another process while it is open in
pikepdf, or undefined behavior may occur. This is because the file may be
lazily loaded. Despite this restriction, pikepdf does not try to use any OS
services to obtain an exclusive lock on the file. Some applications may
want to attempt this or copy the file to a temporary location before
editing. This behaviour changes if allow_overwriting_input is set: the whole
file is then read and copied to memory, so that pikepdf can overwrite it
when calling .save().

When this function is called with a stream-like object, you must ensure
that the data it returns cannot be modified, or undefined behavior will
occur.

Any changes to the file must be persisted by using .save().

If filename_or_stream has .read() and .seek() methods, the file
will be accessed as a readable binary stream. pikepdf will read the
entire stream into a private buffer.

.open() may be used in a with-block; .close() will be called when
the block exits, if applicable.

Whenever pikepdf opens a file, it will close it. If you open the file
for pikepdf or give it a stream-like object to read from, you must
release that object when appropriate.

Examples

>>> with Pdf.open("test.pdf") as pdf:
 ...

>>> pdf = Pdf.open("test.pdf", password="rosebud")

				Parameters:

								filename_or_stream (Path | str | BinaryIO) – Filename or Python readable and seekable file
stream of PDF to open.

				password (str | bytes) – User or owner password to open an
encrypted PDF. If the type of this parameter is str
it will be encoded as UTF-8. If the type is bytes it will
be saved verbatim. Passwords are always padded or
truncated to 32 bytes internally. Use ASCII passwords for
maximum compatibility.

				hex_password (bool) – If True, interpret the password as a
hex-encoded version of the exact encryption key to use, without
performing the normal key computation. Useful in forensics.

				ignore_xref_streams (bool) – If True, ignore cross-reference
streams. See qpdf documentation.

				suppress_warnings (bool) – If True (default), warnings are not
printed to stderr. Use pikepdf.Pdf.get_warnings() to
retrieve warnings.

				attempt_recovery (bool) – If True (default), attempt to recover
from PDF parsing errors.

				inherit_page_attributes (bool) – If True (default), push attributes
set on a group of pages to individual pages

				access_mode (AccessMode) – If .default, pikepdf will
decide how to access the file. Currently, it will always
selected stream access. To attempt memory mapping and fallback
to stream if memory mapping failed, use .mmap. Use
.mmap_only to require memory mapping or fail
(this is expected to only be useful for testing). Applications
should be prepared to handle the SIGBUS signal on POSIX in
the event that the file is successfully mapped but later goes
away.

				allow_overwriting_input (bool) – If True, allows calling .save()
to overwrite the input file. This is performed by loading the
entire input file into memory at open time; this will use more
memory and may recent performance especially when the opened
file will not be modified.

				Raises:

								pikepdf.PasswordError – If the password failed to open the
 file.

				pikepdf.PdfError – If for other reasons we could not open
 the file.

				TypeError – If the type of filename_or_stream is not
 usable.

				FileNotFoundError – If the file was not found.

				Return type:

				Pdf

Note

When filename_or_stream is a stream and the stream is located on a
network, pikepdf assumes that the stream using buffering and read caches
to achieve reasonable performance. Streams that fetch data over a network
in response to every read or seek request, no matter how small, will
perform poorly. It may be easier to download a PDF from network to
temporary local storage (such as io.BytesIO), manipulate it, and
then re-upload it.

Changed in version 3.0: Keyword arguments now mandatory for everything except the first
argument.

				
open_metadata(set_pikepdf_as_editor=True, update_docinfo=True, strict=False)

				Open the PDF’s XMP metadata for editing.

There is no .close() function on the metadata object, since this is
intended to be used inside a with block only.

For historical reasons, certain parts of PDF metadata are stored in
two different locations and formats. This feature coordinates edits so
that both types of metadata are updated consistently and “atomically”
(assuming single threaded access). It operates on the Pdf in memory,
not any file on disk. To persist metadata changes, you must still use
Pdf.save().

Example

>>> with pdf.open_metadata() as meta:
 meta['dc:title'] = 'Set the Dublic Core Title'
 meta['dc:description'] = 'Put the Abstract here'

				Parameters:

								set_pikepdf_as_editor (bool) – Automatically update the metadata pdf:Producer
to show that this version of pikepdf is the most recent software to
modify the metadata, and xmp:MetadataDate to timestamp the update.
Recommended, except for testing.

				update_docinfo (bool) – Update the standard fields of DocumentInfo
(the old PDF metadata dictionary) to match the corresponding
XMP fields. The mapping is described in
PdfMetadata.DOCINFO_MAPPING. Nonstandard DocumentInfo
fields and XMP metadata fields with no DocumentInfo equivalent
are ignored.

				strict (bool) – If False (the default), we aggressively attempt
to recover from any parse errors in XMP, and if that fails we
overwrite the XMP with an empty XMP record. If True, raise
errors when either metadata bytes are not valid and well-formed
XMP (and thus, XML). Some trivial cases that are equivalent to
empty or incomplete “XMP skeletons” are never treated as errors,
and always replaced with a proper empty XMP block. Certain
errors may be logged.

				Return type:

				PdfMetadata

				
open_outline(max_depth=15, strict=False)

				Open the PDF outline (“bookmarks”) for editing.

Recommend for use in a with block. Changes are committed to the
PDF when the block exits. (The Pdf must still be opened.)

Example

>>> with pdf.open_outline() as outline:
 outline.root.insert(0, OutlineItem('Intro', 0))

				Parameters:

								max_depth (int) – Maximum recursion depth of the outline to be
imported and re-written to the document. 0 means only
considering the root level, 1 the first-level
sub-outline of each root element, and so on. Items beyond
this depth will be silently ignored. Default is 15.

				strict (bool) – With the default behavior (set to False),
structural errors (e.g. reference loops) in the PDF document
will only cancel processing further nodes on that particular
level, recovering the valid parts of the document outline
without raising an exception. When set to True, any such
error will raise an OutlineStructureError, leaving the
invalid parts in place.
Similarly, outline objects that have been accidentally
duplicated in the Outline container will be silently
fixed (i.e. reproduced as new objects) or raise an
OutlineStructureError.

				Return type:

				Outline

				
property owner_password_matched

				Returns True if the owner password matched when the Pdf was opened.

It is possible for both the user and owner passwords to match.

New in version 2.10.

				
property pages

				Returns the list of pages.

				Return type:

				pikepdf.PageList

				
property pdf_version

				The version of the PDF specification used for this file, such as ‘1.7’.

				
remove_unreferenced_resources(self: pikepdf.Pdf) → None

				Remove from /Resources of each page any object not referenced in page’s contents

PDF pages may share resource dictionaries with other pages. If
pikepdf is used for page splitting, pages may reference resources
in their /Resources dictionary that are not actually required.
This purges all unnecessary resource entries.

For clarity, if all references to any type of object are removed, that
object will be excluded from the output PDF on save. (Conversely, only
objects that are discoverable from the PDF’s root object are included.)
This function removes objects that are referenced from the page /Resources
dictionary, but never called for in the content stream, making them
unnecessary.

Suggested before saving, if content streams or /Resources dictionaries
are edited.

				
save(filename_or_stream=None, *, static_id=False, preserve_pdfa=True, min_version='', force_version='', fix_metadata_version=True, compress_streams=True, stream_decode_level=None, object_stream_mode=<ObjectStreamMode.preserve: 1>, normalize_content=False, linearize=False, qdf=False, progress=None, encryption=None, recompress_flate=False, deterministic_id=False)

				Save all modifications to this pikepdf.Pdf.

				Parameters:

								filename_or_stream (Path | str | BinaryIO | None) – Where to write the output. If a file
exists in this location it will be overwritten.
If the file was opened with allow_overwriting_input=True,
then it is permitted to overwrite the original file, and
this parameter may be omitted to implicitly use the original
filename. Otherwise, the filename may not be the same as the
input file, as overwriting the input file would corrupt data
since pikepdf using lazy loading.

				static_id (bool) – Indicates that the /ID metadata, normally
calculated as a hash of certain PDF contents and metadata
including the current time, should instead be set to a static
value. Only use this for debugging and testing. Use
deterministic_id if you want to get the same /ID for
the same document contents.

				preserve_pdfa (bool) – Ensures that the file is generated in a
manner compliant with PDF/A and other stricter variants.
This should be True, the default, in most cases.

				min_version (str | tuple[str, int]) – Sets the minimum version of PDF
specification that should be required. If left alone QPDF
will decide. If a tuple, the second element is an integer, the
extension level. If the version number is not a valid format,
QPDF will decide what to do.

				force_version (str | tuple[str, int]) – Override the version recommend by QPDF,
potentially creating an invalid file that does not display
in old versions. See QPDF manual for details. If a tuple, the
second element is an integer, the extension level.

				fix_metadata_version (bool) – If True (default) and the XMP metadata
contains the optional PDF version field, ensure the version in
metadata is correct. If the XMP metadata does not contain a PDF
version field, none will be added. To ensure that the field is
added, edit the metadata and insert a placeholder value in
pdf:PDFVersion. If XMP metadata does not exist, it will
not be created regardless of the value of this argument.

				object_stream_mode (ObjectStreamMode) – disable prevents the use of object streams.
preserve keeps object streams from the input file.
generate uses object streams wherever possible,
creating the smallest files but requiring PDF 1.5+.

				compress_streams (bool) –

Enables or disables the compression of
uncompressed stream objects. By default this is set to
True, and the only reason to set it to False is for
debugging or inspecting PDF contents.

When enabled, uncompressed stream objects will be compressed
whether they were uncompressed in the PDF when it was opened,
or when the user creates new pikepdf.Stream objects
attached to the PDF. Stream objects can also be created
indirectly, such as when content from another PDF is merged
into the one being saved.

Only stream objects that have no compression will be
compressed when this object is set. If the object is
compressed, compression will be preserved.

Setting compress_streams=False does not trigger decompression
unless decompression is specifically requested by setting
both compress_streams=False and stream_decode_level
to the desired decode level (e.g. .generalized will
decompress most non-image content).

This option does not trigger recompression of existing
compressed streams. For that, use recompress_flate.

The XMP metadata stream object, if present, is never
compressed, to facilitate metadata reading by parsers that
don’t understand the full structure of PDF.

				stream_decode_level (StreamDecodeLevel | None) – Specifies how
to encode stream objects. See documentation for
pikepdf.StreamDecodeLevel.

				recompress_flate (bool) – When disabled (the default), qpdf does not
uncompress and recompress streams compressed with the Flate
compression algorithm. If True, pikepdf will instruct qpdf to
do this, which may be useful if recompressing streams to a
higher compression level.

				normalize_content (bool) – Enables parsing and reformatting the
content stream within PDFs. This may debugging PDFs easier.

				linearize (bool) – Enables creating linear or “fast web view”,
where the file’s contents are organized sequentially so that
a viewer can begin rendering before it has the whole file.
As a drawback, it tends to make files larger.

				qdf (bool) – Save output QDF mode. QDF mode is a special output
mode in QPDF to allow editing of PDFs in a text editor. Use
the program fix-qdf to fix convert back to a standard
PDF.

				progress (Callable[[int], None]) – Specify a callback function that is called
as the PDF is written. The function will be called with an
integer between 0-100 as the sole parameter, the progress
percentage. This function may not access or modify the PDF
while it is being written, or data corruption will almost
certainly occur.

				encryption (Encryption | bool | None) – If False
or omitted, existing encryption will be removed. If True
encryption settings are copied from the originating PDF.
Alternately, an Encryption object may be provided that
sets the parameters for new encryption.

				deterministic_id (bool) – Indicates that the /ID metadata, normally
calculated as a hash of certain PDF contents and metadata
including the current time, should instead be computed using
only deterministic data like the file contents. At a small
runtime cost, this enables generation of the same /ID if
the same inputs are converted in the same way multiple times.
Does not work for encrypted files.

				Raises:

								PdfError –

				ForeignObjectError –

				ValueError –

				Return type:

				None

You may call .save() multiple times with different parameters
to generate different versions of a file, and you may continue
to modify the file after saving it. .save() does not modify
the Pdf object in memory, except possibly by updating the XMP
metadata version with fix_metadata_version.

Note

pikepdf.Pdf.remove_unreferenced_resources() before saving
may eliminate unnecessary resources from the output file if there
are any objects (such as images) that are referenced in a page’s
Resources dictionary but never called in the page’s content stream.

Note

pikepdf can read PDFs with incremental updates, but always
coalesces any incremental updates into a single non-incremental
PDF file when saving.

Note

If filename_or_stream is a stream and the process is interrupted during
writing, the stream may be left in a corrupt state. It is the
responsibility of the caller to manage the stream in this case.

Changed in version 2.7: Added recompress_flate.

Changed in version 3.0: Keyword arguments now mandatory for everything except the first
argument.

Changed in version 8.1: If filename_or_stream is a filename and that file exists, the new file
is written to a temporary file in the same directory and then moved into
place. This prevents the existing destination file from being corrupted
if the process is interrupted during writing; previously, corrupting the
destination file was possible. If no file exists at the destination, output
is written directly to the destination, but the destination will be deleted
if errors occur during writing. Prior to 8.1, the file was always written
directly to the destination, which could result in a corrupt destination
file if the process was interrupted during writing.

				
show_xref_table(self: pikepdf.Pdf) → None

				Pretty-print the Pdf’s xref (cross-reference table)

				
property trailer

				Provides access to the PDF trailer object.

See PDF 1.7 Reference Manual section 7.5.5. Generally speaking,
the trailer should not be modified with pikepdf, and modifying it
may not work. Some of the values in the trailer are automatically
changed when a file is saved.

				
property user_password_matched

				Returns True if the user password matched when the Pdf was opened.

It is possible for both the user and owner passwords to match.

New in version 2.10.

				
pikepdf.open()

				Alias for pikepdf.Pdf.open().

				
pikepdf.new()

				Alias for pikepdf.Pdf.new().

				
class pikepdf.ObjectStreamMode

				Options for saving streams within PDFs, which are more a compact
way of saving certain types of data that was added in PDF 1.5. All
modern PDF viewers support object streams, but some third party tools
and libraries cannot read them.

				
disable

				Disable the use of object streams. If any object streams exist in the
file, remove them when the file is saved.

				
preserve

				Preserve any existing object streams in the original file. This is
the default behavior.

				
generate

				Generate object streams.

				
class pikepdf.StreamDecodeLevel

				Options for decoding streams within PDFs.

				
none

				Do not attempt to apply any filters. Streams
remain as they appear in the original file. Note that
uncompressed streams may still be compressed on output. You can
disable that by saving with .save(..., compress_streams=False).

				
generalized

				This is the default. libqpdf will apply
LZWDecode, ASCII85Decode, ASCIIHexDecode, and FlateDecode
filters on the input. When saved with
compress_streams=True, the default, the effect of this
is that streams filtered with these older and less efficient
filters will be recompressed with the Flate filter. As a
special case, if a stream is already compressed with
FlateDecode and compress_streams=True, the original
compressed data will be preserved.

				
specialized

				In addition to uncompressing the
generalized compression formats, supported non-lossy
compression will also be be decoded. At present, this includes
the RunLengthDecode filter.

				
all

				In addition to generalized and non-lossy
specialized filters, supported lossy compression filters will
be applied. At present, this includes DCTDecode (JPEG)
compression. Note that compressing the resulting data with
DCTDecode again will accumulate loss, so avoid multiple
compression and decompression cycles. This is mostly useful for
(low-level) retrieving image data; see pikepdf.PdfImage for
the preferred method.

				
class pikepdf.Encryption(owner='', user='', R=6, allow=(True, True, True, False, True, True, True, True), aes=True, metadata=True)

				Specify the encryption settings to apply when a PDF is saved.

				Parameters:

								owner (str) –

				user (str) –

				R (Literal[2, 3, 4, 5, 6]) –

				allow (Permissions) –

				aes (bool) –

				metadata (bool) –

Object construction

				
class pikepdf.Object

								
append(self: pikepdf.Object, arg0: object) → None

				Append another object to an array; fails if the object is not an array.

				
as_dict(self: pikepdf.Object) → pikepdf._ObjectMapping

				

				
as_list(self: pikepdf.Object) → pikepdf._ObjectList

				

				
emplace(other, retain=(pikepdf.Name('/Parent'),))

				Copy all items from other without making a new object.

Particularly when working with pages, it may be desirable to remove all
of the existing page’s contents and emplace (insert) a new page on top
of it, in a way that preserves all links and references to the original
page. (Or similarly, for other Dictionary objects in a PDF.)

Any Dictionary keys in the iterable retain are preserved. By default,
/Parent is retained.

When a page is assigned (pdf.pages[0] = new_page), only the
application knows if references to the original the original page are
still valid. For example, a PDF optimizer might restructure a page
object into another visually similar one, and references would be valid;
but for a program that reorganizes page contents such as a N-up
compositor, references may not be valid anymore.

This method takes precautions to ensure that child objects in common
with self and other are not inadvertently deleted.

Example

>>> pdf.pages[0].objgen
(16, 0)
>>> pdf.pages[0].emplace(pdf.pages[1])
>>> pdf.pages[0].objgen
(16, 0) # Same object

Changed in version 2.11.1: Added the retain argument.

				Parameters:

				other (Object) –

				
extend(self: pikepdf.Object, arg0: Iterable) → None

				Extend a pikepdf.Array with an iterable of other objects.

				
get(*args, **kwargs)

				Overloaded function.

				get(self: pikepdf.Object, key: str, default: object = None) -> object

For pikepdf.Dictionary or pikepdf.Stream objects, behave as dict.get(key, default=None)

				get(self: pikepdf.Object, key: pikepdf.Object, default: object = None) -> object

For pikepdf.Dictionary or pikepdf.Stream objects, behave as dict.get(key, default=None)

				
get_raw_stream_buffer(self: pikepdf.Object) → pikepdf.Buffer

				Return a buffer protocol buffer describing the raw, encoded stream

				
get_stream_buffer(self: pikepdf.Object, decode_level: pikepdf.StreamDecodeLevel = <StreamDecodeLevel.generalized: 1>) → pikepdf.Buffer

				Return a buffer protocol buffer describing the decoded stream.

				
is_owned_by(self: pikepdf.Object, possible_owner: pikepdf.Pdf) → bool

				Test if this object is owned by the indicated possible_owner.

				
property is_rectangle

				Returns True if the object is a rectangle (an array of 4 numbers)

				
items(self: pikepdf.Object) → Iterable

				

				
keys(self: pikepdf.Object) → Set[str]

				For pikepdf.Dictionary or pikepdf.Stream objects, obtain the keys.

				
property objgen

				Return the object-generation number pair for this object.

If this is a direct object, then the returned value is (0, 0).
By definition, if this is an indirect object, it has a “objgen”,
and can be looked up using this in the cross-reference (xref) table.
Direct objects cannot necessarily be looked up.

The generation number is usually 0, except for PDFs that have been
incrementally updated. Incrementally updated PDFs are now uncommon,
since it does not take too long for modern CPUs to reconstruct an
entire PDF. pikepdf will consolidate all incremental updates
when saving.

				
static parse(stream: str, description: str = '') → pikepdf.Object

				Parse PDF binary representation into PDF objects.

				
read_bytes(self: pikepdf.Object, decode_level: pikepdf.StreamDecodeLevel = <StreamDecodeLevel.generalized: 1>) → bytes

				Decode and read the content stream associated with this object.

				
read_raw_bytes(self: pikepdf.Object) → bytes

				Read the content stream associated with this object without decoding

				
same_owner_as(self: pikepdf.Object, arg0: pikepdf.Object) → bool

				Test if two objects are owned by the same pikepdf.Pdf.

				
property stream_dict

				Access the dictionary key-values for a pikepdf.Stream.

				
to_json(self: pikepdf.Object, dereference: bool = False, schema_version: int = 2) → bytes

				Convert to a QPDF JSON representation of the object.

See the QPDF manual for a description of its JSON representation.
https://qpdf.readthedocs.io/en/stable/json.html#qpdf-json-format

Not necessarily compatible with other PDF-JSON representations that
exist in the wild.

				Names are encoded as UTF-8 strings

				Indirect references are encoded as strings containing obj gen R

				Strings are encoded as UTF-8 strings with unrepresentable binary
characters encoded as \uHHHH

				Encoding streams just encodes the stream’s dictionary; the stream
data is not represented

				Object types that are only valid in content streams (inline
image, operator) as well as “reserved” objects are not
representable and will be serialized as null.

				Parameters:

								dereference (bool) – If True, dereference the object if this is an
indirect object.

				schema_version (int) – The version of the JSON schema. Defaults to 2.

				Returns:

				JSON bytestring of object. The object is UTF-8 encoded
and may be decoded to a Python str that represents the binary
values \x00-\xFF as U+0000 to U+00FF; that is,
it may contain mojibake.

Changed in version 6.0: Added schema_version.

				
unparse(self: pikepdf.Object, resolved: bool = False) → bytes

				Convert PDF objects into their binary representation, optionally
resolving indirect objects.

If you want to unparse content streams, which are a collection of
objects that need special treatment, use
pikepdf.unparse_content_stream() instead.

Returns bytes() that can be used with Object.parse()
to reconstruct the pikepdf.Object. If reconstruction is not possible,
a relative object reference is returned, such as 4 0 R.

				Parameters:

				resolved – If True, deference indirect objects where possible.

				
with_same_owner_as(self: pikepdf.Object, arg0: pikepdf.Object) → pikepdf.Object

				Returns an object that is owned by the same Pdf that owns the other object.

If the objects already have the same owner, this object is returned.
If the other object has a different owner, then a copy is created
that is owned by other’s owner. If this object is a direct object
(no owner), then an indirect object is created that is owned by
other. An exception is thrown if other is a direct object.

This method may be convenient when a reference to the Pdf is not
available.

New in version 2.14.

				
wrap_in_array(self: pikepdf.Object) → pikepdf.Object

				Return the object wrapped in an array if not already an array.

				
write(data, *, filter=None, decode_parms=None, type_check=True)

				Replace stream object’s data with new (possibly compressed) data.

filter and decode_parms describe any compression that is already
present on the input data. For example, if your data is already
compressed with the Deflate algorithm, you would set
filter=Name.FlateDecode.

When writing the PDF in pikepdf.Pdf.save(),
pikepdf may change the compression or apply compression to data that was
not compressed, depending on the parameters given to that function. It
will never change lossless to lossy encoding.

PNG and TIFF images, even if compressed, cannot be directly inserted
into a PDF and displayed as images.

				Parameters:

								data (bytes) – the new data to use for replacement

				filter (Name | Array | None) – The filter(s) with which the
data is (already) encoded

				decode_parms (Dictionary | Array | None) – Parameters for the
filters with which the object is encode

				type_check (bool) – Check arguments; use False only if you want to
intentionally create malformed PDFs.

If only one filter is specified, it may be a name such as
Name(‘/FlateDecode’). If there are multiple filters, then array
of names should be given.

If there is only one filter, decode_parms is a Dictionary of
parameters for that filter. If there are multiple filters, then
decode_parms is an Array of Dictionary, where each array index
is corresponds to the filter.

				
class pikepdf.Name(name)

				Construct a PDF Name object.

Names can be constructed with two notations:

				Name.Resources

				Name('/Resources')

The two are semantically equivalent. The former is preferred for names
that are normally expected to be in a PDF. The latter is preferred for
dynamic names and attributes.

				Parameters:

				name (str | Name) –

				Return type:

				Name

				
static __new__(cls, name)

				Construct a PDF Name.

				Parameters:

				name (str | Name) –

				Return type:

				Name

				
class pikepdf.String(s)

				Construct a PDF String object.

				Parameters:

				s (str | bytes) –

				Return type:

				String

				
static __new__(cls, s)

				Construct a PDF String.

				Parameters:

				s (str | bytes) – The string to use. String will be encoded for
PDF, bytes will be constructed without encoding.

				Return type:

				String

				Return type:

				pikepdf.String

				
class pikepdf.Array(a=None)

				Construct a PDF Array object.

				Parameters:

				a (Iterable | Rectangle | Matrix | None) –

				Return type:

				Array

				
static __new__(cls, a=None)

				Construct a PDF Array.

				Parameters:

				a (Iterable | Rectangle | Matrix | None) – An iterable of objects. All objects must be either
pikepdf.Object or convertible to pikepdf.Object.

				Return type:

				Array

				Return type:

				pikepdf.Array

				
class pikepdf.Dictionary(d=None, **kwargs)

				Construct a PDF Dictionary object.

				Parameters:

				d (Mapping | None) –

				Return type:

				Dictionary

				
static __new__(cls, d=None, **kwargs)

				Construct a PDF Dictionary.

Works from either a Python dict or keyword arguments.

These two examples are equivalent:

pikepdf.Dictionary({'/NameOne': 1, '/NameTwo': 'Two'})

pikepdf.Dictionary(NameOne=1, NameTwo='Two')

In either case, the keys must be strings, and the strings
correspond to the desired Names in the PDF Dictionary. The values
must all be convertible to pikepdf.Object.

				Return type:

				pikepdf.Dictionary

				Parameters:

				d (Mapping | None) –

				Return type:

				Dictionary

				
class pikepdf.Stream(owner, data=None, d=None, **kwargs)

				Construct a PDF Stream object.

				Parameters:

								owner (Pdf) –

				data (bytes | None) –

				Return type:

				Stream

				
static __new__(cls, owner, data=None, d=None, **kwargs)

				Create a new stream object.

Streams stores arbitrary binary data and may or may not be compressed.
It also may or may not be a page or Form XObject’s content stream.

A stream dictionary is like a pikepdf.Dictionary or Python dict, except
it has a binary payload of data attached. The dictionary describes
how the data is compressed or encoded.

The dictionary may be initialized just like pikepdf.Dictionary is initialized,
using a mapping object or keyword arguments.

				Parameters:

								owner (Pdf) – The Pdf to which this stream shall be attached.

				data (bytes | None) – The data bytes for the stream.

				d – An optional mapping object that will be used to construct the stream’s
dictionary.

				kwargs – Keyword arguments that will define the stream dictionary. Do not set
/Length here as pikepdf will manage this value. Set /Filter
if the data is already encoded in some format.

				Return type:

				Stream

Examples

				Using kwargs:

				>>> s1 = pikepdf.Stream(
 pdf,
 b"uncompressed image data",
 BitsPerComponent=8,
 ColorSpace=Name.DeviceRGB,
 ...
)

				Using dict:

				>>> d = pikepdf.Dictionary(...)
>>> s2 = pikepdf.Stream(
 pdf,
 b"data",
 d
)

Changed in version 2.2: Support creation of pikepdf.Stream from existing dictionary.

Changed in version 3.0: obj argument was removed; use data.

				
class pikepdf.Operator(name)

				Construct an operator for use in a content stream.

An Operator is one of a limited set of commands that can appear in PDF content
streams (roughly the mini-language that draws objects, lines and text on a
virtual PDF canvas). The commands parse_content_stream() and
unparse_content_stream() create and expect Operators respectively, along
with their operands.

pikepdf uses the special Operator “INLINE IMAGE” to denote an inline image
in a content stream.

				Parameters:

				name (str) –

				Return type:

				Operator

Common PDF data structures

				
class pikepdf.Matrix

				A 2D affine matrix for PDF transformations.

PDF uses matrices to transform document coordinates to screen/device
coordinates.

PDF matrices are encoded as pikepdf.Array with exactly
six numeric elements, ordered as a b c d e f.

\[\begin{split}\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
e & f & 1 \\
\end{bmatrix}\end{split}\]

The parameters mean approximately the following:

				a is the horizontal scaling factor.

				b is horizontal skewing.

				c is vertical skewing.

				d is the vertical scaling factor.

				e is the horizontal translation.

				f is the vertical translation.

The values (0, 0, 1) in the third column are fixed, so some
general matrices cannot be converted to affine matrices.

PDF transformation matrices are the transpose of most textbook
treatments. In a textbook, typically A × vc is used to
transform a column vector vc=(x, y, 1) by the affine matrix A.
In PDF, the matrix is the transpose of that in the textbook,
and vr × A' is used to transform a row vector vr=(x, y, 1).

Transformation matrices specify the transformation from the new
(transformed) coordinate system to the original (untransformed)
coordinate system. x’ and y’ are the coordinates in the
untransformed coordinate system, and x and y are the
coordinates in the transformed coordinate system.

PDF order:

\[\begin{split}\begin{equation}
\begin{bmatrix}
x' & y' & 1
\end{bmatrix}
=
\begin{bmatrix}
x & y & 1
\end{bmatrix}
\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
e & f & 1
\end{bmatrix}
\end{equation}\end{split}\]

To concatenate transformations, use the matrix multiple (@)
operator to pre-multiply the next transformation onto existing
transformations.

Alternatively, use the .translated(), .scaled(), and .rotated()
methods to chain transformation operations.

Addition and other operations are not implemented because they’re not
that meaningful in a PDF context.

Matrix objects are immutable. All transformation methods return
new matrix objects.

New in version 8.7.

				
__array__(self: pikepdf.Matrix) → object

				Convert this matrix to a NumPy array.

If numpy is not installed, this will throw an exception.

				
__init__(*args, **kwargs)

				Overloaded function.

				__init__(self: pikepdf.Matrix) -> None

Construct an identity matrix.

				__init__(self: pikepdf.Matrix, a: float, b: float, c: float, d: float, e: float, f: float) -> None

				__init__(self: pikepdf.Matrix, other: pikepdf.Matrix) -> None

				__init__(self: pikepdf.Matrix, h: pikepdf.Object) -> None

				__init__(self: pikepdf.Matrix, arg0: pikepdf._ObjectList) -> None

				__init__(self: pikepdf.Matrix, t6: tuple) -> None

				
__matmul__(self: pikepdf.Matrix, other: pikepdf.Matrix) → pikepdf.Matrix

				Return the matrix product of two matrices.

Can be used to concatenate transformations. Transformations should be
composed by pre-multiplying matrices.

				
as_array(self: pikepdf.Matrix) → pikepdf.Object

				Convert this matrix to a pikepdf.Array.

A Matrix cannot be inserted into a PDF directly. Use this function
to convert a Matrix to a pikepdf.Array, which can be inserted.

				
encode(self: pikepdf.Matrix) → bytes

				Encode this matrix in bytes suitable for including in a PDF content stream.

				
inverse(self: pikepdf.Matrix) → pikepdf.Matrix

				Return the inverse of the matrix.

The inverse matrix reverses the transformation of the original matrix.

In rare situations, the inverse may not exist. In that case, an
exception is thrown. The PDF will likely have rendering problems.

				
rotated(self: pikepdf.Matrix, angle_degrees_ccw: float) → pikepdf.Matrix

				Return a rotated copy of a matrix.

				Parameters:

				angle_degrees_ccw – angle in degrees counterclockwise

				
scaled(self: pikepdf.Matrix, arg0: float, arg1: float) → pikepdf.Matrix

				Return a scaled copy of a matrix.

				
property shorthand

				Return the 6-tuple (a,b,c,d,e,f) that describes this matrix.

				
transform(*args, **kwargs)

				Overloaded function.

				transform(self: pikepdf.Matrix, point: Tuple[float, float]) -> tuple

Transform a point by this matrix.

Computes [x y 1] @ self.

				transform(self: pikepdf.Matrix, rect: pikepdf.Rectangle) -> pikepdf.Rectangle

Transform a rectangle by this matrix.

The new rectangle tightly bounds the polygon resulting
from transforming the four corners.

				
translated(self: pikepdf.Matrix, arg0: float, arg1: float) → pikepdf.Matrix

				Return a translated copy of a matrix.

				
class pikepdf.Rectangle

				A PDF rectangle.

Typically this will be a rectangle in PDF units (points, 1/72”).
Unlike raster graphics, the rectangle is defined by the lower
left and upper right points.

Rectangles in PDF are encoded as pikepdf.Array with exactly
four numeric elements, ordered as llx lly urx ury.
See PDF 1.7 Reference Manual section 7.9.5.

The rectangle may be considered degenerate if the lower left corner
is not strictly less than the upper right corner.

New in version 2.14.

Changed in version 8.5: Added operators to test whether rectangle a is contained in
rectangle b (a <= b) and to calculate their intersection
(a & b).

				
as_array(self: pikepdf.Rectangle) → pikepdf.Object

				Returns this rectangle as a pikepdf.Array.

				
property height

				The height of the rectangle.

				
property llx

				The lower left corner on the x-axis.

				
property lly

				The lower left corner on the y-axis.

				
property lower_left

				A point for the lower left corner.

				
property lower_right

				A point for the lower right corner.

				
property upper_left

				A point for the upper left corner.

				
property upper_right

				A point for the upper right corner.

				
property urx

				The upper right corner on the x-axis.

				
property ury

				The upper right corner on the y-axis.

				
property width

				The width of the rectangle.

Content stream elements

				
class pikepdf.ContentStreamInstruction

				Represents one complete instruction inside a content stream.

				
property operands

				The operands (parameters) supplied to the operator.

				
property operator

				The operator of used in this instruction.

				
class pikepdf.ContentStreamInlineImage

				Represents an instruction to draw an inline image inside a content
stream.

pikepdf consolidates the BI-ID-EI sequence of operators, as appears in a PDF to
declare an inline image, and replaces them with a single virtual content stream
instruction with the operator “INLINE IMAGE”.

				
property iimage

				Returns the inline image itself.

				
property operands

				Returns a list of operands, whose sole entry is the inline image.

				
property operator

				Always return the fictitious operator ‘INLINE IMAGE’.

Internal objects

These objects are returned by other pikepdf objects. They are part of the API,
but not intended to be created explicitly.

				
class pikepdf._core.PageList

				A list-like object enumerating a range of pages in a pikepdf.Pdf.
It may be all of the pages or a subset.

				
append(*args, **kwargs)

				Overloaded function.

				append(self: pikepdf.PageList, page: pikepdf.Page) -> None

Add another page to the end.

While this method copies pages from one document to another, it does not
copy certain metadata such as annotations, form fields, bookmarks or
structural tree elements. Copying these is a more complex, application
specific operation.

				append(self: pikepdf.PageList, page: handle) -> None

Add another page to the end.

While this method copies pages from one document to another, it does not
copy certain metadata such as annotations, form fields, bookmarks or
structural tree elements. Copying these is a more complex, application
specific operation.

				
extend(*args, **kwargs)

				Overloaded function.

				extend(self: pikepdf.PageList, other: pikepdf.PageList) -> None

Extend the Pdf by adding pages from another Pdf.pages.

While this method copies pages from one document to another, it does not
copy certain metadata such as annotations, form fields, bookmarks or
structural tree elements. Copying these is a more complex, application
specific operation.

				extend(self: pikepdf.PageList, iterable: Iterable) -> None

Extend the Pdf by adding pages from an iterable of pages.

While this method copies pages from one document to another, it does not
copy certain metadata such as annotations, form fields, bookmarks or
structural tree elements. Copying these is a more complex, application
specific operation.

				
from_objgen(*args, **kwargs)

				Overloaded function.

				from_objgen(self: pikepdf.PageList, arg0: int, arg1: int) -> pikepdf.Page

Given an “objgen” (object ID, generation), return the page.

Raises an exception if no page matches.

				from_objgen(self: pikepdf.PageList, arg0: Tuple[int, int]) -> pikepdf.Page

Given an “objgen” (object ID, generation), return the page.

Raises an exception if no page matches.

				
index(*args, **kwargs)

				Overloaded function.

				index(self: pikepdf.PageList, arg0: pikepdf.Object) -> int

Given a pikepdf.Object that is a page, find the index number.

That is, returns n such that pdf.pages[n] == this_page.
A ValueError exception is thrown if the page does not belong to
to this Pdf. The first page has index 0.

				index(self: pikepdf.PageList, arg0: pikepdf.Page) -> int

Given a pikepdf.Page (page helper), find the index.

That is, returns n such that pdf.pages[n] == this_page.
A ValueError exception is thrown if the page does not belong to
to this Pdf. The first page has index 0.

				
insert(self: pikepdf.PageList, index: int, obj: object) → None

				Insert a page at the specified location.

				Parameters:

								index (int) – location at which to insert page, 0-based indexing

				obj (pikepdf.Object) – page object to insert

				
p(self: pikepdf.PageList, pnum: int) → pikepdf.Page

				Look up page number in ordinal numbering, .p(1) is the first page.

This is provided for convenience in situations where ordinal numbering
is more natural. It is equivalent to .pages[pnum - 1]. .p(0)
is an error and negative indexing is not supported.

If the PDF defines custom page labels (such as labeling front matter
with Roman numerals and the main body with Arabic numerals), this
function does not account for that. Use pikepdf.Page.label
to get the page label for a page.

				
remove(self: pikepdf.PageList, **kwargs) → None

				Remove a page (using 1-based numbering)

				Parameters:

				p (int) – 1-based page number

				
reverse(self: pikepdf.PageList) → None

				Reverse the order of pages.

				
class pikepdf._core._ObjectList

				A list-like object containing multiple pikepdf.Object.

				
append(self: pikepdf._ObjectList, x: pikepdf.Object) → None

				Add an item to the end of the list

				
clear(self: pikepdf._ObjectList) → None

				Clear the contents

				
count(self: pikepdf._ObjectList, x: pikepdf.Object) → int

				Return the number of times x appears in the list

				
extend(*args, **kwargs)

				Overloaded function.

				extend(self: pikepdf._ObjectList, L: pikepdf._ObjectList) -> None

Extend the list by appending all the items in the given list

				extend(self: pikepdf._ObjectList, L: Iterable) -> None

Extend the list by appending all the items in the given list

				
insert(self: pikepdf._ObjectList, i: int, x: pikepdf.Object) → None

				Insert an item at a given position.

				
pop(*args, **kwargs)

				Overloaded function.

				pop(self: pikepdf._ObjectList) -> pikepdf.Object

Remove and return the last item

				pop(self: pikepdf._ObjectList, i: int) -> pikepdf.Object

Remove and return the item at index i

				
remove(self: pikepdf._ObjectList, x: pikepdf.Object) → None

				Remove the first item from the list whose value is x. It is an error if there is no such item.

				
class pikepdf.ObjectType

				Enumeration of object types. These values are used to implement
pikepdf’s instance type checking. In the vast majority of cases it is more
pythonic to use isinstance(obj, pikepdf.Stream) or issubclass.

These values are low-level and documented for completeness. They are exposed
through pikepdf.Object._type_code.

				
uninitialized

				An uninitialized object. If this appears, it is probably a bug.

				
reserved

				A temporary object used in creating circular references. Should not appear
in most cases.

				
null

				A PDF null. In most cases, nulls are automatically converted to None,
so this should not appear.

				
boolean

				A PDF boolean. In most cases, booleans are automatically converted to
bool, so this should not appear.

				
integer

				A PDF integer. In most cases, integers are automatically converted to
int, so this should not appear. Unlike Python integers, PDF integers
are 32-bit signed integers.

				
real

				A PDF real. In most cases, reals are automatically convert to
decimal.Decimal.

				
string

				A PDF string, meaning the object is a pikepdf.String.

				
name_

				A PDF name, meaning the object is a pikepdf.Name.

				
array

				A PDF array, meaning the object is a pikepdf.Array.

				
dictionary

				A PDF dictionary, meaning the object is a pikepdf.Dictionary.

				
stream

				A PDF stream, meaning the object is a pikepdf.Stream (and it also
has a dictionary).

				
operator

				A PDF operator, meaning the object is a pikepdf.Operator.

				
inlineimage

				A PDF inline image, meaning the object is the data stream of an inline
image. It would be necessary to combine this with the implicit
dictionary to interpret the image correctly. pikepdf automatically
packages inline images into a more useful class, so this will not
generally appear.

Jobs

				
class pikepdf.Job

				Provides access to the QPDF job interface.

All of the functionality of the qpdf command line program
is now available to pikepdf through jobs.

				For further details:

				https://qpdf.readthedocs.io/en/stable/qpdf-job.html

				
__init__(*args, **kwargs)

				Overloaded function.

				__init__(self: pikepdf.Job, json: str) -> None

Create a Job from a string containing QPDF job JSON.

				__init__(self: pikepdf.Job, json_dict: dict) -> None

Create a Job from a dict in QPDF job JSON schema.

				__init__(self: pikepdf.Job, args: List[str], *, progname: str = ‘pikepdf’) -> None

Create a Job from command line arguments to the qpdf program.

The first item in the args list should be equal to progname,
whose default is "pikepdf".

				Example:

				job = Job([‘pikepdf’, ‘–check’, ‘input.pdf’])
job.run()

				
check_configuration(self: pikepdf.Job) → None

				Checks if the configuration is valid; raises an exception if not.

				
create_pdf(self: pikepdf.Job) → pikepdf.Pdf

				Executes the first stage of the job.

				
property creates_output

				Returns True if the Job will create some sort of output file.

				
property encryption_status

				Returns a Python dictionary describing the encryption status.

				
property exit_code

				After run(), returns an integer exit code.

The meaning of exit code depends on the details of the Job that was run.
Details are subject to change in libqpdf. Use properties has_warnings
and encryption_status instead.

				
property has_warnings

				After run(), returns True if there were warnings.

				
static job_json_schema(*, schema: int = 1) → str

				For reference, the QPDF job command line schema is built-in.

				
static json_out_schema(*, schema: int = 2) → str

				For reference, the QPDF JSON output schema is built-in.

				
property message_prefix

				Allows manipulation of the prefix in front of all output messages.

				
run(self: pikepdf.Job) → None

				Executes the job.

				
write_pdf(self: pikepdf.Job, pdf: pikepdf.Pdf) → None

				Executes the second stage of the job.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/api/models.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models				ObjectHelper				ObjectHelper.obj

				Page				Page.add_content_token_filter()

				Page.add_overlay()

				Page.add_resource()

				Page.add_underlay()

				Page.artbox

				Page.as_form_xobject()

				Page.bleedbox

				Page.calc_form_xobject_placement()

				Page.contents_add()

				Page.contents_coalesce()

				Page.cropbox

				Page.externalize_inline_images()

				Page.form_xobjects

				Page.get_filtered_contents()

				Page.images

				Page.index

				Page.label

				Page.mediabox

				Page.obj

				Page.parse_contents()

				Page.remove_unreferenced_resources()

				Page.resources

				Page.rotate()

				Page.trimbox

				PdfMatrix				PdfMatrix.__array__()

				PdfMatrix.__init__()

				PdfMatrix.__matmul__()

				PdfMatrix.a

				PdfMatrix.b

				PdfMatrix.c

				PdfMatrix.d

				PdfMatrix.e

				PdfMatrix.encode()

				PdfMatrix.f

				PdfMatrix.identity()

				PdfMatrix.inverse()

				PdfMatrix.rotated()

				PdfMatrix.scaled()

				PdfMatrix.shorthand

				PdfMatrix.translated()

				PdfImage				PdfImage.as_pil_image()

				PdfImage.bits_per_component

				PdfImage.colorspace

				PdfImage.decode_parms

				PdfImage.extract_to()

				PdfImage.filter_decodeparms

				PdfImage.filters

				PdfImage.get_stream_buffer()

				PdfImage.height

				PdfImage.icc

				PdfImage.image_mask

				PdfImage.indexed

				PdfImage.is_device_n

				PdfImage.is_separation

				PdfImage.mode

				PdfImage.palette

				PdfImage.read_bytes()

				PdfImage.show()

				PdfImage.size

				PdfImage.width

				PdfInlineImage

				PdfMetadata				PdfMetadata.load_from_docinfo()

				PdfMetadata.pdfa_status

				PdfMetadata.pdfx_status

				PdfMetadata.register_xml_namespace()

				Encryption				Encryption.R

				Encryption.aes

				Encryption.allow

				Encryption.metadata

				Encryption.owner

				Encryption.user

				Outline				Outline.add()

				Outline.root

				OutlineItem				OutlineItem.from_dictionary_object()

				OutlineItem.to_dictionary_object()

				Permissions				Permissions.accessibility

				Permissions.extract

				Permissions.modify_annotation

				Permissions.modify_assembly

				Permissions.modify_form

				Permissions.modify_other

				Permissions.print_highres

				Permissions.print_lowres

				pikepdf.models.EncryptionMethod				pikepdf.models.EncryptionMethod.none

				pikepdf.models.EncryptionMethod.unknown

				pikepdf.models.EncryptionMethod.rc4

				pikepdf.models.EncryptionMethod.aes

				pikepdf.models.EncryptionMethod.aesv3

				EncryptionInfo				EncryptionInfo.P

				EncryptionInfo.R

				EncryptionInfo.V

				EncryptionInfo.bits

				EncryptionInfo.encryption_key

				EncryptionInfo.file_method

				EncryptionInfo.stream_method

				EncryptionInfo.string_method

				EncryptionInfo.user_password

				Annotation				Annotation.appearance_dict

				Annotation.appearance_state

				Annotation.flags

				Annotation.get_appearance_stream()

				Annotation.get_page_content_for_appearance()

				Annotation.subtype

				Attachments				Attachments.clear()

				Attachments.get()

				Attachments.items()

				Attachments.keys()

				Attachments.pop()

				Attachments.popitem()

				Attachments.setdefault()

				Attachments.update()

				Attachments.values()

				AttachedFileSpec				AttachedFileSpec.__init__()

				AttachedFileSpec.description

				AttachedFileSpec.filename

				AttachedFileSpec.from_filepath()

				AttachedFileSpec.get_all_filenames()

				AttachedFileSpec.get_file()

				AttachedFileSpec.obj

				AttachedFile				AttachedFile.md5

				AttachedFile.mime_type

				AttachedFile.obj

				AttachedFile.size

				NameTree				NameTree.clear()

				NameTree.get()

				NameTree.new()

				NameTree.obj

				NameTree.pop()

				NameTree.popitem()

				NameTree.setdefault()

				NameTree.update()

				NumberTree				NumberTree.clear()

				NumberTree.get()

				NumberTree.new()

				NumberTree.pop()

				NumberTree.popitem()

				NumberTree.setdefault()

				NumberTree.update()

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Support models

				
 View page source

Support models

Support models are abstracts over “raw” objects within a Pdf. For example, a page
in a PDF is a Dictionary with set to /Type of /Page. The Dictionary in
that case is the “raw” object. Upon establishing what type of object it is, we
can wrap it with a support model that adds features to ensure consistency with
the PDF specification.

In version 2.x, did not apply support models to “raw” objects automatically.
Version 3.x automatically applies support models to /Page objects.

				
class pikepdf.ObjectHelper

				Base class for wrapper/helper around an Object.

Used to expose additional functionality specific to that object type.

				
property obj

				Get the underlying pikepdf.Object.

				
class pikepdf.Page

				Support model wrapper around a page dictionary object.

				
add_content_token_filter(self: pikepdf.Page, tf: pikepdf.TokenFilter) → None

				Attach a pikepdf.TokenFilter to a page’s content stream.

This function applies token filters lazily, if/when the page’s
content stream is read for any reason, such as when the PDF is
saved. If never access, the token filter is not applied.

Multiple token filters may be added to a page/content stream.

Token filters may not be removed after being attached to a Pdf.
Close and reopen the Pdf to remove token filters.

If the page’s contents is an array of streams, it is coalesced.

				
add_overlay(other, rect=None, *, push_stack=True, shrink=True, expand=True)

				Overlay another object on this page.

Overlays will be drawn after all previous content, potentially drawing on top
of existing content.

				Parameters:

								other (Object | Page) – A Page or Form XObject to render as an overlay on top of this
page.

				rect (Rectangle | None) – The PDF rectangle (in PDF units) in which to draw the overlay.
If omitted, this page’s trimbox, cropbox or mediabox (in that order)
will be used.

				push_stack (bool) – If True (default), push the graphics stack of the existing
content stream to ensure that the overlay is rendered correctly.
Officially PDF limits the graphics stack depth to 32. Most
viewers will tolerate more, but excessive pushes may cause problems.
Multiple content streams may also be coalesced into a single content
stream where this parameter is True, since the PDF specification
permits PDF writers to coalesce streams as they see fit.

				shrink (bool) – If True (default), allow the object to shrink to fit inside the
rectangle. The aspect ratio will be preserved.

				expand (bool) – If True (default), allow the object to expand to fit inside the
rectangle. The aspect ratio will be preserved.

				Returns:

				The name of the Form XObject that contains the overlay.

				Return type:

				Name

New in version 2.14.

Changed in version 4.0.0: Added the push_stack parameter. Previously, this method behaved
as if push_stack were False.

Changed in version 4.2.0: Added the shrink and expand parameters. Previously, this method
behaved as if shrink=True, expand=False.

Changed in version 4.3.0: Returns the name of the overlay in the resources dictionary instead
of returning None.

				
add_resource(res, res_type, name=None, *, prefix='', replace_existing=True)

				Add a new resource to the page’s Resources dictionary.

If the Resources dictionaries do not exist, they will be created.

				Parameters:

								self – The object to add to the resources dictionary.

				res (Object) – The dictionary object to insert into the resources
dictionary.

				res_type (Name) – Should be one of the following Resource dictionary types:
ExtGState, ColorSpace, Pattern, Shading, XObject, Font, Properties.

				name (Name | None) – The name of the object. If omitted, a random name will be
generated with enough randomness to be globally unique.

				prefix (str) – A prefix for the name of the object. Allows conveniently
namespacing when using random names, e.g. prefix=”Im” for images.
Mutually exclusive with name parameter.

				replace_existing (bool) – If the name already exists in one of the resource
dictionaries, remove it.

				Return type:

				Name

Example

>>> resource_name = pdf.pages[0].add_resource(formxobj, Name.XObject)

New in version 2.3.

Changed in version 2.14: If res does not belong to the same Pdf that owns this page,
a copy of res is automatically created and added instead. In previous
versions, it was necessary to change for this case manually.

Changed in version 4.3.0: Returns the name of the overlay in the resources dictionary instead
of returning None.

				
add_underlay(other, rect=None, *, shrink=True, expand=True)

				Underlay another object beneath this page.

Underlays will be drawn before all other content, so they may be overdrawn
partially or completely.

There is no push_stack parameter for this function, since adding an
underlay can be done without manipulating the graphics stack.

				Parameters:

								other (Object | Page) – A Page or Form XObject to render as an underlay underneath this
page.

				rect (Rectangle | None) – The PDF rectangle (in PDF units) in which to draw the underlay.
If omitted, this page’s trimbox, cropbox or mediabox (in that order)
will be used.

				shrink (bool) – If True (default), allow the object to shrink to fit inside the
rectangle. The aspect ratio will be preserved.

				expand (bool) – If True (default), allow the object to expand to fit inside the
rectangle. The aspect ratio will be preserved.

				Returns:

				The name of the Form XObject that contains the underlay.

				Return type:

				Name

New in version 2.14.

Changed in version 4.2.0: Added the shrink and expand parameters. Previously, this method
behaved as if shrink=True, expand=False. Fixed issue with wrong
page rect being selected.

				
property artbox

				Return page’s effective /ArtBox, in PDF units.

According to the PDF specification:
“The art box defines the page’s meaningful content area, including
white space.”

If the /ArtBox is not defined, the /CropBox is returned.

				
as_form_xobject(self: pikepdf.Page, handle_transformations: bool = True) → pikepdf.Object

				Return a form XObject that draws this page.

This is useful for
n-up operations, underlay, overlay, thumbnail generation, or
any other case in which it is useful to replicate the contents
of a page in some other context. The dictionaries are shallow
copies of the original page dictionary, and the contents are
coalesced from the page’s contents. The resulting object handle
is not referenced anywhere.

				Parameters:

				handle_transformations (bool) – If True, the resulting form
XObject’s /Matrix will be set to replicate rotation
(/Rotate) and scaling (/UserUnit) in the page’s
dictionary. In this way, the page’s transformations will
be preserved when placing this object on another page.

				
property bleedbox

				Return page’s effective /BleedBox, in PDF units.

According to the PDF specification:
“The bleed box defines the region to which the contents of the page
should be clipped when output in a print production environment.”

If the /BleedBox is not defined, the /CropBox is returned.

				
calc_form_xobject_placement(self: pikepdf.Page, formx: pikepdf.Object, name: pikepdf.Object, rect: pikepdf.Rectangle, *, invert_transformations: bool = True, allow_shrink: bool = True, allow_expand: bool = False) → bytes

				Generate content stream segment to place a Form XObject on this page.

The content stream segment must then be added to the page’s
content stream.

The default keyword parameters will preserve the aspect ratio.

				Parameters:

								formx – The Form XObject to place.

				name – The name of the Form XObject in this page’s /Resources
dictionary.

				rect – Rectangle describing the desired placement of the Form
XObject.

				invert_transformations – Apply /Rotate and /UserUnit scaling
when determining FormX Object placement.

				allow_shrink – Allow the Form XObject to take less than the
full dimensions of rect.

				allow_expand – Expand the Form XObject to occupy all of rect.

New in version 2.14.

				
contents_add(contents, *, prepend=False)

				Append or prepend to an existing page’s content stream.

				Parameters:

								contents (Stream | bytes) – An existing content stream to append or prepend.

				prepend (bool) – Prepend if true, append if false (default).

New in version 2.14.

				
contents_coalesce(self: pikepdf.Page) → None

				Coalesce a page’s content streams.

A page’s content may be a
stream or an array of streams. If this page’s content is an
array, concatenate the streams into a single stream. This can
be useful when working with files that split content streams in
arbitrary spots, such as in the middle of a token, as that can
confuse some software.

				
property cropbox

				Return page’s effective /CropBox, in PDF units.

According to the PDF specification:
“The crop box defines the region to which the contents of the page
shall be clipped (cropped) when displayed or printed. It has no
defined meaning in the context of the PDF imaging model; it merely
imposes clipping on the page contents.”

If the /CropBox is not defined, the /MediaBox is returned.

				
externalize_inline_images(self: pikepdf.Page, min_size: int = 0, shallow: bool = False) → None

				Convert inline image to normal (external) images.

				Parameters:

								min_size (int) – minimum size in bytes

				shallow (bool) – If False, recurse into nested Form XObjects.
If True, do not recurse.

				
property form_xobjects: _ObjectMapping

				Return all Form XObjects associated with this page.

This method does not recurse into nested Form XObjects.

New in version 7.0.0.

				
get_filtered_contents(self: pikepdf.Page, tf: pikepdf.TokenFilter) → bytes

				Apply a pikepdf.TokenFilter to a content stream, without modifying it.

This may be used when the results of a token filter do not need
to be applied, such as when filtering is being used to retrieve
information rather than edit the content stream.

Note that it is possible to create a subclassed TokenFilter
that saves information of interest to its object attributes; it
is not necessary to return data in the content stream.

To modify the content stream, use pikepdf.Page.add_content_token_filter().

				Returns:

				The modified content stream.

				
property images: _ObjectMapping

				Return all regular images associated with this page.

This method does not search for Form XObjects that contain images,
and does not attempt to find inline images.

				
property index

				Returns the zero-based index of this page in the pages list.

That is, returns n such that pdf.pages[n] == this_page.
A ValueError exception is thrown if the page is not attached
to this Pdf.

New in version 2.2.

				
property label

				Returns the page label for this page, accounting for section numbers.

For example, if the PDF defines a preface with lower case Roman
numerals (i, ii, iii…), followed by standard numbers, followed
by an appendix (A-1, A-2, …), this function returns the appropriate
label as a string.

It is possible for a PDF to define page labels such that multiple
pages have the same labels. Labels are not guaranteed to
be unique.

New in version 2.2.

Changed in version 2.9: Returns the ordinary page number if no special rules for page
numbers are defined.

				
property mediabox

				Return page’s /MediaBox, in PDF units.

According to the PDF specification:
“The media box defines the boundaries of the physical medium on which
the page is to be printed.”

				
property obj

				Get the underlying pikepdf.Object.

				
parse_contents(self: pikepdf.Page, arg0: pikepdf.StreamParser) → None

				Parse a page’s content streams using a pikepdf.StreamParser.

The content stream may be interpreted by the StreamParser but is
not altered.

If the page’s contents is an array of streams, it is coalesced.

				
remove_unreferenced_resources(self: pikepdf.Page) → None

				Removes from the resources dictionary any object not referenced in the content stream.

A page’s resources dictionary maps names to objects elsewhere
in the file. This method walks through a page’s contents and
keeps tracks of which resources are referenced somewhere in the
contents. Then it removes from the resources dictionary any
object that is not referenced in the contents. This
method is used by page splitting code to avoid copying unused
objects in files that use shared resource dictionaries across
multiple pages.

				
property resources: Dictionary

				Return this page’s resources dictionary.

Changed in version 7.0.0: If the resources dictionary does not exist, an empty one will be created.
A TypeError is raised if a page has a /Resources key but it is not a
dictionary.

				
rotate(self: pikepdf.Page, angle: int, relative: bool) → None

				Rotate a page.

If relative is False, set the rotation of the
page to angle. Otherwise, add angle to the rotation of the
page. angle must be a multiple of 90. Adding 90 to
the rotation rotates clockwise by 90 degrees.

				
property trimbox

				Return page’s effective /TrimBox, in PDF units.

According to the PDF specification:
“The trim box defines the intended dimensions of the finished page
after trimming. It may be smaller than the media box to allow for
production-related content, such as printing instructions, cut marks,
or color bars.”

If the /TrimBox is not defined, the /CropBox is returned (and if
/CropBox is not defined, /MediaBox is returned).

				
class pikepdf.PdfMatrix(*args, **kwargs)

				Support class for PDF content stream matrices.

PDF content stream matrices are 3x3 matrices summarized by a shorthand
(a, b, c, d, e, f), where the first column vector is (a, c, e)
and the second column vector is (b, d, f). The final column vector
is always (0, 0, 1) since PDF uses
homogenous coordinates.

a is the horizontal scaling factor.
b is horizontal skewing.
c is vertical skewing.
d is the vertical scaling factor.
e is the horizontal translation.
f is the vertical translation.

For scaling, a and d are the scaling factors in the horizontal and vertical
directions, respectively; for pure scaling, b and c are zero.

PDF uses row vectors. That is, vr @ A' gives the effect of transforming
a row vector vr=(x, y, 1) by the matrix A'. Most textbook
treatments use A @ vc where the column vector vc=(x, y, 1)'.

Matrices should be premultipled with other matrices to concatenate
transformations.

(@ is the Python matrix multiplication operator.)

Addition and other operations are not implemented because they’re not that
meaningful in a PDF context (they can be defined and are mathematically
meaningful in general).

PdfMatrix objects are immutable. All transformations on them produce a new
matrix.

Deprecated since version 8.7: Use pikepdf.Matrix instead.

				
__array__()

				Return a numpy array of the matrix.

This function requires numpy, which is an optional dependency of pikepdf.
If numpy is not installed, an ImportError will be raised.

				
__init__(*args)

				Initialize a PdfMatrix.

				
__matmul__(other)

				Multiply this matrix by another matrix.

Can be used to concatenate transformations. Transformations should be composed
by pre-multiplying matrices.

				
property a

				Return the horizontal scaling factor.

				
property b

				Return horizontal skew.

				
property c

				Return vertical skew.

				
property d

				Return the vertical scaling factor.

				
property e

				Return the horizontal translation.

Typically corresponds to translation on the x-axis.

				
encode()

				Encode this matrix in binary suitable for including in a PDF.

				
property f

				Return the vertical translation.

Typically corresponds to translation on the y-axis.

				
static identity()

				Return an identity matrix.

				
inverse()

				Return the inverse of this matrix.

The inverse matrix reverses the transformation of the original matrix.

This function requires numpy, which is an optional dependency of pikepdf.
If numpy is not installed, an ImportError will be raised.

				
rotated(angle_degrees_ccw)

				Concatenate a rotation matrix to this matrix.

Warning

This function is subtly incorrect, because it post-multiplies by the
scaling matrix instead of pre-multiplying. It is assumed that any users
of the code may have noticed this and corrected it by compensating
for it, so correcting the error would be a breaking change.

				
scaled(x, y)

				Concatenate a scaling matrix to this matrix.

Warning

This function is subtly incorrect, because it post-multiplies by the
scaling matrix instead of pre-multiplying. It is assumed that any users
of the code may have noticed this and corrected it by compensating
for it, so correcting the error would be a breaking change.

				
property shorthand

				Return the 6-tuple (a,b,c,d,e,f) that describes this matrix.

				
translated(x, y)

				Translate this matrix.

Warning

This function is subtly incorrect, because it post-multiplies by the
scaling matrix instead of pre-multiplying. It is assumed that any users
of the code may have noticed this and corrected it by compensating
for it, so correcting the error would be a breaking change.

				
class pikepdf.PdfImage(obj)

				Support class to provide a consistent API for manipulating PDF images.

The data structure for images inside PDFs is irregular and complex,
making it difficult to use without introducing errors for less
typical cases. This class addresses these difficulties by providing a
regular, Pythonic API similar in spirit (and convertible to) the Python
Pillow imaging library.

				Parameters:

				obj (Stream) –

				
as_pil_image()

				Extract the image as a Pillow Image, using decompression as necessary.

Caller must close the image.

				Return type:

				Image

				
property bits_per_component: int

				Bits per component of this image.

				
property colorspace: str | None

				PDF name of the colorspace that best describes this image.

				
property decode_parms

				List of the /DecodeParms, arguments to filters.

				
extract_to(*, stream=None, fileprefix='')

				Extract the image directly to a usable image file.

If possible, the compressed data is extracted and inserted into
a compressed image file format without transcoding the compressed
content. If this is not possible, the data will be decompressed
and extracted to an appropriate format.

Because it is not known until attempted what image format will be
extracted, users should not assume what format they are getting back.
When saving the image to a file, use a temporary filename, and then
rename the file to its final name based on the returned file extension.

Images might be saved as any of .png, .jpg, or .tiff.

Examples

>>> im.extract_to(stream=bytes_io)
'.png'

>>> im.extract_to(fileprefix='/tmp/image00')
'/tmp/image00.jpg'

				Parameters:

								stream (BinaryIO | None) – Writable stream to write data to.

				fileprefix (str or Path) – The path to write the extracted image to,
without the file extension.

				Returns:

				If fileprefix was provided, then the fileprefix with the
appropriate extension. If no fileprefix, then an extension
indicating the file type.

				Return type:

				str

				
property filter_decodeparms

				Return normalized the Filter and DecodeParms data.

PDF has a lot of possible data structures concerning /Filter and
/DecodeParms. /Filter can be absent or a name or an array, /DecodeParms
can be absent or a dictionary (if /Filter is a name) or an array (if
/Filter is an array). When both are arrays the lengths match.

Normalize this into:
[(/FilterName, {/DecodeParmName: Value, …}), …]

The order of /Filter matters as indicates the encoding/decoding sequence.

				
property filters

				List of names of the filters that we applied to encode this image.

				
get_stream_buffer(decode_level=<StreamDecodeLevel.specialized: 2>)

				Access this image with the buffer protocol.

				Parameters:

				decode_level (StreamDecodeLevel) –

				Return type:

				Buffer

				
property height: int

				Height of the image data in pixels.

				
property icc: ImageCmsProfile | None

				If an ICC profile is attached, return a Pillow object that describe it.

Most of the information may be found in icc.profile.

				
property image_mask: bool

				Return True if this is an image mask.

				
property indexed: bool

				Check if the image has a defined color palette.

				
property is_device_n: bool

				Check if image has a /DeviceN (complex printing) colorspace.

				
property is_separation: bool

				Check if image has a /DeviceN (complex printing) colorspace.

				
property mode: str

				PIL.Image.mode equivalent for this image, where possible.

If an ICC profile is attached to the image, we still attempt to resolve a Pillow
mode.

				
property palette: PaletteData | None

				Retrieve the color palette for this image if applicable.

				
read_bytes(decode_level=<StreamDecodeLevel.specialized: 2>)

				Decompress this image and return it as unencoded bytes.

				Parameters:

				decode_level (StreamDecodeLevel) –

				Return type:

				bytes

				
show()

				Show the image however PIL wants to.

				
property size: tuple[int, int]

				Size of image as (width, height).

				
property width: int

				Width of the image data in pixels.

				
class pikepdf.PdfInlineImage(*, image_data, image_object)

				Support class for PDF inline images.

				Parameters:

								image_data (Object) –

				image_object (tuple) –

				
class pikepdf.models.PdfMetadata(pdf, pikepdf_mark=True, sync_docinfo=True, overwrite_invalid_xml=True)

				Read and edit the metadata associated with a PDF.

The PDF specification contain two types of metadata, the newer XMP
(Extensible Metadata Platform, XML-based) and older DocumentInformation
dictionary. The PDF 2.0 specification removes the DocumentInformation
dictionary.

This primarily works with XMP metadata, but includes methods to generate
XMP from DocumentInformation and will also coordinate updates to
DocumentInformation so that the two are kept consistent.

XMP metadata fields may be accessed using the full XML namespace URI or
the short name. For example metadata['dc:description']
and metadata['{http://purl.org/dc/elements/1.1/}description']
both refer to the same field. Several common XML namespaces are registered
automatically.

See the XMP specification for details of allowable fields.

To update metadata, use a with block.

Example

>>> with pdf.open_metadata() as records:
 records['dc:title'] = 'New Title'

See also

pikepdf.Pdf.open_metadata()

				Parameters:

								pdf (Pdf) –

				pikepdf_mark (bool) –

				sync_docinfo (bool) –

				overwrite_invalid_xml (bool) –

				
load_from_docinfo(docinfo, delete_missing=False, raise_failure=False)

				Populate the XMP metadata object with DocumentInfo.

				Parameters:

								docinfo – a DocumentInfo, e.g pdf.docinfo

				delete_missing (bool) – if the entry is not DocumentInfo, delete the equivalent
from XMP

				raise_failure (bool) – if True, raise any failure to convert docinfo;
otherwise warn and continue

				Return type:

				None

A few entries in the deprecated DocumentInfo dictionary are considered
approximately equivalent to certain XMP records. This method copies
those entries into the XMP metadata.

				
property pdfa_status: str

				Return the PDF/A conformance level claimed by this PDF, or False.

A PDF may claim to PDF/A compliant without this being true. Use an
independent verifier such as veraPDF to test if a PDF is truly
conformant.

				Returns:

				The conformance level of the PDF/A, or an empty string if the
PDF does not claim PDF/A conformance. Possible valid values
are: 1A, 1B, 2A, 2B, 2U, 3A, 3B, 3U.

				
property pdfx_status: str

				Return the PDF/X conformance level claimed by this PDF, or False.

A PDF may claim to PDF/X compliant without this being true. Use an
independent verifier such as veraPDF to test if a PDF is truly
conformant.

				Returns:

				The conformance level of the PDF/X, or an empty string if the
PDF does not claim PDF/X conformance.

				
classmethod register_xml_namespace(uri, prefix)

				Register a new XML/XMP namespace.

				Parameters:

								uri – The long form of the namespace.

				prefix – The alias to use when interpreting XMP.

				
class pikepdf.models.Encryption(owner='', user='', R=6, allow=(True, True, True, False, True, True, True, True), aes=True, metadata=True)

				Specify the encryption settings to apply when a PDF is saved.

				Parameters:

								owner (str) –

				user (str) –

				R (Literal[2, 3, 4, 5, 6]) –

				allow (Permissions) –

				aes (bool) –

				metadata (bool) –

				
R: Literal[2, 3, 4, 5, 6]

				Select the security handler algorithm to use. Choose from:
2, 3, 4 or 6. By default, the highest version of
is selected (6). 5 is a deprecated algorithm that should
not be used.

				
aes: bool

				If True, request the AES algorithm. If False, use RC4.
If omitted, AES is selected whenever possible (R >= 4).

				
allow: Permissions

				The permissions to set.
If omitted, all permissions are granted to the user.

				
metadata: bool

				If True, also encrypt the PDF metadata. If False,
metadata is not encrypted. Reading document metadata without
decryption may be desirable in some cases. Requires aes=True.
If omitted, metadata is encrypted whenever possible.

				
owner: str

				The owner password to use. This allows full control
of the file. If blank, the PDF will be encrypted and
present as “(SECURED)” in PDF viewers. If the owner password
is blank, the user password should be as well.

				
user: str

				The user password to use. With this password, some
restrictions will be imposed by a typical PDF reader.
If blank, the PDF can be opened by anyone, but only modified
as allowed by the permissions in allow.

				
class pikepdf.models.Outline(pdf, max_depth=15, strict=False)

				Maintains a intuitive interface for creating and editing PDF document outlines.

See PDF 1.7 Reference Manual section 12.3.

				Parameters:

								pdf (Pdf) – PDF document object.

				max_depth (int) – Maximum recursion depth to consider when reading the outline.

				strict (bool) – If set to False (default) silently ignores structural errors.
Setting it to True raises a
pikepdf.OutlineStructureError
if any object references re-occur while the outline is being read or
written.

See also

pikepdf.Pdf.open_outline()

				
add(title, destination)

				Add an item to the outline.

				Parameters:

								title (str) – Title of the outline item.

				destination (Array | int | None) – Destination to jump to when the item is selected.

				Returns:

				The newly created OutlineItem.

				Return type:

				OutlineItem

				
property root: list[OutlineItem]

				Return the root node of the outline.

				
class pikepdf.models.OutlineItem(title, destination=None, page_location=None, action=None, obj=None, *, left=None, top=None, right=None, bottom=None, zoom=None)

				Manage a single item in a PDF document outlines structure.

Includes nested items.

				Parameters:

								title (str) – Title of the outlines item.

				destination (Array | String | Name | int | None) – Page number, destination name, or any other PDF object
to be used as a reference when clicking on the outlines entry. Note
this should be None if an action is used instead. If set to a
page number, it will be resolved to a reference at the time of
writing the outlines back to the document.

				page_location (PageLocation | str | None) – Supplemental page location for a page number
in destination, e.g. PageLocation.Fit. May also be
a simple string such as 'FitH'.

				action (Dictionary | None) – Action to perform when clicking on this item. Will be ignored
during writing if destination is also set.

				obj (Dictionary | None) – Dictionary object representing this outlines item in a Pdf.
May be None for creating a new object. If present, an existing
object is modified in-place during writing and original attributes
are retained.

				left (float | None) – Describes the viewport position associated
with a destination.

				top (float | None) – Describes the viewport position associated
with a destination.

				bottom (float | None) – Describes the viewport position associated
with a destination.

				right (float | None) – Describes the viewport position associated
with a destination.

				zoom (float | None) – Describes the viewport position associated
with a destination.

This object does not contain any information about higher-level or
neighboring elements.

				Valid destination arrays:

				[page /XYZ left top zoom]
generally
[page, PageLocationEntry, 0 to 4 ints]

				
classmethod from_dictionary_object(obj)

				Create a OutlineItem from a Dictionary.

Does not process nested items.

				Parameters:

				obj (Dictionary) – Dictionary object representing a single outline node.

				
to_dictionary_object(pdf, create_new=False)

				Create/update a Dictionary object from this outline node.

Page numbers are resolved to a page reference on the input
Pdf object.

				Parameters:

								pdf (Pdf) – PDF document object.

				create_new (bool) – If set to True, creates a new object instead of
modifying an existing one in-place.

				Return type:

				Dictionary

				
class pikepdf.Permissions(accessibility=True, extract=True, modify_annotation=True, modify_assembly=False, modify_form=True, modify_other=True, print_lowres=True, print_highres=True)

				Stores the user-level permissions for an encrypted PDF.

A compliant PDF reader/writer should enforce these restrictions on people
who have the user password and not the owner password. In practice, either
password is sufficient to decrypt all document contents. A person who has
the owner password should be allowed to modify the document in any way.
pikepdf does not enforce the restrictions in any way; it is up to application
developers to enforce them as they see fit.

Unencrypted PDFs implicitly have all permissions allowed. Permissions can
only be changed when a PDF is saved.

				Parameters:

								accessibility (bool) –

				extract (bool) –

				modify_annotation (bool) –

				modify_assembly (bool) –

				modify_form (bool) –

				modify_other (bool) –

				print_lowres (bool) –

				print_highres (bool) –

				
accessibility: bool

				Can users use screen readers and accessibility tools to read the PDF?

				
extract: bool

				Can users extract contents?

				
modify_annotation: bool

				Can users modify annotations?

				
modify_assembly: bool

				Can users arrange document contents?

				
modify_form: bool

				Can users fill out forms?

				
modify_other: bool

				Can users modify the document?

				
print_highres: bool

				Can users print the document at high resolution?

				
print_lowres: bool

				Can users print the document at low resolution?

				
class pikepdf.models.EncryptionMethod

				Describes which encryption method was used on a particular part of a
PDF. These values are returned by pikepdf.EncryptionInfo but
are not currently used to specify how encryption is requested.

				
none

				Data was not encrypted.

				
unknown

				An unknown algorithm was used.

				
rc4

				The RC4 encryption algorithm was used (obsolete).

				
aes

				The AES-based algorithm was used as described in the PDF 1.7 Reference Manual.

				
aesv3

				An improved version of the AES-based algorithm was used as described in the
Adobe Supplement to the ISO 32000, requiring
PDF 1.7 extension level 3. This algorithm still uses AES, but allows both
AES-128 and AES-256, and improves how the key is derived from the password.

				
class pikepdf.models.EncryptionInfo(encdict)

				Reports encryption information for an encrypted PDF.

This information may not be changed, except when a PDF is saved.
This object is not used to specify the encryption settings to save
a PDF, due to non-overlapping information requirements.

				Parameters:

				encdict (dict[str, Any]) –

				
property P: int

				Return encoded permission bits.

See Pdf.allow() instead.

				
property R: int

				Revision number of the security handler.

				
property V: int

				Version of PDF password algorithm.

				
property bits: int

				Return the number of bits in the encryption algorithm.

e.g. if the algorithm is AES-256, this returns 256.

				
property encryption_key: bytes

				Return the RC4 or AES encryption key used for this file.

				
property file_method: EncryptionMethod

				Encryption method used to encode the whole file.

				
property stream_method: EncryptionMethod

				Encryption method used to encode streams.

				
property string_method: EncryptionMethod

				Encryption method used to encode strings.

				
property user_password: bytes

				If possible, return the user password.

The user password can only be retrieved when a PDF is opened
with the owner password and when older versions of the
encryption algorithm are used.

The password is always returned as bytes even if it has
a clear Unicode representation.

				
class pikepdf.Annotation

				Describes an annotation in a PDF, such as a comment, underline, copy editing marks,
interactive widgets, redactions, 3D objects, sound and video clips.

See the PDF 1.7 Reference Manual section 12.5.6 for the full list of annotation types
and definition of terminology.

New in version 2.12.

				
property appearance_dict

				Returns the annotations appearance dictionary.

				
property appearance_state

				Returns the annotation’s appearance state (or None).

For a checkbox or radio button, the appearance state may be pikepdf.Name.On
or pikepdf.Name.Off.

				
property flags

				Returns the annotation’s flags.

				
get_appearance_stream(*args, **kwargs)

				Overloaded function.

				get_appearance_stream(self: pikepdf.Annotation, which: pikepdf.Object) -> pikepdf.Object

Returns one of the appearance streams associated with an annotation.

				Args:

								which: Usually one of pikepdf.Name.N, pikepdf.Name.R or

				pikepdf.Name.D, indicating the normal, rollover or down
appearance stream, respectively. If any other name is passed,
an appearance stream with that name is returned.

				get_appearance_stream(self: pikepdf.Annotation, which: pikepdf.Object, state: pikepdf.Object) -> pikepdf.Object

Returns one of the appearance streams associated with an annotation.

				Args:

								which: Usually one of pikepdf.Name.N, pikepdf.Name.R or

				pikepdf.Name.D, indicating the normal, rollover or down
appearance stream, respectively. If any other name is passed,
an appearance stream with that name is returned.

				state: The appearance state. For checkboxes or radio buttons, the

				appearance state is usually whether the button is on or off.

				
get_page_content_for_appearance(self: pikepdf.Annotation, name: pikepdf.Object, rotate: int, required_flags: int = 0, forbidden_flags: int = 3) → bytes

				Generate content stream text that draws this annotation as a Form XObject.

				Parameters:

								name (pikepdf.Name) – What to call the object we create.

				rotate – Should be set to the page’s /Rotate value or 0.

Note

This method is done mainly with QPDF. Its behavior may change when
different QPDF versions are used.

				
property subtype

				Returns the subtype of this annotation.

				
class pikepdf._core.Attachments

				This interface provides access to any files that are attached to this PDF,
exposed as a Python collections.abc.MutableMapping interface.

The keys (virtual filenames) are always str, and values are always
pikepdf.AttachedFileSpec.

Use this interface through pikepdf.Pdf.attachments.

New in version 3.0.

				
clear() → None. Remove all items from D.

				

				
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

				

				
items() → a set-like object providing a view on D's items

				

				
keys() → a set-like object providing a view on D's keys

				

				
pop(k[, d]) → v, remove specified key and return the corresponding value.

				If key is not found, d is returned if given, otherwise KeyError is raised.

				
popitem() → (k, v), remove and return some (key, value) pair

				as a 2-tuple; but raise KeyError if D is empty.

				
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

				

				
update([E,]**F) → None. Update D from mapping/iterable E and F.

				If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

				
values() → an object providing a view on D's values

				

				
class pikepdf.AttachedFileSpec

				In a PDF, a file specification provides name and metadata for a target file.

Most file specifications are simple file specifications, and contain only
one attached file. Call get_file() to get the attached file:

pdf = Pdf.open(...)

fs = pdf.attachments['example.txt']
stream = fs.get_file()

To attach a new file to a PDF, you may construct a AttachedFileSpec.

pdf = Pdf.open(...)

fs = AttachedFileSpec.from_filepath(pdf, Path('somewhere/spreadsheet.xlsx'))

pdf.attachments['spreadsheet.xlsx'] = fs

PDF supports the concept of having multiple, platform-specialized versions of the
attached file (similar to resource forks on some operating systems). In theory,
this attachment ought to be the same file, but
encoded in different ways. For example, perhaps a PDF includes a text file encoded
with Windows line endings (\r\n) and a different one with POSIX line endings
(\n). Similarly, PDF allows for the possibility that you need to encode
platform-specific filenames. pikepdf cannot directly create these, because they
are arguably obsolete; it can provide access to them, however.

If you have to deal with platform-specialized versions,
use get_all_filenames() to enumerate those available.

Described in the PDF 1.7 Reference Manual section 7.11.3.

New in version 3.0.

				
__init__(self: pikepdf.AttachedFileSpec, q: pikepdf.Pdf, data: bytes, *, description: str = '', filename: str = '', mime_type: str = '', creation_date: str = '', mod_date: str = '', relationship: pikepdf.Object = pikepdf.Name('/Unspecified')) → None

				Construct a attached file spec from data in memory.

To construct a file spec from a file on the computer’s file system,
use from_filepath().

				Parameters:

								data – Resource to load.

				description – Any description text for the attachment. May be
shown in PDF viewers.

				filename – Filename to display in PDF viewers.

				mime_type – Helps PDF viewers decide how to display the information.

				creation_date – PDF date string for when this file was created.

				mod_date – PDF date string for when this file was last modified.

				relationship – A pikepdf.Name indicating the relationship
of this file to the document. Canonically, this should be a name
from the PDF specification:
Source, Data, Alternative, Supplement, EncryptedPayload, FormData,
Schema, Unspecified. If omitted, Unspecified is used.

				
property description

				Description text associated with the embedded file.

				
property filename

				The main filename for this file spec.

In priority order, getting this returns the first of /UF, /F, /Unix,
/DOS, /Mac if multiple filenames are set. Setting this will set a UTF-8
encoded Unicode filename and write it to /UF.

				
from_filepath(path, *, description='', relationship=pikepdf.Name('/Unspecified'))

				Construct a file specification from a file path.

This function will automatically add a creation and modified date
using the file system, and a MIME type inferred from the file’s extension.

If the data required for the attach is in memory, use
pikepdf.AttachedFileSpec() instead.

				Parameters:

								pdf (Pdf) – The Pdf to attach this file specification to.

				path (Path | str) – A file path for the file to attach to this Pdf.

				description (str) – An optional description. May be shown to the user in
PDF viewers.

				relationship (Name | None) – An optional relationship type. May be used to
indicate the type of attachment, e.g. Name.Source or Name.Data.
Canonically, this should be a name from the PDF specification:
Source, Data, Alternative, Supplement, EncryptedPayload, FormData,
Schema, Unspecified. If omitted, Unspecified is used.

				
get_all_filenames(self: pikepdf.AttachedFileSpec) → dict

				Return a Python dictionary that describes all filenames.

The returned dictionary is not a pikepdf Object.

Multiple filenames are generally a holdover from the pre-Unicode era.
Modern PDFs can generally set UTF-8 filenames and avoid using
punctuation or other marks that are forbidden in filenames.

				
get_file(*args, **kwargs)

				Overloaded function.

				get_file(self: pikepdf.AttachedFileSpec) -> pikepdf._core.AttachedFile

Return the primary (usually only) attached file.

				get_file(self: pikepdf.AttachedFileSpec, arg0: pikepdf.Object) -> pikepdf._core.AttachedFile

Return an attached file selected by pikepdf.Name.

Typical names would be /UF and /F. See PDF 1.7 Reference Manual for other obsolete
names.

				
property obj

				Get the underlying pikepdf.Object.

				
class pikepdf._core.AttachedFile

				An object that contains an actual attached file. These objects do not need
to be created manually; they are normally part of an AttachedFileSpec.

New in version 3.0.

				
property md5

				Get the MD5 checksum of the attached file according to the PDF creator.

				
property mime_type

				Get the MIME type of the attached file according to the PDF creator.

				
property obj

				Get the underlying pikepdf.Object.

				
property size

				Get length of the attached file in bytes according to the PDF creator.

				
class pikepdf.NameTree

				An object for managing name tree data structures in PDFs.

A name tree is a key-value data structure. The keys are any binary strings
(that is, Python bytes). If str selected is provided as a key,
the UTF-8 encoding of that string is tested. Name trees are (confusingly)
not indexed by pikepdf.Name objects. They behave like
DictMapping[bytes, pikepdf.Object].

The keys are sorted; pikepdf will ensure that the order is preserved.

The value may be any PDF object. Typically it will be a dictionary or array.

Internally in the PDF, a name tree can be a fairly complex tree data structure
implemented with many dictionaries and arrays. pikepdf (using libqpdf)
will automatically read, repair and maintain this tree for you. There should not
be any reason to access the internal nodes of a number tree; use this
interface instead.

NameTrees are used to store certain objects like file attachments in a PDF.
Where a more specific interface exists, use that instead, and it will
manipulate the name tree in a semantic correct manner for you.

Do not modify the internal structure of a name tree while you have a
NameTree referencing it. Access it only through the NameTree object.

Names trees are described in the PDF 1.7 Reference Manual section 7.9.6. See section 7.7.4
for a list of PDF objects that are stored in name trees.

New in version 3.0.

				
clear() → None. Remove all items from D.

				

				
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

				

				
static new(pdf: pikepdf.Pdf, *, auto_repair: bool = True) → pikepdf.NameTree

				Create a new NameTree in the provided Pdf.

You will probably need to insert the name tree in the PDF’s
catalog. For example, to insert this name tree in
/Root /Names /Dests:

nt = NameTree.new(pdf)
pdf.Root.Names.Dests = nt.obj

				
property obj

				Returns the underlying root object for this name tree.

				
pop(k[, d]) → v, remove specified key and return the corresponding value.

				If key is not found, d is returned if given, otherwise KeyError is raised.

				
popitem() → (k, v), remove and return some (key, value) pair

				as a 2-tuple; but raise KeyError if D is empty.

				
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

				

				
update([E,]**F) → None. Update D from mapping/iterable E and F.

				If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

				
class pikepdf.NumberTree

				An object for managing number tree data structures in PDFs.

A number tree is a key-value data structure, like name trees, except that the
key is an integer. It behaves like Dict[int, pikepdf.Object].

The keys can be sparse - not all integers positions will be populated. Keys
are also always sorted; pikepdf will ensure that the order is preserved.

The value may be any PDF object. Typically it will be a dictionary or array.

Internally in the PDF, a number tree can be a fairly complex tree data structure
implemented with many dictionaries and arrays. pikepdf (using libqpdf)
will automatically read, repair and maintain this tree for you. There should not
be any reason to access the internal nodes of a number tree; use this
interface instead.

NumberTrees are not used much in PDF. The main thing they provide is a mapping
between 0-based page numbers and user-facing page numbers (which pikepdf
also exposes as Page.label). The /PageLabels number tree is where the
page numbering rules are defined.

Number trees are described in the PDF 1.7 Reference Manual section 7.9.7. See section 12.4.2
for a description of the page labels number tree. Here is an example of modifying
an existing page labels number tree:

pagelabels = NumberTree(pdf.Root.PageLabels)
Label pages starting at 0 with lowercase Roman numerals
pagelabels[0] = Dictionary(S=Name.r)
Label pages starting at 6 with decimal numbers
pagelabels[6] = Dictionary(S=Name.D)

Page labels will now be:
i, ii, iii, iv, v, 1, 2, 3, ...

Do not modify the internal structure of a name tree while you have a
NumberTree referencing it. Access it only through the NumberTree object.

New in version 5.4.

				
clear() → None. Remove all items from D.

				

				
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

				

				
static new(pdf: pikepdf.Pdf, *, auto_repair: bool = True) → pikepdf.NumberTree

				Create a new NumberTree in the provided Pdf.

You will probably need to insert the number tree in the PDF’s
catalog. For example, to insert this number tree in
/Root /PageLabels:

nt = NumberTree.new(pdf)
pdf.Root.PageLabels = nt.obj

				
pop(k[, d]) → v, remove specified key and return the corresponding value.

				If key is not found, d is returned if given, otherwise KeyError is raised.

				
popitem() → (k, v), remove and return some (key, value) pair

				as a 2-tuple; but raise KeyError if D is empty.

				
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

				

				
update([E,]**F) → None. Update D from mapping/iterable E and F.

				If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/api/settings.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings				get_decimal_precision()

				set_decimal_precision()

				set_flate_compression_level()

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Settings

				
 View page source

Settings

Some of pikepdf’s global parameters can be tuned.

				
pikepdf.settings.get_decimal_precision() → int

				Get the number of decimal digits to use when converting floats.

				
pikepdf.settings.set_decimal_precision(arg0: int) → int

				Set the number of decimal digits to use when converting floats.

				
pikepdf.settings.set_flate_compression_level(arg0: int) → int

				Set the compression level whenever the Flate compression algorithm is used.

				Parameters:

				level – -1 (default), 0 (no compression), 1 to 9 (increasing compression)

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/genindex.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Index

				

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

								__array__() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

				__init__() (pikepdf.AttachedFileSpec method)

 				(pikepdf.Job method)

				(pikepdf.Matrix method)

				(pikepdf.PdfMatrix method)

				__matmul__() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

								__new__() (pikepdf.Array static method)

 				(pikepdf.Dictionary static method)

				(pikepdf.Name static method)

				(pikepdf.Stream static method)

				(pikepdf.String static method)

				_ObjectList (class in pikepdf._core)

A

								a (pikepdf.PdfMatrix property)

				accessibility (pikepdf.Permissions attribute)

				add() (pikepdf.models.Outline method)

				add_blank_page() (pikepdf.Pdf method)

				add_content_token_filter() (pikepdf.Page method)

				add_overlay() (pikepdf.Page method)

				add_resource() (pikepdf.Page method)

				add_underlay() (pikepdf.Page method)

				aes (pikepdf.models.Encryption attribute)

 				(pikepdf.models.EncryptionMethod attribute)

				aesv3 (pikepdf.models.EncryptionMethod attribute)

				all (pikepdf.StreamDecodeLevel attribute)

				allow (pikepdf.models.Encryption attribute)

 				(pikepdf.Pdf property)

				Annotation (class in pikepdf)

				appearance_dict (pikepdf.Annotation property)

				appearance_state (pikepdf.Annotation property)

								append() (pikepdf._core._ObjectList method)

 				(pikepdf._core.PageList method)

				(pikepdf.Object method)

				Array (class in pikepdf)

				array (pikepdf.ObjectType attribute)

				array_close (pikepdf.TokenType attribute)

				array_open (pikepdf.TokenType attribute)

				artbox (pikepdf.Page property)

				as_array() (pikepdf.Matrix method)

 				(pikepdf.Rectangle method)

				as_dict() (pikepdf.Object method)

				as_form_xobject() (pikepdf.Page method)

				as_list() (pikepdf.Object method)

				as_pil_image() (pikepdf.PdfImage method)

				AttachedFile (class in pikepdf._core)

				AttachedFileSpec (class in pikepdf)

				Attachments (class in pikepdf._core)

				attachments (pikepdf.Pdf property)

B

								b (pikepdf.PdfMatrix property)

				bad (pikepdf.TokenType attribute)

				bits (pikepdf.models.EncryptionInfo property)

				bits_per_component (pikepdf.PdfImage property)

				bleedbox (pikepdf.Page property)

				bool (pikepdf.TokenType attribute)

								boolean (pikepdf.ObjectType attribute)

				brace_close (pikepdf.TokenType attribute)

				brace_open (pikepdf.TokenType attribute)

				
 built-in function

 				pikepdf.new()

				pikepdf.open()

C

								c (pikepdf.PdfMatrix property)

				calc_form_xobject_placement() (pikepdf.Page method)

				check() (pikepdf.Pdf method)

				check_configuration() (pikepdf.Job method)

				check_linearization() (pikepdf.Pdf method)

				clear() (pikepdf._core._ObjectList method)

 				(pikepdf._core.Attachments method)

				(pikepdf.NameTree method)

				(pikepdf.NumberTree method)

				close() (pikepdf.Pdf method)

								colorspace (pikepdf.PdfImage property)

				comment (pikepdf.TokenType attribute)

				contents_add() (pikepdf.Page method)

				contents_coalesce() (pikepdf.Page method)

				ContentStreamInlineImage (class in pikepdf)

				ContentStreamInstruction (class in pikepdf)

				copy_foreign() (pikepdf.Pdf method)

				count() (pikepdf._core._ObjectList method)

				create_pdf() (pikepdf.Job method)

				creates_output (pikepdf.Job property)

				cropbox (pikepdf.Page property)

D

								d (pikepdf.PdfMatrix property)

				DataDecodingError

				decode_parms (pikepdf.PdfImage property)

				DeletedObjectError

				description (pikepdf.AttachedFileSpec property)

								dict_close (pikepdf.TokenType attribute)

				dict_open (pikepdf.TokenType attribute)

				Dictionary (class in pikepdf)

				dictionary (pikepdf.ObjectType attribute)

				disable (pikepdf.ObjectStreamMode attribute)

				docinfo (pikepdf.Pdf property)

E

								e (pikepdf.PdfMatrix property)

				emplace() (pikepdf.Object method)

				encode() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

				Encryption (class in pikepdf.models)

				encryption (pikepdf.Pdf property)

				encryption_key (pikepdf.models.EncryptionInfo property)

				encryption_status (pikepdf.Job property)

								EncryptionInfo (class in pikepdf.models)

				eof (pikepdf.TokenType attribute)

				exit_code (pikepdf.Job property)

				extend() (pikepdf._core._ObjectList method)

 				(pikepdf._core.PageList method)

				(pikepdf.Object method)

				externalize_inline_images() (pikepdf.Page method)

				extract (pikepdf.Permissions attribute)

				extract_to() (pikepdf.PdfImage method)

F

								f (pikepdf.PdfMatrix property)

				file_method (pikepdf.models.EncryptionInfo property)

				filename (pikepdf.AttachedFileSpec property)

 				(pikepdf.Pdf property)

				filter_decodeparms (pikepdf.PdfImage property)

				filters (pikepdf.PdfImage property)

								flags (pikepdf.Annotation property)

				flatten_annotations() (pikepdf.Pdf method)

				ForeignObjectError

				form_xobjects (pikepdf.Page property)

				from_dictionary_object() (pikepdf.models.OutlineItem class method)

				from_filepath() (pikepdf.AttachedFileSpec method)

				from_objgen() (pikepdf._core.PageList method)

G

								generalized (pikepdf.StreamDecodeLevel attribute)

				generate (pikepdf.ObjectStreamMode attribute)

				generate_appearance_streams() (pikepdf.Pdf method)

				get() (pikepdf._core.Attachments method)

 				(pikepdf.NameTree method)

				(pikepdf.NumberTree method)

				(pikepdf.Object method)

				get_all_filenames() (pikepdf.AttachedFileSpec method)

				get_appearance_stream() (pikepdf.Annotation method)

								get_decimal_precision() (in module pikepdf.settings)

				get_file() (pikepdf.AttachedFileSpec method)

				get_filtered_contents() (pikepdf.Page method)

				get_object() (pikepdf.Pdf method)

				get_page_content_for_appearance() (pikepdf.Annotation method)

				get_raw_stream_buffer() (pikepdf.Object method)

				get_stream_buffer() (pikepdf.Object method)

 				(pikepdf.PdfImage method)

				get_warnings() (pikepdf.Pdf method)

H

								handle_token() (pikepdf.TokenFilter method)

				has_warnings (pikepdf.Job property)

								height (pikepdf.PdfImage property)

 				(pikepdf.Rectangle property)

I

								icc (pikepdf.PdfImage property)

				identity() (pikepdf.PdfMatrix static method)

				iimage (pikepdf.ContentStreamInlineImage property)

				image_mask (pikepdf.PdfImage property)

				images (pikepdf.Page property)

				index (pikepdf.Page property)

				index() (pikepdf._core.PageList method)

				indexed (pikepdf.PdfImage property)

				inline_image (pikepdf.TokenType attribute)

				inlineimage (pikepdf.ObjectType attribute)

				insert() (pikepdf._core._ObjectList method)

 				(pikepdf._core.PageList method)

								integer (pikepdf.ObjectType attribute)

 				(pikepdf.TokenType attribute)

				inverse() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

				is_device_n (pikepdf.PdfImage property)

				is_encrypted (pikepdf.Pdf property)

				is_linearized (pikepdf.Pdf property)

				is_owned_by() (pikepdf.Object method)

				is_rectangle (pikepdf.Object property)

				is_separation (pikepdf.PdfImage property)

				items() (pikepdf._core.Attachments method)

 				(pikepdf.Object method)

J

								Job (class in pikepdf)

								job_json_schema() (pikepdf.Job static method)

				json_out_schema() (pikepdf.Job static method)

K

								keys() (pikepdf._core.Attachments method)

 				(pikepdf.Object method)

L

								label (pikepdf.Page property)

				llx (pikepdf.Rectangle property)

				lly (pikepdf.Rectangle property)

								load_from_docinfo() (pikepdf.models.PdfMetadata method)

				lower_left (pikepdf.Rectangle property)

				lower_right (pikepdf.Rectangle property)

M

								make_indirect() (pikepdf.Pdf method)

				make_stream() (pikepdf.Pdf method)

				Matrix (class in pikepdf)

				md5 (pikepdf._core.AttachedFile property)

				mediabox (pikepdf.Page property)

				message_prefix (pikepdf.Job property)

								metadata (pikepdf.models.Encryption attribute)

				mime_type (pikepdf._core.AttachedFile property)

				mode (pikepdf.PdfImage property)

				modify_annotation (pikepdf.Permissions attribute)

				modify_assembly (pikepdf.Permissions attribute)

				modify_form (pikepdf.Permissions attribute)

				modify_other (pikepdf.Permissions attribute)

N

								Name (class in pikepdf)

				name_ (pikepdf.ObjectType attribute)

 				(pikepdf.TokenType attribute)

				NameTree (class in pikepdf)

				new() (pikepdf.NameTree static method)

 				(pikepdf.NumberTree static method)

				(pikepdf.Pdf static method)

								none (pikepdf.models.EncryptionMethod attribute)

 				(pikepdf.StreamDecodeLevel attribute)

				null (pikepdf.ObjectType attribute)

 				(pikepdf.TokenType attribute)

				NumberTree (class in pikepdf)

O

								obj (pikepdf._core.AttachedFile property)

 				(pikepdf.AttachedFileSpec property)

				(pikepdf.NameTree property)

				(pikepdf.ObjectHelper property)

				(pikepdf.Page property)

				Object (class in pikepdf)

				ObjectHelper (class in pikepdf)

				objects (pikepdf.Pdf property)

				objgen (pikepdf.Object property)

				open() (pikepdf.Pdf method)

				open_metadata() (pikepdf.Pdf method)

								open_outline() (pikepdf.Pdf method)

				operands (pikepdf.ContentStreamInlineImage property)

 				(pikepdf.ContentStreamInstruction property)

				Operator (class in pikepdf)

				operator (pikepdf.ContentStreamInlineImage property)

 				(pikepdf.ContentStreamInstruction property)

				(pikepdf.ObjectType attribute)

				Outline (class in pikepdf.models)

				OutlineItem (class in pikepdf.models)

				OutlineStructureError

				owner (pikepdf.models.Encryption attribute)

				owner_password_matched (pikepdf.Pdf property)

P

								P (pikepdf.models.EncryptionInfo property)

				p() (pikepdf._core.PageList method)

				Page (class in pikepdf)

				PageList (class in pikepdf._core)

				pages (pikepdf.Pdf property)

				palette (pikepdf.PdfImage property)

				parse() (pikepdf.Object static method)

				parse_content_stream() (in module pikepdf)

				parse_contents() (pikepdf.Page method)

				PasswordError

				Pdf (class in pikepdf)

				pdf_version (pikepdf.Pdf property)

				pdfa_status (pikepdf.models.PdfMetadata property)

				PdfError

				PdfImage (class in pikepdf)

				PdfInlineImage (class in pikepdf)

				PdfMatrix (class in pikepdf)

				PdfMetadata (class in pikepdf.models)

				pdfx_status (pikepdf.models.PdfMetadata property)

								Permissions (class in pikepdf)

				pikepdf.models.EncryptionMethod (built-in class)

				
 pikepdf.new()

 				built-in function

				pikepdf.ObjectStreamMode (built-in class)

				pikepdf.ObjectType (built-in class)

				
 pikepdf.open()

 				built-in function

				pikepdf.StreamDecodeLevel (built-in class)

				pikepdf.TokenType (built-in class)

				pop() (pikepdf._core._ObjectList method)

 				(pikepdf._core.Attachments method)

				(pikepdf.NameTree method)

				(pikepdf.NumberTree method)

				popitem() (pikepdf._core.Attachments method)

 				(pikepdf.NameTree method)

				(pikepdf.NumberTree method)

				preserve (pikepdf.ObjectStreamMode attribute)

				print_highres (pikepdf.Permissions attribute)

				print_lowres (pikepdf.Permissions attribute)

R

								R (pikepdf.models.Encryption attribute)

 				(pikepdf.models.EncryptionInfo property)

				raw_value (pikepdf.Token property)

				rc4 (pikepdf.models.EncryptionMethod attribute)

				read_bytes() (pikepdf.Object method)

 				(pikepdf.PdfImage method)

				read_raw_bytes() (pikepdf.Object method)

				real (pikepdf.ObjectType attribute)

 				(pikepdf.TokenType attribute)

				Rectangle (class in pikepdf)

				register_xml_namespace() (pikepdf.models.PdfMetadata class method)

				remove() (pikepdf._core._ObjectList method)

 				(pikepdf._core.PageList method)

								remove_unreferenced_resources() (pikepdf.Page method)

 				(pikepdf.Pdf method)

				reserved (pikepdf.ObjectType attribute)

				resources (pikepdf.Page property)

				reverse() (pikepdf._core.PageList method)

				root (pikepdf.models.Outline property)

				Root (pikepdf.Pdf property)

				rotate() (pikepdf.Page method)

				rotated() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

				run() (pikepdf.Job method)

S

								same_owner_as() (pikepdf.Object method)

				save() (pikepdf.Pdf method)

				scaled() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

				set_decimal_precision() (in module pikepdf.settings)

				set_flate_compression_level() (in module pikepdf.settings)

				setdefault() (pikepdf._core.Attachments method)

 				(pikepdf.NameTree method)

				(pikepdf.NumberTree method)

				shorthand (pikepdf.Matrix property)

 				(pikepdf.PdfMatrix property)

				show() (pikepdf.PdfImage method)

								show_xref_table() (pikepdf.Pdf method)

				size (pikepdf._core.AttachedFile property)

 				(pikepdf.PdfImage property)

				space (pikepdf.TokenType attribute)

				specialized (pikepdf.StreamDecodeLevel attribute)

				Stream (class in pikepdf)

				stream (pikepdf.ObjectType attribute)

				stream_dict (pikepdf.Object property)

				stream_method (pikepdf.models.EncryptionInfo property)

				String (class in pikepdf)

				string (pikepdf.ObjectType attribute)

				string_method (pikepdf.models.EncryptionInfo property)

				subtype (pikepdf.Annotation property)

T

								to_dictionary_object() (pikepdf.models.OutlineItem method)

				to_json() (pikepdf.Object method)

				Token (class in pikepdf)

				TokenFilter (class in pikepdf)

				trailer (pikepdf.Pdf property)

								transform() (pikepdf.Matrix method)

				translated() (pikepdf.Matrix method)

 				(pikepdf.PdfMatrix method)

				trimbox (pikepdf.Page property)

				type_ (pikepdf.Token property)

U

								uninitialized (pikepdf.ObjectType attribute)

				unknown (pikepdf.models.EncryptionMethod attribute)

				unparse() (pikepdf.Object method)

				unparse_content_stream() (in module pikepdf)

				UnsupportedImageTypeError

				update() (pikepdf._core.Attachments method)

 				(pikepdf.NameTree method)

				(pikepdf.NumberTree method)

								upper_left (pikepdf.Rectangle property)

				upper_right (pikepdf.Rectangle property)

				urx (pikepdf.Rectangle property)

				ury (pikepdf.Rectangle property)

				user (pikepdf.models.Encryption attribute)

				user_password (pikepdf.models.EncryptionInfo property)

				user_password_matched (pikepdf.Pdf property)

V

								V (pikepdf.models.EncryptionInfo property)

								value (pikepdf.Token property)

				values() (pikepdf._core.Attachments method)

W

								width (pikepdf.PdfImage property)

 				(pikepdf.Rectangle property)

				with_same_owner_as() (pikepdf.Object method)

								word (pikepdf.TokenType attribute)

				wrap_in_array() (pikepdf.Object method)

				write() (pikepdf.Object method)

				write_pdf() (pikepdf.Job method)

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/index.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				pikepdf Documentation

				
 View page source

pikepdf Documentation

A northern pike, or esox lucius.

pikepdf is a Python library allowing creation, manipulation and repair of
PDFs. It provides a Pythonic wrapper around the C++ PDF content transformation
library, QPDF.

Python + QPDF = “py” + “qpdf” = “pyqpdf”, which looks like a dyslexia test and
is no fun to type. But say “pyqpdf” out loud, and it sounds like “pikepdf”.

At a glance

pikepdf is a library intended for developers who want to create, manipulate, parse,
repair, and abuse the PDF format. It supports reading and write PDFs, including
creating from scratch. Thanks to QPDF, it supports linearizing PDFs and access
to encrypted PDFs.

Rotate all pages in a file by 180 degrees
import pikepdf

with pikepdf.Pdf.open('test.pdf') as my_pdf:
 for page in my_pdf.pages:
 page.rotate(180, relative=True)
 my_pdf.save('test-rotated.pdf')

It is a low level library that requires knowledge of PDF internals and some
familiarity with the PDF specification.
It does not provide a user interface of its own.

pikepdf would help you build apps that do things like:

Pike fish are tough, hard-fighting, aggressive predators.

				Copy pages from one PDF into another

				Split and merge PDFs

				Extract content from a PDF such as images

				Replace content, such as replacing an image without
altering the rest of the file

				Repair, reformat or linearize PDFs

				Change the size of pages and reposition content

				Optimize PDFs similar to Acrobat’s features by downsampling images,
deduplicating

				Calculate how much to charge for a scanning project based on the materials
scanned

				Alter a PDF to meet a target specification such as PDF/A or PDF/X

				Add or modify PDF metadata

				Add, remove, extract, and modify PDF attachments
(i.e. embedded files)

				Create well-formed but invalid PDFs for testing purposes

What it cannot do:

Pikemen bracing for a calvary charge, carrying pikes.

				Rasterize PDF pages for display (that is, produce an image that shows what
a PDF page looks like at a particular resolution/zoom level) – use
PyMuPDF, pypdfium2, python-poppler or Ghostscript instead

				Convert from PDF to other similar paper capture formats like epub, XPS, DjVu,
Postscript – use MuPDF or PyMuPDF

				Print to paper

If you only want to generate PDFs and not read or modify them, consider
reportlab (a “write-only” PDF generator).

Requirements

pikepdf currently requires Python 3.8+. pikepdf 1.x supports Python 3.5.
pikepdf 2.x and 3.x support Python 3.6; pikepdf 4.x through 6.x support Python
3.7. Python 2.7 has never been supported.

Similar libraries

Unlike similar Python libraries such as pypdf, pikepdf is not pure
Python. These libraries were designed prior to Python wheels which has made Python
extension libraries much easier to work with. By leveraging the existing mature
code base of QPDF, despite being new, pikepdf is already more capable than both
in many respects – for example, it can read compress object streams, repair
damaged PDFs in many cases, and linearize PDFs. Unlike those libraries, it’s not
pure Python: it is impure and proud of it.

PyMuPDF is a PDF library with impressive capabilities. However, its AGPL license
is much more restrictive than pikepdf, and its dependency on static libraries
makes it difficult to include in open source Linux or BSD distributions.

In use

pikepdf is used by the same author’s OCRmyPDF to inspect input PDFs, graft the
generated OCR layers on to page content, and output PDFs. Its code contains several
practical examples, particular in pdfinfo.py, graft.py, and
optimize.py. pikepdf is also used in its test suite.

Introduction

				Tutorial				Opening and saving PDFs

				Creating PDFs

				Inspecting pages

				PDF dictionaries

				Page dictionaries

				repr() output

				Item and attribute notation

				Deleting pages

				Saving changes

				Next steps

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly				Split a PDF into single page PDFs

				Merge (concatenate) PDF from several PDFs

				Reversing the order of pages

				Copying pages from other PDFs

				Copying pages within a PDF

				Using counting numbers

				Accessing page labels

				Pages information from Root

				Working with pages				Page boxes

				Object model				Making PDF objects

				Object lifecycle and memory management

				Indirect objects

				Object helpers

				Stream objects				Reading stream objects

				Reading stream objects as a Python I/O streams

				Working with content streams				Pretty-printing content streams

				How content streams draw images

				Editing a content stream

				Editing content streams robustly

				Extracting text from PDFs

				Working with images				Playing with images

				Extracting images

				Replacing an image

				Removing an image

				Overlays, underlays, watermarks, n-up

				Character encoding				PDFDocEncoding

				Other codecs

				Metadata				Automatic metadata updates

				Accessing metadata

				Removing metadata items

				Checking PDF/A conformance

				Notice for application developers

				Low-level XMP metadata access

				The Document Info dictionary

				Outlines				Creating outlines

				Editing outlines

				Destinations

				Outline structure

				Name trees

				Attaching files to a PDF				General notes on attached files

				How to find attachments in a PDF viewer

				Creating attachment annotations

				Default appearance in PDF viewers

				PDF security				Password security

				PDF content restrictions

				Digital signatures and certificates

API

				Main objects				Pdf

				pikepdf.open()

				pikepdf.new()

				pikepdf.ObjectStreamMode

				pikepdf.StreamDecodeLevel

				Object construction

				Common PDF data structures

				Content stream elements

				Internal objects

				Jobs

				Support models				ObjectHelper

				Page

				PdfMatrix

				PdfImage

				PdfInlineImage

				PdfMetadata

				Encryption

				Outline

				OutlineItem

				Permissions

				pikepdf.models.EncryptionMethod

				EncryptionInfo

				Annotation

				Attachments

				AttachedFileSpec

				AttachedFile

				NameTree

				NumberTree

				Content streams				Content stream parsers

				Content stream token filters

				Exceptions				PdfError

				PasswordError

				ForeignObjectError

				OutlineStructureError

				UnsupportedImageTypeError

				DataDecodingError

				DeletedObjectError

				Settings				get_decimal_precision()

				set_decimal_precision()

				set_flate_compression_level()

Reference

				Architecture				Internals

				Thread safety

				File handles

				Contributing guidelines				Big changes

				Code style: Python

				Code style: C++

				Tests

				New dependencies

				English style guide

				Known ports/packagers

				Debugging				Using gdb to debug C++ and Python

				Compiling a debug build of QPDF

				Compile and link against QPDF source tree

				Enabling QPDF tracing

				Valgrind

				Profiling pikepdf

				pymemtrace

				Resources

 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/objects.inv

./usr/share/doc/python3-pikepdf/html/references/arch.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture				Internals

				Thread safety

				File handles

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Architecture

				
 View page source

Architecture

pikepdf uses pybind11 to bind the
C++ interface of QPDF. pybind11 was selected after evaluating Cython, CFFI and
SWIG as possible binding solutions.

In addition to bindings pikepdf includes support code written in a mix of C++
and Python, mainly to present a clean Pythonic interface to C++ and implement
higher level functionality.

Internals

Internally the package presents a module named pikepdf from which objects
can be imported. The C++ extension module is currently named pikepdf._core.
Users of pikepdf should not directly access _core since it is an
internal interface. In previous versions, this library was named _qpdf.

In general, modules or objects behind an underscore are private (although they
may be returned in some situations).

Thread safety

Because of the global interpreter lock (GIL), it is safe to read pikepdf
objects across Python threads. Also because of the GIL, there may not be much
performance gain from doing so.

If one or more threads will be modifying pikepdf objects, you will have to
coordinate read and write access with a threading.Lock.

It is not currently possible to pickle pikepdf objects or marshall them across
process boundaries (as would be required to use pikepdf in
multiprocessing). If this were implemented, it would not be much more
efficient than saving a full PDF and sending it to another process.
Parallelizing work (for example, by dividing work by PDF pages) can still be
achieved by having each worker process open the same file.

File handles

Because of technical limitations in underlying libraries, pikepdf keeps the
source PDF file open when a content is copied from it to another PDF, even when
all Python variables pointing to the source are removed. If a PDF is being
assembled from many sources, then all of those sources are held open in memory.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/references/contributing.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines				Big changes

				Code style: Python

				Code style: C++

				Tests

				New dependencies

				English style guide

				Known ports/packagers

				Debugging

				Resources

 pikepdf

 				

				Contributing guidelines

				
 View page source

Contributing guidelines

Contributions are welcome!

Big changes

Please open a new issue to discuss or propose a major change. Not only is it fun
to discuss big ideas, but we might save each other’s time too. Perhaps some of the
work you’re contemplating is already half-done in a development branch.

Code style: Python

We use PEP8, black for code formatting and isort for import sorting. The
settings for these programs are in pyproject.toml and setup.cfg. Pull
requests should follow the style guide. One difference we use from “black” style
is that strings shown to the user are always in double quotes (") and strings
for internal uses are in single quotes (').

Code style: C++

The file .clang-format contains our C++ format
based on Clang’s formatter, imperfect as it is. We eagerly await a dangling parenthesis
(https://reviews.llvm.org/D33029).

In general we prefer to make our C++ look similar to Python PEP8, within reason,
because our code is primarily a Python binding. That is, variable and method names
are snake_case, class names are CamelCase. Our coding conventions are closer to
pybind11’s than QPDF’s. When a C++ object wraps is a Python object, it should follow
the Python naming conventions for that type of object, e.g.
auto Decimal = py::module_::import("decimal").attr("Decimal")
for a reference to the Python Decimal class even though it is a C++ object.

We don’t like the traditional C++ .cpp/.h separation that results in a lot of
repetition. Headers that are included by only one .cpp can contain a complete class,
and get the -inl.h suffix, unless multiple inclusion is required.

Use RAII. Avoid naked pointers. Use the STL, use std::string instead of char *.
Use #pragma once as a header guard rather than silly #ifdef; they have
been around for 25 years.

Tests

New features should come with tests that confirm their correctness.

New dependencies

If you are proposing a change that will require a new dependency, we
prefer dependencies that are already packaged by Debian or Red Hat. This makes
life much easier for our downstream package maintainers.

Dependencies must also be compatible with the source code license.

English style guide

pikepdf is always spelled “pikepdf”, and never capitalized even at the beginning
of a sentence.

Periodic allusions to fish are required, and the writer shall be energetic and
mildly amusing.

Known ports/packagers

pikepdf has been ported to many platforms already. If you are interesting in
porting to a new platform, check with
Repology to see the status
of that platform.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/references/debugging.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging				Using gdb to debug C++ and Python

				Compiling a debug build of QPDF

				Compile and link against QPDF source tree

				Enabling QPDF tracing

				Valgrind

				Profiling pikepdf

				pymemtrace

				Resources

 pikepdf

 				

				Debugging

				
 View page source

Debugging

pikepdf does a complex job in providing bindings from Python to a C++ library,
both of which have different ideas about how to manage memory. This page
documents some methods that may help should it be necessary to debug the Python
C++ extension (pikepdf._core).

Using gdb to debug C++ and Python

Current versions of gdb can debug Python and C++ code simultaneously. See
the Python developer’s guide on gdb Support. To use this effectively, a debug
build of pikepdf and QPDF should be created.

Compiling a debug build of QPDF

To download QPDF and compile a debug build:

in QPDF source tree
cd $QPDF_SOURCE_TREE
cmake -S . -B build -DENABLE_QTC=ON -DCMAKE_BUILD_TYPE=Debug
cmake --build build -j

Compile and link against QPDF source tree

Build pikepdf._core against the version of QPDF above, rather than the
system version:

env QPDF_SOURCE_TREE=<location of QPDF> \
 QPDF_BUILD_LIBDIR=<directory containing libqpdf.so> \
 python setup.py build_ext --inplace

The libqpdf.so file should be located in the libqpdf subdirectory of your cmake
build directory but may be in a subdirectory of that if you are using a
multi-configuration generator with cmake. In addition to building against the QPDF
source, you’ll need to force your operating system to load the locally compiled
version of QPDF instead of the installed version:

Linux
env LD_LIBRARY_PATH=<directory containing libqpdf.so> python ...

macOS - may require disabling System Integrity Protection
env DYLD_LIBRARY_PATH=<directory containing libqpdf.so> python ...

On macOS you can make the library persistent by changing the name of the library
to use in pikepdf’s binary extension module:

install_name_tool -change /usr/local/lib/libqpdf*.dylib \
 $QPDF_BUILD_LIBDIR/libqpdf*.dylib \
 src/pikepdf/_core.cpython*.so

You can also run Python through a debugger (gdb or lldb) in this manner,
and you will have access to the source code for both pikepdf’s C++ and QPDF.

Enabling QPDF tracing

For builds of QPDF having ENABLE_QTC=ON, setting the environment variables
TC_SCOPE=qpdf and TC_FILENAME=your_log_file.txt will cause libqpdf to
log debug messages to the designated file. For example:

env TC_SCOPE=qpdf TC_FILENAME=libqpdf_log.txt python my_pikepdf_script.py

Valgrind

Valgrind may also be helpful - see the Python documentation for information
on setting up Python and Valgrind.

Profiling pikepdf

The standard Python profiling tools in cProfile work fine for many
purposes but cannot explore inside pikepdf’s C++ functions.

The py-spy program can effectively profile time spent in Python or executing
C++ code and demangle many C++ names to the appropriate symbols.

Happily it also does not require recompiling in any special mode, unless one
desires more symbol information than libqpdf or the C++ standard library exports.

For best results, use py-spy to generate speedscope files and use the speedscope
application to view them. py-spy’s SVG output is illegible due to long C++ template
names as of this writing.

To install profiling and use profiling software:

From a virtual environment with pikepdf installed...

Install
pip install py-spy
npm install -g speedscope # may need sudo to install this

Run profile on a script that executes some pikepdf code we want to profile
py-spy record --native --format speedscope -o profile.speedscope -- python some_script.py

View results (this will open a browser window)
speedscope profile.speedscope

To profile pikepdf’s test suite, ensure that you run pytest -n0 to disable
multiple CPU usage, since py-spy cannot trace inside child processes.

pymemtrace

pymemtrace is another helpful tool for diagnosing memory leaks.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/references/resources.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Resources

				
 View page source

Resources

				QPDF Manual

				PDF 1.7 ISO Specification PDF 32000-1:2008

				Adobe Supplement to ISO 32000 BaseVersion 1.7 ExtensionLevel 3, Adobe Acrobat 9.0, June 2008, for AESv3

				Other Adobe extensions to the PDF specification

For information about copyrights and licenses, including those associated with the
images in this documentation, see the source tree file .reuse/dep5.

 Previous

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/index.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				
 View page source

Release notes

Releasing a pike.

pikepdf releases use the semantic versioning
policy.

The pikepdf API (as provided by import pikepdf) is stable and
is in production use. Note that the C++ extension module
pikepdf._core is a private interface within pikepdf that applications
should not access directly, along with any modules with a prefixed underscore.

				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version0.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2				Fixes

				v0.10.1				Fixes

				v0.10.0				Fixes

				v0.9.2				Fixes

				v0.9.1				Fixes

				v0.9.0				Updates

				Fixes

				Breaking

				v0.3.7

				v0.3.6

				v0.3.5				Breaking

				Fixes

				v0.3.4				Updates

				v0.3.3				Breaking

				Updates

				Fixes

				v0.3.2				Updates

				v0.3.1				Breaking

				Updates

				Fixes

				v0.3.0				Breaking

				Updates

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v0.10.2

				
 View page source

v0.10.2

Fixes

				Fixed segfault when overwriting the pikepdf file that is currently
open on Linux.

				Fixed removal of an attribute metadata value when values were present
on the same node.

v0.10.1

Fixes

				Avoid canonical XML since it is apparently too strict for XMP.

v0.10.0

Fixes

				Fixed several issues related to generating XMP metadata that passed
veraPDF validation.

				Fixed a random test suite failure for very large negative integers.

				The lxml library is now required.

v0.9.2

Fixes

				Added all of the commonly used XML namespaces to XMP metadata
handling, so we are less likely to name something ‘ns1’, etc.

				Skip a test that fails on Windows.

				Fixed build errors in documentation.

v0.9.1

Fixes

				Fix Object.write() accepting positional arguments it wouldn’t use

				Fix handling of XMP data with timezones (or missing timezone
information) in a few cases

				Fix generation of XMP with invalid XML characters if the invalid
characters were inside a non-scalar object

v0.9.0

Updates

				New API to access and edit PDF metadata and make consistent edits to
the new and old style of PDF metadata.

				32-bit binary wheels are now available for Windows

				PDFs can now be saved in QPDF’s “qdf” mode

				The Python package defusedxml is now required

				The Python package python-xmp-toolkit and its dependency libexempi
are suggested for testing, but not required

Fixes

				Fixed handling of filenames that contain multibyte characters on
non-UTF-8 systems

Breaking

				The Pdf.metadata property was removed, and replaced with the new
metadata API

				Pdf.attach() has been removed, because the interface as
implemented had no way to deal with existing attachments.

v0.3.7

				Add API for inline images to unparse themselves

v0.3.6

				Performance of reading files from memory improved to avoid
unnecessary copies.

				It is finally possible to use for key in pdfobj to iterate
contents of PDF Dictionary, Stream and Array objects. Generally these
objects behave more like Python containers should now.

				Package API declared beta.

v0.3.5

Breaking

				Pdf.save(...stream_data_mode=...) has been dropped in favor of
the newer compress_streams= and stream_decode_level
parameters.

Fixes

				A use-after-free memory error that caused occasional segfaults and
“QPDFFakeName” errors when opening from stream objects has been
resolved.

v0.3.4

Updates

				pybind11 vendoring has ended now that v2.2.4 has been released

v0.3.3

Breaking

				libqpdf 8.2.1 is now required

Updates

				Improved support for working with JPEG2000 images in PDFs

				Added progress callback for saving files,
Pdf.save(..., progress=)

				Updated pybind11 subtree

Fixes

				del obj.AttributeName was not implemented. The attribute
interface is now consistent

				Deleting named attributes now defers to the attribute dictionary for
Stream objects, as get/set do

				Fixed handling of JPEG2000 images where metadata must be retrieved
from the file

v0.3.2

Updates

				Added support for direct image extraction of CMYK and grayscale
JPEGs, where previously only RGB (internally YUV) was supported

				Array() now creates an empty array properly

				The syntax Name.Foo in Dictionary(), e.g.
Name.XObject in page.Resources, now works

v0.3.1

Breaking

				pikepdf.open now validates its keyword arguments properly,
potentially breaking code that passed invalid arguments

				libqpdf 8.1.0 is now required - libqpdf 8.1.0 API is now used for
creating Unicode strings

				If a non-existent file is opened with pikepdf.open, a
FileNotFoundError is raised instead of a generic error

				We are now temporarily vendoring a copy of pybind11 since its
main branch contains unreleased and important fixes for Python 3.7.

Updates

				The syntax Name.Thing (e.g. Name.DecodeParms) is now
supported as equivalent to Name('/Thing') and is the recommended
way to refer names within a PDF

				New API Pdf.remove_unneeded_resources() which removes objects
from each page’s resource dictionary that are not used in the page.
This can be used to create smaller files.

Fixes

				Fixed an error parsing inline images that have masks

				Fixed several instances of catching C++ exceptions by value instead
of by reference

v0.3.0

Breaking

				Modified Object.write method signature to require filter and
decode_parms as keyword arguments

				Implement automatic type conversion from the PDF Null type to
None

				Removed Object.unparse_resolved in favor of
Object.unparse(resolved=True)

				libqpdf 8.0.2 is now required at minimum

Updates

				Improved IPython/Jupyter interface to directly export temporary PDFs

				Updated to qpdf 8.1.0 in wheels

				Added Python 3.7 support for Windows

				Added a number of missing options from QPDF to Pdf.open and
Pdf.save

				Added ability to delete a slice of pages

				Began using Jupyter notebooks for documentation

v0.2.2

				Added Python 3.7 support to build and test (not yet available for
Windows, due to lack of availability on Appveyor)

				Removed setter API from PdfImage because it never worked anyway

				Improved handling of PdfImage with trivial palettes

v0.2.1

				Object.check_owner renamed to Object.is_owned_by

				Object.objgen and Object.get_object_id are now public
functions

				Major internal reorganization with pikepdf.models becoming the
submodule that holds support code to ease access to PDF objects as
opposed to wrapping QPDF.

v0.2.0

				Implemented automatic type conversion for int, bool and
Decimal, eliminating the pikepdf.{Integer,Boolean,Real}
types. Removed a lot of associated numerical code.

Everything before v0.2.0 can be considered too old to document.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version1.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v1.19.4

				
 View page source

v1.19.4

				Modify project settings to declare no support for Python 3.9 in pikepdf 1.x.
pybind11 upstream has indicated there are stability problems when pybind11
2.5 (used by pikepdf 1.x) is used with Python 3.9. As such, we are marking
Python 3.9 as unsupported by pikepdf 1.x. Python 3.9 users should switch to
pikepdf 2.x.

v1.19.3

				Fixed an exception that occurred when building the documentation, introduced in
the previous release.

v1.19.2

				Fixed an exception with setting metadata objects to unsupported RDF types.
Instead we make a best effort to convert to an appropriate type.

				Prevent creating certain illegal dictionary key names.

				Document procedure to remove an image.

v1.19.1

				Fixed an issue with unparse_content_stream: we now assume the second item
of each step in the content stream is an Operator.

				Fixed an issue with unparsing inline images.

v1.19.0

				Learned how to export CCITT images from PDFs that have ICC profiles attached.

				Cherry-picked a workaround to a possible use-after-free caused by pybind11
(pybind11 PR 2223).

				Improved test coverage of code that handles inline images.

v1.18.0

				You can now use pikepdf.open(...allow_overwriting_input=True) to allow
overwriting the input file, which was previously forbidden because it can corrupt
data. This is accomplished safely by loading the entire PDF into memory at the
time it is opened rather than loading content as needed. The option is disabled by
default, to avoid a performance hit.

				Prevent setup.py from creating junk temporary files (finally!)

v1.17.3

				Fixed crash when pikepdf.Pdf objects are used inside generators (#114) and
not freed or closed before the generator exits.

v1.17.2

				Fixed issue, “seek of closed file” where JBIG2 image data could not be accessed
(only metadata could be) when a JBIG2 was extracted from a PDF.

v1.17.1

				Fixed building against the oldest supported version of QPDF (8.4.2), and
configure CI to test against the oldest version. (#109)

v1.17.0

				Fixed a failure to extract PDF images, where the image had both a palette
and colorspace set to an ICC profile. The iamge is now extracted with the
profile embedded. (#108)

				Added opt-in support for memory-mapped file access, using
pikepdf.open(...access_mode=pikepdf.AccessMode.mmap). Memory mapping
file access performance considerably, but may make application exception
handling more difficult.

v1.16.1

				Fixed an issue with JBIG2 extraction, where the version number of the jbig2dec
software may be written to standard output as a side effect. This could
interfere with test cases or software that expects pikepdf to be stdout-clean.

				Fixed an error that occurred when updating DocumentInfo to match XMP metadata,
when XMP metadata had unexpected empty tags.

				Fixed setup.py to better support Python 3.8 and 3.9.

				Documentation updates.

v1.16.0

				Added support for extracting JBIG2 images with the image API. JBIG2 images are
converted to PIL.Image. Requires a JBIG2 decoder such as jbig2dec.

				Python 3.5 support is deprecated and will end when Python 3.5 itself reaches
end of life, in September 2020. At the moment, some tests are skipped on Python
3.5 because they depend on Python 3.6.

				Python 3.9beta is supported and is known to work on Fedora 33.

v1.15.1

				Fixed a regression - Pdf.save(filename) may hold file handles open after
the file is fully written.

				Documentation updates.

v1.15.0

				Fixed an issue where Decimal objects of precision exceeding the
PDF specification could be written to output files, causing some PDF viewers,
notably Acrobat, to parse the file incorrectly. We now limit precision to
15 digits, which ought to be enough to prevent rounding error and parsing
errors.

				We now refuse to create pikepdf objects from float or Decimal that are
NaN or ±Infinity. These concepts have no equivalent in PDF.

				pikepdf.Array objects now implement .append() and .extend() with
familiar Python list semantics, making them easier to edit.

v1.14.0

				Allowed use of .keys(), .items() on pikepdf.Stream objects.

				We now warn on attempts to modify pikepdf.Stream.Length, which pikepdf will
manage on its own when the stream is serialized. In the future attempting to
change it will become an error.

				Clarified documentation in some areas about behavior of pikepdf.Stream.

v1.13.0

				Added support for editing PDF Outlines (also known as bookmarks or the table of
contents). Many thanks to Matthias Erll for this contribution.

				Added support for decoding run length encoded images.

				Object.read_bytes() and Object.get_stream_buffer() can now request decoding
of uncommon PDF filters.

				Fixed test suite warnings related to pytest and hypothesis.

				Fixed build on Cygwin. Thanks to @jhgarrison for report and testing.

v1.12.0

				Microsoft Visual C++ Runtime libraries are now included in the pikepdf Windows
wheel, to improve ease of use on Windows.

				Defensive code added to prevent using .emplace() on objects from a
foreign PDF without first copying the object. Previously, this would raise
an exception when the file was saved.

v1.11.2

				Fix “error caused by missing str function of Array” (#100, #101).

				Lots of delinting and minor fixes.

v1.11.1

				We now avoid creating an empty XMP metadata entry when files are saved.

				Updated documentation to describe how to delete the document information
dictionary.

v1.11.0

				Prevent creation of dictionaries with invalid names (not beginning with /).

				Allow pikepdf’s build to specify a qpdf source tree, allowing one to compile
pikepdf against an unreleased/modified version of qpdf.

				Improved behavior of pages.p() and pages.remove() when invalid parameters
were given.

				Fixed compatibility with libqpdf version 10.0.1, and build official wheels
against this version.

				Fixed compatibility with pytest 5.x.

				Fixed the documentation build.

				Fixed an issue with running tests in a non-Unicode locale.

				Fixed a test that randomly failed due to a “deadline error”.

				Removed a possibly nonfree test file.

v1.10.4

				Rebuild Python wheels with newer version of libqpdf. Fixes problems with
opening certain password-protected files (#87).

v1.10.3

				Fixed isinstance(obj, pikepdf.Operator) not working. (#86)

				Documentation updates.

v1.10.2

				Fixed an issue where pages added from a foreign PDF were added as references
rather than copies. (#80)

				Documentation updates.

v1.10.1

				Fixed build reproducibility (thanks to @lamby)

				Fixed a broken link in documentation (thanks to @maxwell-k)

v1.10.0

				Further attempts to recover malformed XMP packets.

				Added missing functionality to extract 1-bit palette images from PDFs.

v1.9.0

				Improved a few cases of malformed XMP recovery.

				Added an unparse_content_stream API to assist with converting the previously
parsed content streams back to binary.

v1.8.3

				If the XMP metadata packet is not well-formed and we are confident that it
is essentially empty apart from XML fluff, we fix the problem instead of
raising an exception.

v1.8.2

				Fixed an issue where QPDF 8.4.2 would report different errors from QPDF 9.0.0,
causing a test to fail. (#71)

v1.8.1

				Fixed an issue where files opened by name may not be closed correctly. Regression
from v1.8.0.

				Fixed test for readable/seekable streams evaluated to always true.

v1.8.0

				Added API/property to iterate all objects in a PDF: pikepdf.Pdf.objects.

				Added pikepdf.Pdf.check(), to check for problems in the PDF and return a
text description of these problems, similar to qpdf --check.

				Improved internal method for opening files so that the code is smaller and
more portable.

				Added missing licenses to account for other binaries that may be included in
Python wheels.

				Minor internal fixes and improvements to the continuous integration scripts.

v1.7.1

				This release was incorrectly marked as a patch-level release when it actually
introduced one minor new feature. It includes the API change to support
pikepdf.Pdf.objects.

v1.7.0

				Shallow object copy with copy.copy(pikepdf.Object) is now supported. (Deep
copy is not yet supported.)

				Support for building on C++11 has been removed. A C++14 compiler is now required.

				pikepdf now generates manylinux2010 wheels on Linux.

				Build and deploy infrastructure migrated to Azure Pipelines.

				All wheels are now available for Python 3.5 through 3.8.

v1.6.5

				Fixed build settings to support Python 3.8 on macOS and Linux. Windows support
for Python 3.8 is not currently tested since continuous integration providers
have not updated to Python 3.8 yet.

				pybind11 2.4.3 is now required, to support Python 3.8.

v1.6.4

				When images were encoded with CCITTFaxDecode, type G4, with the /EncodedByteAlign
set to true (not default), the image extracted by pikepdf would be a corrupted
form of the original, usually appearing as a small speckling of black pixels at the
top of the page. Saving an image with pikepdf was not affected; this problem
only occurred when attempting to extract images. We now refuse to extract images
with these parameters, as there is not sufficient documentation to determine
how to extract them. This image format is relatively rare.

v1.6.3

				Fixed compatibility with libqpdf 9.0.0.

				A new method introduced in libqpdf 9.0.0 overloaded an older method, making
a reference to this method in pikepdf ambiguous.

				A test relied on libqpdf raising an exception when a pikepdf user called
Pdf.save(..., min_version='invalid'). libqpdf no longer raises an
exception in this situation, but ignores the invalid version. In the interest
of supporting both versions, we defer to libqpdf. The failing test is
removed, and documentation updated.

				Several warnings, most specific to the Visual C++ compiler, were fixed.

				The Windows CI scripts were adjusted for the change in libqpdf ABI version.

				Wheels are now built against libqpdf 9.0.0.

				libqpdf 8.4.2 and 9.0.0 are both supported.

v1.6.2

				Fixed another build problem on Alpine Linux - musl-libc defines struct FILE
as an incomplete type, which breaks pybind11 metaprogramming that attempts
to reason about the type.

				Documentation improved to mention FreeBSD port.

v1.6.1

				Dropped our one usage of QPDF’s C API so that we use only C++.

				Documentation improvements.

v1.6.0

				Added bindings for QPDF’s page object helpers and token filters. These
enable: filtering content streams, capturing pages as Form XObjects, more
convenient manipulation of page boxes.

				Fixed a logic error on attempting to save a PDF created in memory in a
way that overwrites an existing file.

				Fixed Pdf.get_warnings() failed with an exception when attempting to
return a warning or exception.

				Improved manylinux1 binary wheels to compile all dependencies from source
rather than using older versions.

				More tests and more coverage.

				libqpdf 8.4.2 is required.

v1.5.0

				Improved interpretation of images within PDFs that use an ICC colorspace.
Where possible we embed the ICC profile when extracting the image, and
profile access to the ICC profile.

				Fixed saving PDFs with their existing encryption.

				Fixed documentation to reflect the fact that saving a PDF without
specifying encryption settings will remove encryption.

				Added a test to prevent overwriting the input PDF since overwriting
corrupts lazy loading.

				Object.write(filters=, decode_parms=) now detects invalid parameters
instead of writing invalid values to Filters and DecodeParms.

				We can now extract some images that had stacked compression, provided it
is /FlateDecode.

				Add convenience function Object.wrap_in_array().

v1.4.0

				Added support for saving encrypted PDFs. (Reading them has been supported
for a long time.)

				Added support for setting the PDF extension level as well as version.

				Added support converting strings to and from PDFDocEncoding, by
registering a "pdfdoc" codec.

v1.3.1

				Updated pybind11 to v2.3.0, fixing a possible GIL deadlock when
pikepdf objects were shared across threads. (#27)

				Fixed an issue where PDFs with valid XMP metadata but missing an
element that is usually present would be rejected as malformed XMP.

v1.3.0

				Remove dependency on defusedxml.lxml, because this library is deprecated.
In the absence of other options for XML hardening we have reverted to
standard lxml.

				Fixed an issue where PdfImage.extract_to() would write a file in
the wrong directory.

				Eliminated an intermediate buffer that was used when saving to an IO
stream (as opposed to a filename). We would previously write the
entire output to a memory buffer and then write to the output buffer;
we now write directly to the stream.

				Added Object.emplace() as a workaround for when one wants to
update a page without generating a new page object so that
links/table of contents entries to the original page are preserved.

				Improved documentation. Eliminated all arg0 placeholder variable
names, which appeared when the documentation generator could not read a
C++ variable name.

				Added PageList.remove(p=1), so that it is possible to remove
pages using counting numbers.

v1.2.0

				Implemented Pdf.close() and with-block context manager, to
allow Pdf objects to be closed without relying on del.

				PdfImage.extract_to() has a new keyword argument fileprefix=,
which to specify a filepath where an image should be extracted with
pikepdf setting the appropriate file suffix. This simplifies the API
for the most common case of extracting images to files.

				Fixed an internal test that should have suppressed the extraction of
JPEGs with a nonstandard ColorTransform parameter set. Without the
proper color transform applied, the extracted JPEGs will typically
look very pink. Now, these images should fail to extract as was
intended.

				Fixed that Pdf.save(object_stream_mode=...) was ignored if the
default fix_metadata_version=True was also set.

				Data from one Pdf is now copied to other Pdf objects
immediately, instead of creating a reference that required source
PDFs to remain available. Pdf objects no longer reference each
other.

				libqpdf 8.4.0 is now required

				Various documentation improvements

v1.1.0

				Added workaround for macOS/clang build problem of the wrong exception
type being thrown in some cases.

				Improved translation of certain system errors to their Python
equivalents.

				Fixed issues resulting from platform differences in
datetime.strftime. (#25)

				Added Pdf.new, Pdf.add_blank_page and Pdf.make_stream
convenience methods for creating new PDFs from scratch.

				Added binding for new QPDF JSON feature: Object.to_json.

				We now automatically update the XMP PDFVersion metadata field to be
consistent with the PDF’s declared version, if the field is present.

				Made our Python-augmented C++ classes easier for Python code
inspectors to understand.

				Eliminated use of the imghdr library.

				Autoformatted Python code with black.

				Fixed handling of XMP metadata that omits the standard
<x:xmpmeta> wrapper.

v1.0.5

				Fixed an issue where an invalid date in XMP metadata would cause an
exception when updating DocumentInfo. For now, we warn that some
DocumentInfo is not convertible. (In the future, we should also check
if the XMP date is valid, because it probably is not.)

				Rebuilt the binary wheels with libqpdf 8.3.0. libqpdf 8.2.1 is still
supported.

v1.0.4

				Updates to tests/resources (provenance of one test file, replaced
another test file with a synthetic one)

v1.0.3

				Fixed regression on negative indexing of pages.

v1.0.2

				Fixed an issue where invalid values such as out of range years (e.g.
1) in DocumentInfo would raise exceptions when using DocumentInfo to
populate XMP metadata with .load_from_docinfo.

v1.0.1

				Fixed an exception with handling metadata that contains the invalid
XML entity � (an escaped NUL)

v1.0.0

				Changed version to 1.0.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version2.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0				v2.0.0b2

				v2.0.0b1

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v2.16.1

				
 View page source

v2.16.1

				unparse_content_stream is now less strict about whether elements are lists
or tuples, matching its v2.15.1 behavior.

v2.16.0

				Performance improvement for unparse_content_stream.

				Fixed some linter warnings.

				Tightened pybind11 dependencies so we don’t accept new minor revisions automatically.

				Updated docs on FreeBSD.

v2.15.1

				Fixed compatibility with pybind11 2.7.0 - some tests fail when previous versions of
pikepdf are compiled with that version.

				Fixed a coverage code exclusion.

				Added a note missing “version added” comment to documentation.

				Fixed license string not appearing in metadata - thanks @mara004.

v2.15.0

				Improved our pdfdoc codec to raise UnicodeEncodeError identifying the
problem, instead of a less specific ValueError. Thanks to @regebro. #218

				We now implement stream reader/writer and incremental encoder/decoder for
our pdfdoc codec, making it useful in more places.

				Fixed an issue with extracting JBIG2 images on Windows, due to Windows temporary
file behavior. Thanks to @kraptor. #219

v2.14.2

				Fixed a syntax error in type hints.

v2.14.1

				Fixed the ReadTheDocs documentation build, which had broken after the setup.cfg
changes in v2.13.0.

				Amended the Makefile with steps for building Apple Silicon wheels.

				No manual Apple Silicon release since there are no functional changes.

v2.14.0

				Implemented a major new feature: overlays (watermarks, page composition). This
makes it easier to solve many common tasks that involve copying content from
pages to other pages, applying watermarks, headers/footers, etc. #42

				Added pikepdf.Object.with_same_owner_as() to simplify creating objects
that have the same owner as another object.

				Many improvements to type hints for classes implemented in C++. #213, #214

v2.13.0

				Build system modernized to use setup.cfg instead of setup.py as much as
reasonable.

				The requirements/*.txt files are now deprecated. Instead use
pip install pikepdf[test,docs] to install optional extras.

				Extended test coverage for a few tests that affect global state, using pytest-forked
to isolate them.

				All C++ autoformatted with clang-format.

				We now imbue all C++ stringstreams with the C locale, to avoid formatting output
incorrectly if another Python extension written in C++ happens to change the global
std::locale.

v2.12.2

				Rebuild wheels against libqpdf 10.3.2.

				Enabled building Linux PyPy x86_64 wheels.

				Fixed a minor issue where the inline images would have their abbreviations
expanded when unparsed. While unlikely to be problematic, inline images usually
use abbreviations in their metadata and should be kept that way.

				Added notes to documentation about loading PDFs through Python file streams
and cases that can lead to poor performance.

v2.12.1

				Fixed documentation typo and updated precommit settings.

				Ongoing improvements to code coverage: now related to image handling.

v2.12.0

				Complete bindings for pikepdf.Annotation (useful for interpreting PDF
form widgets, comments, etc.)

				Ongoing improvements to code coverage: minor bug fixes, unreachable code removal,
more coverage.

v2.11.4

				Fix #160, ‘Tried to call pure virtual function “TokenFilter::handle_token”’;
this was a Python/C++ reference counting problem.

v2.11.3

				Check for versions of jbig2dec that are too old to be supported (lacking the
necessary command line arguments to extract an image from a PDF).

				Fix setup.py typo: cmd_class changed to cmdclass.

v2.11.2

				Added missing documentation for Pdf.is_encrypted.

				Added some documentation annotations about when certain APIs were added or
changed, going back to 2.0.

v2.11.1

				Fixed an issue with Object.emplace() not retaining the original object’s
/Parent.

				Code coverage improvements.

v2.11.0

				Add new functions: Pdf.generate_appearance_streams and Pdf.flatten_annotations,
to support common work with PDF forms.

				Fixed an issue with pip install on platforms that lack proper multiprocessing
support.

				Additional documentation improvements from @m-holger - thanks again!

v2.10.0

				Fixed a XML External Entity (XXE) processing vulnerability in PDF XMP metadata
parsing. (Reported by Eric Therond of Sonarsource.) All users should upgrade
to get this security update. CVE-2021-29421
was assigned to this issue.

				Bind new functions to check, when a PDF is opened, whether the password used
to open the PDF matched the owner password, user password, or both:
Pdf.user_password_matched and Pdf.owner_password_matched.

v2.9.2

				Further expansion of test coverage of several functions, and minor bug fixes
along the way.

				Improve parameter validation for some outline-related functions.

				Fixed overloaded __repr__ functions in _methods.py not being applied.

				Some proofreading of the documentation by @m-holger - thanks!

v2.9.1

				Further expansion of test coverage.

				Fixed function signatures for _repr_mimebundle_ functions to match IPython’s
spec.

				Fixed some error messages regarding attempts to do strange things with
pikepdf.Name, like pikepdf.Name.Foo = 3.

				Eliminated code to handle an exception that provably does not occur.

				Test suite is now better at closing open file handles.

				Ensure that any demo code in README.md is valid and works.

				Embedded QPDF version in pikepdf Python wheels increased to 10.3.1.

v2.9.0

				We now issue a warning when attempting to use pikepdf.open on a bytes
object where it could be either a PDF loaded into memory or a filename.

				pikepdf.Page.label will now return the “ordinary” page number if no special
rules for pages are defined.

				Many improvements to tests and test coverage. Code coverage for both Python and
C++ is now automatically published to codecov.io; previously coverage was only
checked on the developer’s machine.

				An obsolete private function Object._roundtrip was removed.

v2.8.0

				Fixed an issue with extracting data from images that had their DecodeParms
structured as a list of dictionaries.

				Fixed an issue where a dangling stream object is created if we fail to create
the requested stream dictionary.

				Calling Dictionary() and Array() on objects which are already of that
type returns a shallow copy rather than throwing an exception, in keeping with
Python semantics.

				v2.8.0.post1: The CI system was changed from Azure Pipelines to GitHub Actions,
a transition we made to support generating binary wheels for more platforms.
This post-release was the first release made with GitHub Actions. It ought to be
functionally identical, but could different in some subtle way, for example
because parts of it may have been built with different compiler versions.

				v2.8.0.post2: The previous .post1 release caused binary wheels for Linux to
grow much larger, causing problems for AWS Lambda who require small file sizes.
This change strips the binaries of debug symbols, also mitigates a rare PyPy
test failure.

				Unfortunately, it appears that the transition from Azure Pipelines to GitHub
Actions broke compatibility with macOS 10.13 and older. macOS 10.13 and older
are considered end of life by Apple. No version of pikepdf v2.x ever promised
support for macOS 10.13 – 10.14+ has always been an explicit requirement.
It just so happens that for some time, pikepdf did actually work on 10.13.

v2.7.0

				Added an option to tell Pdf.save to recompress flate streams, and a global
option to set the flate compression level. This option can be use to force
the recompression of flate streams if they are not well compressed.

				Fixed “TypeError: only pages can be inserted” when attempting to an insert an
unowned page using QPDF 10.2.0 or later.

v2.6.0

				Rebuild wheels against QPDF 10.2.0.

v2.5.2

				Fixed support for PyPy 3.7 on macOS.

v2.5.1

				Rebuild wheels against recently released pybind11 v2.6.2.

				Improved support for building against PyPy 3.6/7.3.1.

v2.5.0

				PyPy3 is now supported.

				Improved test coverage for some metadata issues.

v2.4.0

				The DocumentInfo dictionary can now be deleted with del pdf.docinfo.

				Fixed issues with updating the dc:creator XMP metadata entry.

				Improved error messages on attempting to encode strings containing Unicode
surrogates.

				Fixed a rare random test failure related to strings containing Unicode
surrogates.

v2.3.0

				Fixed two tests that failed with libqpdf 10.1.0.

				Add new function pikepdf.Page.add_resource which helps with adding a new object
to the /Resources dictionary.

				Binary wheels now provide libqpdf 10.1.0.

v2.2.5

				Changed how one C++ function is called to support libqpdf 10.1.0.

v2.2.4

				Fixed another case where pikepdf should not be warning about metadata updates.

v2.2.3

				Fixed a warning that was incorrectly issued in v2.2.2 when pikepdf updates XMP
metadata on the user’s behalf.

				Fixed a rare test suite failure that occurred if two test files were generated with
a different timestamp, due to timing of the tests.

				Hopefully fixed build on Cygwin (not tested, based on user report).

v2.2.2

				Fixed #150, adding author metadata breaks PDF/A conformance. We now log an
error when this metadata is set incorrectly.

				Improve type checking in ocrmypdf.models.metadata module.

				Improve documentation for custom builds.

v2.2.1

				Fixed #143, PDF/A validation with veraPDF failing due to missing prefix on
DocumentInfo dates.

v2.2.0

				Added features to look up the index of an page in the document and page labels

				Enable parallel compiling (again)

				Make it easier to create a pikepdf.Stream with a dictionary or from an existing
dictionary.

				Converted most .format() strings to f-strings.

				Fixed incorrect behavior when assigning Object.stream_dict; this use to create
a dictionary in the wrong place instead of overriding a stream’s dictionary.

v2.1.2

				Fixed an issue the XMP metadata would not have a timezone set when updated.
According to the XMP specification, the timezone should be included. Note that
pikepdf will include the local machine timezone, unless explicitly directed
otherwise.

v2.1.1

				The previous release inadvertently changed the type of exception in certain
situations, notably throwing ForeignObjectError when this was not the correct
error to throw. This release fixes that.

v2.1.0

				Improved error messages and documentation around Pdf.copy_foreign.

				Opt-in to mypy typing.

v2.0.0

This description includes changes in v2.0 beta releases.

Breaking changes

				We now require at least these versions or newer:
- Python 3.6
- pybind11 2.6.0
- QPDF 10.0.3
- For macOS users, macOS 10.14 (Mojave)

				Attempting to modifying Stream.Length will raise an exception instead of a
warning. pikepdf automatically calculates the length of the stream when a PDF is
saved, so there is never a reason to modify this.

				pikepdf.Stream() can no longer parse content streams. That never made sense,
since this class supports streams in general, and many streams are not content
streams. Use pikepdf.parse_content_stream to a parse a content stream.

				pikepdf.Permissions is now represented as a NamedTuple. Probably not a
concern unless some user made strong assumptions about this class and its superclass.

				Fixed the behavior of the __eq__ on several classes to return
NotImplemented for uncomparable objects, instead of False.

				The instance variable PdfJpxImage.pil is now a private variable.

New features

				Python 3.9 is supported.

				Significantly improved type hinting, including hints for functions written in C++.

				Documentation updates

Deprecations
- Pdf.root is deprecated. Use Pdf.Root.

v2.0.0b2

				We now require QPDF 10.0.3.

v2.0.0b1

Breaking changes

				We now require at least these versions or newer:
- Python 3.6
- pybind11 2.6.0
- QPDF 10.0.1
- For macOS users, macOS 10.14 (Mojave)

				Attempting to modifying Stream.Length will raise an exception instead of a
warning.

				pikepdf.Stream() can no longer parse content streams. That never made sense,
since this class supports streams in general, and many streams are not content
streams. Use pikepdf.parse_content_stream to a parse a content stream.

				pikepdf.Permissions is now represented as a NamedTuple. Probably not a
concern unless some user made strong assumptions about this class and its superclass.

				Fixed the behavior of the __eq__ on several classes to return
NotImplemented for uncomparable objects, instead of False.

New features

				Python 3.9 is supported.

				Significantly improved type hinting, including hints for functions written in C++.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version3.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0				Breaking changes

				New functionality

				Fixes

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v3.2.0

				
 View page source

v3.2.0

				Fixed support for outline items that have PDF 1.1-style named destinations.
#258, #261

				We now issue a warning if an unnecessary password was provided when opening
an unencrypted PDF.

v3.1.1

				Fixed errors that occurred on import pikepdf for an extension module built with
pybind11 2.8.0.

v3.1.0

				Extraction of common inline image file formats is now supported.

				Some refactoring and documentation improvements.

v3.0.0

Breaking changes

				libqpdf 10.3.1 is now required and other requirements were adjusted.

				pybind11 2.7.1 is now required.

				Improved page API. Pdf.pages now returns Page instead of
page object dictionaries, so it is no longer necessary to wrap page objects
as in the previous idiom page = Page(pdf.pages[0]). In most cases,
if you use the Dictionary object API on a page, it will automatically do the
right thing to the underlying dictionary.

				Improved content stream API. parse_content_stream now returns a list of
pikepdf.ContentStreamInstruction or pikepdf.ContentStreamInlineImage.
These are “duck type”-compatible with the previous data structure but may
affect code that strongly depended on the return types. unparse_content_stream
still accepts the same inputs.

				TokenType.name and ObjectType.name were renamed to
TokenType.name_ and ObjectType.name_, respectively. Unfortunately,
Python’s Enum class (of which these are both a subclass) uses the .name
attribute in a special way that interfered.

				Deprecated or private functions were removed:
- Object.page_contents_* (use Page.contents_*)
- Object.images (use Page.images)
- Page._attach (use the new attachment API)
- Stream(obj=) (deprecated obj parameter removed)
- Pdf.root (use Pdf.Root)
- Pdf._process (use Pdf.open(BytesIO(...)) instead)

				pikepdf.Page.calc_form_xobject_placement() previously returned str when
it should have returned bytes. It now returns the correct type.

				pikepdf.open() and pikepdf.save(), and their counterparts in
pikepdf.Pdf, now expect keyword arguments for all except the first parameter.

				Some other functions have stricter typing, required keyword arguments, etc.,
for clarity.

				If a calculating the repr() of a page, we now describe a reference to that
page rather than printing the page’s representation. This makes the output
of repr(obj) more useful when examining data structures that reference
many pages, such as /Outlines.

				Build scripts and wheel building updated.

				We now internally use a different API call to close a PDF in libqpdf. This
may change the behavior of attempts to manipulate a PDF after it has been
closed. In any case, accessing a closed file was never supported.

New functionality

				Added pikepdf.NameTree. We now bind to QPDF’s Name Tree API, for
manipulating these complex and important data structures.

				We now support adding and removing PDF attachments. #209

				Improved support for PDF images that use special printer colorspaces such as
DeviceN and Separation, and support extracting more types of images. #237

				Improved error message when Pdf.save() is called on PDFs without a known
source file.

				Many documentation fixes to StreamParser, return types, PdfImage.

				x in pikepdf.Array() is now supported; previously this construct raised a
TypeError. #232

				It is now possible to test our cibuildwheel configuration on a local machine.

Fixes

				repr(pikepdf.Stream(...)) now returns syntax matching what the constructor
expects.

				Fixed certain wrong exception types that occurred when attempting to extract
special printer colorspace images.

				Lots of typing fixes.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version4.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0				Breaking changes

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v4.5.0

				
 View page source

v4.5.0

				Fixed gcc linker error with linking to a source-compiled version of qpdf. Thanks @jerkenbilt.

				Fixed dead/obsolete link to old QPDF manual. Thanks @m-holger.

				Rebuild binary wheels against qpdf 10.5.0. Note 10.6.0 has been released but
requires further changes so does not work yet.

				Removed some workarounds to support now-unsupported versions of pybind11.

				Adjusted hypothesis test settings so it does not randomly fail on PyPy.

				Mention vector vs raster images in documentation.

				JBIG2 decoding is now more tightly integrated. In particular, we can now decode
more types of JBIG2 image and they can be decoded using either the object or
image interface.

				Switch to tomli for TOML parsing.

				Refactor image tests to use hypothesis more effectively and use more random issues,
fixing many errors along the way.

v4.4.1

				Fixed two instances of a Python object being copied without the GIL held.
May have caused some instability. Thanks @rwgk.

v4.4.0

				Further improvements to handling of 2- and 4-bit per component images. Major
refactoring of relevant code and improved testing.

v4.3.1

				Mark pybind11 2.9 as supported. Thanks @QuLogic.

v4.3.0

				Improved support for images with bits per component set to values between 2 and 7
inclusive.

				Additional types of runtime errors produced by libqpdf are now resolved to
DataDecodingError for improved error message clarity.

				Improved typing and documentation for several modules.

				Replaced all internal uses of deprecated standard library module distutils
with the third party packaging library. This was all for version number checking.

				Maintainers: python3-packaging is now required for installation.

v4.2.0

				Fixed incorrect default rectangle handling in Page.add_overlay and
Page.add_underlay. Thanks @sjahu. #277.

				Fixed Page.add_overlay not scaling to larger target sizes automatically.
Thanks @bordaigorl. #276.

				pikepdf._core.ObjectHelper is now registered as a base class from which other
helper classes are derived such as pikepdf.Page.

				Prevented implicit conversion of ObjectHelper to Object through their inclusion
as for example, parameters to a pikepdf.Array. This functionality was never
intended, and was a side effect of certain ObjectHelper subclasses defining an
iterable interface that made their conversion possible. #282

v4.1.0

				Declared support for pybind11 2.8.x.

				Wheels are now built against libqpdf 10.4.0.

				Wheels are now built for macOS Apple Silicon and Python 3.10.

v4.0.2

				Fixed equality and copy operators for pikepdf.Page. #271

				Fixed equality test on pikepdf.Stream objects - objects that are not identical
but have equal data now compare as equal.

				Deprecated the use of copy_foreign for copying pikepdf.Page.

v4.0.1

				Fixed documentation build reproducibility. (Thanks to Chris Lamb and Sean Whitton.)

				Fixed issue where file attachments not located in the current working directory
would be created with a directory name.

				Removed some references to Python 3.6.

				Added some fixes to typing hints from @cherryblossom000.

v4.0.0

Breaking changes

				Python 3.10 is supported.

				Dropped support for Python 3.6, since it is reaching end of life soon. We will
backport critical fixes to pikepdf 3.x until Python 3.6 reaches end of life in
December 2021.

				We now require C++17 and generate wheels for manylinux2014 Linux targets. We had
to drop support for manylinux2010, our previous target, since some of our
dependencies like Pillow are no longer supporting manylinux2010.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version5.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v5.6.1

				
 View page source

v5.6.1

				Made treatment of CCITT image photometry ignore BlackIs1, since this seems
more consistent with other programs.

v5.6.0

				Improved support for extracting the contents of inline images.

				Marked some “always should have been private” functions as deprecated with removal
planned for v6, mainly in pikepdf.models.image.

				Fixed all Python documentation style inconsistencies.

v5.5.0

				Fixed undefined behavior on creating NameTree on direct object. Thanks @willangley.

				Fixed sdist with coverage build.

				Added support for specifying QPDF’s library build directory, for compatibility
with QPDF’s transition to cmake.

				QPDF_* environment variables will modify build paths even when CFLAGS is
defined.

				Fixed rare case where GIL was not held while discarding a certain exception.

				Now using cibuildwheel 2.9.0.

				Many typo fixes. Thanks @PabloAlexis611.

v5.4.2

				Fixed Pages.__eq__ not returning NotImplemented when it ought to.

				Fixed possible problems with NameTree and NumberTree.__eq__ operators.

				Changed to SPDX license headers throughout.

v5.4.1

				Chores. Fixed ReadTheDocs build, updated versions, fixed a test warning, improved
coverage, modernized type annotations.

v5.4.0

				New feature: pikepdf.Job bindings to QPDFJob API.

				New feature: pikepdf.NumberTree to support manipulation of number trees,
mainly for applying custom page labels.

				Many improvements to pikepdf.NameTree including the ability to instantiate
a new name tree.

				Several memory leaks were fixed.

				Rebuilt against pybind11 2.10.0.

v5.3.2

				Build system requires changed to setuptools-scm 7.0.5, which includes a fix to
an issue where pikepdf source distribution reported a version of “0.0” when installed.

v5.3.1

				Fixed issue with parsing inline images, causing loss of data after
inline images were encountered in a content stream. The issue only affects
content streams parsed with parse_content_stream; saved PDFs were not
affected. #299

				Build system requires changed to setuptools-scm 7.0.3, and
setuptools-scm-git-archive is now longer required.

v5.3.0

				Binary wheels for Linux aarch64 are now being rolled automatically. 🎉

				Refactor JBIG2 handling to make JBIG2 decoders more testable and pluggable.

				Fixed some typing issues around ObjectHelper.

				Exposed some pikepdf settings that were attached to the private _qpdf module
in a new pikepdf.settings module.

v5.2.0

				Avoid a few versions of setuptools_scm that were found to cause build issues. #359

				Improved an unhelpful error message when attemping to save a file with invalid
encryption settings. #341

				Added a workaround for XMP metadata blocks that are missing the expected namespace
tag. #349

				Minor improvements to code coverage, type checking, and removed some deprecated
private methods.

v5.1.5

				Fixed removal of necessary package packaging. Needed for import.

v5.1.4

				Reorganized release notes so they are better presented in Sphinx documentation.

				Remove all upper bound version constraints.

				Replace documentation package sphinx-panels with sphinx-design. Downstream
maintainers will need to adjust this in documentation.

				Removed use of deprecated pkg_resources and replaced with importlib (and, where
necessary for backward compatibility, importlib_metadata).

				Fixed some broken links in the documentation and READMEs.

v5.1.3

				Fixed issue with saving files that contained JBIG2 images with null DecodeParms.
#317

				Use cibuildwheel 2.4.0 and update settings to publish PyPy 3.8 binary wheels for
manylinux platforms.

v5.1.2

				Fixed test suite failures with Pillow 9.1.0. #328

v5.1.1

				Fixes to pyproject.toml to support PEP-621 changes. #323

				Fixed assuming Homebrew was present on certain macOS systems; and more generally,
turn off setup shims when it seems like a maintainer is involved. #322

v5.1.0

				Rebuild against QPDF 10.6.3.

				Improvements to Makefile for Apple Silicon wheels.

v5.0.1

				Fixed issue where Pdf.check() would report a failure if JBIG2 decoder was not
installed and the PDF contains JBIG2 content.

v5.0.0

				Some errors and inconsistencies are in the “pdfdoc” encoding provided by pikepdf
have been corrected, in conjunction with fixes in libqpdf.

				libqpdf 10.6.2 is required.

				Previously, looking up the number of a page, given the page, required a linear
search of all pages. We now use a newer QPDF API that allows quicker lookups.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version6.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v6.2.9

				
 View page source

v6.2.9

				Redo v6.2.8 to avoid confusion around v6.2.8 and its post releases. The release of v6.2.8 was botched by unexpected
failures third party packages and hitting the 10 GB storage limit on PyPI.

v6.2.8

				Rebuild binary wheels to improve support for Windows 32-bit.

				Drop PyPy3.7 from wheel builds, since dependencies (lxml, Pillow) no longer provide it.

v6.2.7

				Fixed some tests that randomly failed on Windows due to newline handling issues.

v6.2.6

				Rebuild binary wheels for certain platforms they were blocked from release by lxml not releasing compatible wheels.
Mainly to take advantage of Windows 64-bit.

v6.2.5

				Rebuild binary wheels using qpdf 11.2.0.

v6.2.4

				Removed a debug message during mmap.

v6.2.3

				Fixed errors when using AccessMode.mmap. Thanks @zachgoulet.

v6.2.2

				Fixed noisy log message.

				Made some flakey tests less flakey.

				Fixed deprecated information in setup.cfg. Thanks @mgorny.

v6.2.1

				Rebuild binary wheels using zlib 1.2.13. Source build unchanged.

v6.2.0

				Add new keyword argument Pdf.save(..., deterministic_id=True) for saving
bit-for-bit reproducible PDFs. Thanks @josch for PR.

v6.1.0

				Rebuild wheels with qpdf 11.1.1. No new functionality.

v6.0.2

				Fixed large increase in binary wheel file size for manylinux wheels.

				Provide macOS and Linux wheels for Python 3.11.

v6.0.1

				Use qpdf 11.1.0, which fixes problems with building pikepdf on Windows.

v6.0.0

				pikepdf 6.0.0 was released to align with backward incompatible changes in qpdf 11.

				Remove deprecated APIs. Mostly these were public APIs that had no business being
public.
- Several functions in pikepdf.jbig2
- Some helper functions in pikepdf.models.image
- The property PdfImage.is_inline. (Use isinstance PdfInlineImage instead.)
- Attempting to copy pages using the .copy_foreign method now raises an exception. Use The Pdf.pages interface to copy pages.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version7.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v7.2.0

				
 View page source

v7.2.0

				Improved Object.repr() to avoid printing the entire contents of large object trees
such as those in PDFs with structural element trees.

				Fixed typing of NumberTree.

				Improved matrix documentation, interoperability with numpy, and added matrix inverse.

				Documentation improvements.

v7.1.2

				Fixed possible segfault if a PDF is opened and accessed without being assigned to a
variable. #465

v7.1.1

				Add workaround to fix release issue on manylinux-aarch64.

				Improved documentation of Pdf.check().

v7.1.0

New features

				PdfMetadata.register_xml_namespace allows registering new XML namespaces for
PDFs with more complex XMP metadata. #436

				The list of XMP namespaces registered by default was expanded to include several
more common namespaces. #436

				Fixed issues creating TIFF images with CCITT Group 3. #437, #401

				Updated README. #432

				Note: due to what is believed to be a change in a third party dependency, the
manylinux-aarch64 image for this release failed to build. As such, this particular
wheel is not available.

v7.0.0

pikepdf 7 introduces a subtle change to how it holds objects from the libqpdf C++ library:
dependent objects no longer keep their parent alive.

The main consequence is that constructs such as the following

def make_obj_and_return():
 pdf = pikepdf.new()
 obj = pdf.make_stream(b'some data')
 return obj

...
obj = make_obj_and_return()
obj.read_bytes()

will not work as previously - obj.read_bytes() will return a
DeletedObjectError, an exception that now occurs when accessing an object that was
garbage collected.

In the vast majority of cases, no changes are needed. In most cases, a with block
surrounding access to an opened pikepdf will be sufficient to ensure any objects
from that PDF are kept alive.

The benefits to pikepdf from this change are considerable. Reference counting is
simplified and some possible memory leaks or circular references are avoided. In many
cases, where pikepdf previously used a C++ shared_ptr, it can now used a
lighterweight unique_ptr.

Breaking changes

				Support for Python 3.7 is dropped.

				Child objects no longer keep their source Pdf alive, as outlined above.

				libqpdf 11.2.0 or newer is required.

				The C++ binding layer has been renamed from pikepdf._qpdf to pikepdf._core.
This has always been a private API but we are making note of the change anyway.
For the moment, a Python module named _qpdf still exists and imports all of the
modules in _core. This compatibility shim will be removed in the next major
release.

New features

				Added Page.form_xobjects, which returns all Form XObjects that are used in a page.

				Accessing Page.resources will now create an empty /Resources dictionary is none
previously existed.

Fixes

				Fixed an issue with extracting images that were compressed with multiple compression
filters that also had custom decode parameters.

Packaging changes

				setuptools >= 61 is now required, since we use pyproject.toml and have discarded
setup.cfg.

				We now include manylinux’s libjpeg-turbo instead of compiling libjpeg.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/releasenotes/version8.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes				v8.7.1

				v8.7.0

				v8.6.0

				v8.5.3

				v8.5.2

				v8.5.1

				v8.5.0

				v8.4.1

				v8.4.0

				v8.3.2

				v8.3.1

				v8.3.0

				v8.2.3

				v8.2.2

				v8.2.1

				v8.2.0

				v8.1.1

				v8.1.0

				v8.0.0

				v7.2.0

				v7.1.2

				v7.1.1

				v7.1.0

				v7.0.0

				v6.2.9

				v6.2.8

				v6.2.7

				v6.2.6

				v6.2.5

				v6.2.4

				v6.2.3

				v6.2.2

				v6.2.1

				v6.2.0

				v6.1.0

				v6.0.2

				v6.0.1

				v6.0.0

				v5.6.1

				v5.6.0

				v5.5.0

				v5.4.2

				v5.4.1

				v5.4.0

				v5.3.2

				v5.3.1

				v5.3.0

				v5.2.0

				v5.1.5

				v5.1.4

				v5.1.3

				v5.1.2

				v5.1.1

				v5.1.0

				v5.0.1

				v5.0.0

				v4.5.0

				v4.4.1

				v4.4.0

				v4.3.1

				v4.3.0

				v4.2.0

				v4.1.0

				v4.0.2

				v4.0.1

				v4.0.0

				v3.2.0

				v3.1.1

				v3.1.0

				v3.0.0

				v2.16.1

				v2.16.0

				v2.15.1

				v2.15.0

				v2.14.2

				v2.14.1

				v2.14.0

				v2.13.0

				v2.12.2

				v2.12.1

				v2.12.0

				v2.11.4

				v2.11.3

				v2.11.2

				v2.11.1

				v2.11.0

				v2.10.0

				v2.9.2

				v2.9.1

				v2.9.0

				v2.8.0

				v2.7.0

				v2.6.0

				v2.5.2

				v2.5.1

				v2.5.0

				v2.4.0

				v2.3.0

				v2.2.5

				v2.2.4

				v2.2.3

				v2.2.2

				v2.2.1

				v2.2.0

				v2.1.2

				v2.1.1

				v2.1.0

				v2.0.0

				v1.19.4

				v1.19.3

				v1.19.2

				v1.19.1

				v1.19.0

				v1.18.0

				v1.17.3

				v1.17.2

				v1.17.1

				v1.17.0

				v1.16.1

				v1.16.0

				v1.15.1

				v1.15.0

				v1.14.0

				v1.13.0

				v1.12.0

				v1.11.2

				v1.11.1

				v1.11.0

				v1.10.4

				v1.10.3

				v1.10.2

				v1.10.1

				v1.10.0

				v1.9.0

				v1.8.3

				v1.8.2

				v1.8.1

				v1.8.0

				v1.7.1

				v1.7.0

				v1.6.5

				v1.6.4

				v1.6.3

				v1.6.2

				v1.6.1

				v1.6.0

				v1.5.0

				v1.4.0

				v1.3.1

				v1.3.0

				v1.2.0

				v1.1.0

				v1.0.5

				v1.0.4

				v1.0.3

				v1.0.2

				v1.0.1

				v1.0.0

				v0.10.2

				v0.10.1

				v0.10.0

				v0.9.2

				v0.9.1

				v0.9.0

				v0.3.7

				v0.3.6

				v0.3.5

				v0.3.4

				v0.3.3

				v0.3.2

				v0.3.1

				v0.3.0

				v0.2.2

				v0.2.1

				v0.2.0

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Release notes

				v8.7.1

				
 View page source

v8.7.1

				Fixed pikepdf.Matrix.rotated() so it now rotates in the advertised direction.

v8.7.0

				pikepdf.PdfMatrix is now deprecated, in favor of pikepdf.Matrix. The former,
unfortunately, implemented some operations backwards compared to the PDF reference
manual. The new class fixes these issues, and adds more functionality, promoting
transformation matrix to first class objects. PdfMatrix is now deprecated and
will be removed in the next major release.

				Improve behavior around truthiness of pikepdf.Name.

v8.6.0

				Implemented Page.artbox and Page.bleedbox to access these page dimension boxes.

v8.5.3

				Fixed exception on certain PdfImage.__repr__ when the image’s mode was invalid.

				Fixed some minor issues that caused code coverage to miss some covered lines.

				Removed some unused code.

v8.5.2

				Rebuilt wheels with libqpdf 11.6.3, which solves a potential data loss issue,
albeit in rare circumstances. See QPDF issue #1050.

				Fixed unclear return values of pikepdf._core.set/get* functions. The set functions
now return the current value.

				Fixed minor typing issues.

v8.5.1

				Added building of Python 3.12 aarch64 images.

				Added building of musllinux_1_2 aarch64 images.

				Tweaked exception handler of atomic_overwrite.

v8.5.0

				We now require Pillow 10.0.1, due a serious security vulnerability in all earlier
versions of that dependency. The vulnerability concerns WebP images, which are
likely not involved in PDF processing, but we have updated the dependency anyway
as a precaution. As a consequence, we no longer build binary wheels for PyPy 3.8.
CPython 3.8 is still supported on all platforms.

				The embedded files/attachments API now supports describing the relationship of the
attached file (AFRelationship).

v8.4.1

				Fixed an issue with a monochrome that decoded with colors inverted. #517

v8.4.0

				Added support for musllinux_1_2 (Alpine Linux 3.16) on x64.

v8.3.2

				Added _core.pyi typing hints, which were missing from wheels.

v8.3.1

				Fixed saving file opened from BytesIO object on Windows. #510

v8.3.0

				Mark Python 3.12 as supported and release wheels for it.

v8.2.3

				Added a build test for Python 3.12 pre-release versions.

				Marked a test as xfail that currently fails on Python 3.12.

v8.2.2

				Added docs/ directory back to source distribution. #503

v8.2.1

				Fixed a build issue where pikepdf would install its C++ source files into the
site-packages directory. #447

v8.2.0

				Removed uses of deprecated function datetime.utcnow(). #499

				Adjusted timeline of potentially flaky hypothesis test.

				Various documentation fixes. Thanks @m-holger.

				PyPy 3.10 is now supported on some platforms.

				PyPy 3.8 support will be dropped in the next major release.

v8.1.1

				Fixed a Unicode test that randomly fails on Windows.

v8.1.0

				Not released due to build failure.

				Fixed sdist, which was mysteriously missing some files that were previously included. #490

				Some documentation and README updates to improve visibility of release notes. #488

				Fixed issue where an output file could be corrupted if the process was interrupted while writing. #462

v8.0.0

				master branch renamed to main.

				QPDF 11.5.0 is now required.

				Some other Python dependencies have been updated.

				Dropped setuptools-scm in favor of a manually set version number and script
to update it. This change was necessary to support delegating part of the build
to Cirrus CI.

				Adjusted stream preview (with __repr__) so it does not attempt to decompress
very long streams.

				Fixed error when attempting to convert XMP metadata to DocumentInfo when the
author was omitted.

				Added a method to add items to the document table of contents.

				Previously, we built all Apple Silicon (aarch64) wheels as a manual step,
causing errors and delays in their release compared to other wheels. We now
build them automatically on Cirrus CI.

				Changed to building manylinux-aarch64 wheels on Cirrus CI.

				Since Pillow (Python imaging library), a major dependency, has dropped support
for 32-bit wheels on Windows and Linux, we have done the same. You can still build
32-bit versions from source.

				Some documentation changes and improvements. Thanks @m-holger.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/search.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Search

				

 Please activate JavaScript to enable the search functionality.

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/searchindex.js

Search.setIndex({"docnames": ["api/exceptions", "api/filters", "api/main", "api/models", "api/settings", "index", "installation", "references/arch", "references/contributing", "references/debugging", "references/resources", "releasenotes/index", "releasenotes/version0", "releasenotes/version1", "releasenotes/version2", "releasenotes/version3", "releasenotes/version4", "releasenotes/version5", "releasenotes/version6", "releasenotes/version7", "releasenotes/version8", "topics/attachments", "topics/content_streams", "topics/encoding", "topics/images", "topics/metadata", "topics/nametrees", "topics/objects", "topics/outlines", "topics/overlays", "topics/page", "topics/pagelayout", "topics/pages", "topics/security", "topics/streams", "tutorial"], "filenames": ["api/exceptions.rst", "api/filters.rst", "api/main.rst", "api/models.rst", "api/settings.rst", "index.rst", "installation.rst", "references/arch.rst", "references/contributing.rst", "references/debugging.rst", "references/resources.rst", "releasenotes/index.rst", "releasenotes/version0.rst", "releasenotes/version1.rst", "releasenotes/version2.rst", "releasenotes/version3.rst", "releasenotes/version4.rst", "releasenotes/version5.rst", "releasenotes/version6.rst", "releasenotes/version7.rst", "releasenotes/version8.rst", "topics/attachments.rst", "topics/content_streams.rst", "topics/encoding.rst", "topics/images.rst", "topics/metadata.rst", "topics/nametrees.rst", "topics/objects.rst", "topics/outlines.rst", "topics/overlays.rst", "topics/page.rst", "topics/pagelayout.rst", "topics/pages.rst", "topics/security.rst", "topics/streams.rst", "tutorial.rst"], "titles": ["Exceptions", "Content streams", "Main objects", "Support models", "Settings", "pikepdf Documentation", "Installation", "Architecture", "Contributing guidelines", "Debugging", "Resources", "Release notes", "v0.10.2", "v1.19.4", "v2.16.1", "v3.2.0", "v4.5.0", "v5.6.1", "v6.2.9", "v7.2.0", "v8.7.1", "Attaching files to a PDF", "Working with content streams", "Character encoding", "Working with images", "Metadata", "Name trees", "Object model", "Outlines", "Overlays, underlays, watermarks, n-up", "Working with pages", "Default appearance in PDF viewers", "PDF split, merge, and document assembly", "PDF security", "Stream objects", "Tutorial"], "terms": {"pdf": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 26, 28, 29, 30, 34], "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "refer": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "manual": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "11": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "5": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "6": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "pikepdf": [0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "pdferror": [0, 2, 5], "gener": [0, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 22, 24, 25, 27, 33, 35], "specif": [0, 1, 2, 3, 5, 10, 13, 14, 23, 25, 26, 27, 28, 32, 34], "passworderror": [0, 2, 5], "thrown": [0, 2, 3, 13], "when": [0, 1, 2, 3, 4, 7, 8, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35], "suppli": [0, 2], "password": [0, 2, 3, 5, 13, 14, 15, 35], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35], "incorrect": [0, 3, 14, 16], "foreignobjecterror": [0, 2, 5, 14], "complex": [0, 2, 3, 9, 15, 19, 24, 25, 26, 32, 35], "object": [0, 1, 3, 5, 7, 8, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 29, 30, 31, 32, 35], "wa": [0, 1, 2, 3, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 30, 32], "copi": [0, 2, 3, 5, 6, 7, 12, 13, 14, 16, 18, 25, 27, 29], "foreign": [0, 2, 13], "without": [0, 2, 3, 5, 13, 15, 16, 19, 22, 24, 28, 33], "us": [0, 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35], "copy_foreign": [0, 2, 14, 16, 18], "outlinestructureerror": [0, 2, 3, 5], "indic": [0, 2, 3, 13, 24, 35], "an": [0, 1, 2, 3, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35], "error": [0, 2, 3, 12, 13, 14, 15, 16, 17, 18, 20, 34], "outlin": [0, 2, 3, 5, 13, 14, 15, 19, 26, 31], "data": [0, 1, 3, 5, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 34, 35], "structur": [0, 3, 5, 14, 15, 19, 22, 26, 27, 30, 32, 35], "violat": 0, "constraint": [0, 17], "impos": [0, 3], "unsupportedimagetypeerror": [0, 5], "thi": [0, 1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35], "imag": [0, 1, 2, 3, 5, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 29, 30, 31, 34, 35], "format": [0, 2, 3, 5, 8, 9, 13, 14, 15, 22, 24, 25], "wai": [0, 2, 3, 12, 13, 14, 15, 16, 24, 27, 29], "doe": [0, 1, 2, 3, 5, 9, 14, 16, 20, 22, 24, 27, 30, 32, 33, 34, 35], "support": [0, 2, 5, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 29, 30, 33, 35], "attempt": [0, 2, 3, 6, 13, 14, 15, 18, 20, 34], "manipul": [0, 2, 3, 5, 13, 15, 17, 22, 24, 26, 33, 35], "type": [0, 1, 2, 3, 5, 8, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 27, 30, 34, 35], "current": [0, 2, 3, 5, 6, 7, 9, 12, 13, 16, 20, 22, 24, 25, 32], "datadecodingerror": [0, 5, 16], "stream": [0, 3, 5, 12, 13, 14, 15, 16, 17, 20, 24, 25, 27, 29, 30, 35], "malform": [0, 2, 13], "cannot": [0, 2, 3, 5, 6, 9, 22, 23, 24, 34, 35], "decod": [0, 2, 3, 13, 14, 16, 17, 19, 20, 22, 23, 24, 25, 34], "deletedobjecterror": [0, 5, 19], "access": [0, 2, 3, 5, 7, 9, 11, 12, 13, 15, 19, 20, 24, 26, 27, 30, 33, 34, 35], "reli": [0, 2, 13, 22], "delet": [0, 2, 3, 5, 12, 13, 14, 24, 25, 29, 32], "python": [0, 2, 3, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 32, 35], "statement": 0, "collect": [0, 1, 2, 3, 19], "garbag": [0, 19], "collector": 0, "To": [0, 1, 2, 3, 6, 9, 22, 24, 25, 26, 29, 30, 32, 34, 35], "resolv": [0, 2, 3, 12, 16, 30], "you": [0, 2, 3, 5, 6, 7, 8, 9, 13, 15, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35], "must": [0, 1, 2, 3, 6, 8, 12, 22, 25, 27], "retain": [0, 2, 3, 14], "whole": [0, 1, 2, 3, 32], "time": [0, 2, 3, 8, 9, 13, 14, 22, 24, 27, 31, 33, 35], "mai": [0, 1, 2, 3, 6, 7, 9, 13, 14, 15, 16, 21, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35], "new": [0, 1, 2, 3, 5, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 32, 33, 35], "version": [0, 1, 2, 3, 6, 7, 9, 11, 13, 14, 16, 17, 20, 21, 23, 25, 32, 35], "In": [1, 2, 3, 6, 7, 8, 9, 13, 15, 16, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35], "draw": [1, 2, 3, 5, 24, 29, 30, 34], "oper": [1, 2, 3, 6, 9, 13, 16, 17, 20, 22, 23, 24, 27, 34], "ar": [1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], "all": [1, 2, 3, 5, 6, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 35], "perform": [1, 2, 3, 6, 7, 12, 13, 14, 23, 29], "describ": [1, 2, 3, 13, 15, 20, 22, 24, 25, 30, 34], "posit": [1, 2, 3, 12, 22, 24, 29, 32], "order": [1, 2, 3, 5, 21, 23, 34], "graphic": [1, 2, 3, 22, 29, 34], "includ": [1, 2, 3, 5, 6, 7, 8, 10, 13, 14, 17, 19, 20, 21, 24, 26, 33, 35], "text": [1, 2, 3, 5, 13, 21, 27, 34], "vector": [1, 2, 3, 16, 22, 24], "work": [1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 19, 27, 29, 32, 34, 35], "libqpdf": [1, 2, 3, 6, 9, 12, 13, 14, 15, 16, 17, 19, 20], "provid": [1, 2, 3, 5, 6, 9, 11, 13, 14, 15, 17, 18, 21, 22, 24, 25, 26, 27, 31, 32, 34, 35], "two": [1, 2, 3, 14, 16, 23, 25, 27, 28, 31, 32], "tool": [1, 2, 3, 9, 22, 25, 30], "interpret": [1, 2, 3, 7, 13, 14, 22, 23], "The": [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 32, 34, 35], "return": [1, 2, 3, 7, 13, 14, 15, 17, 19, 20, 23, 25, 27, 30], "higher": [1, 2, 3, 6, 7, 22], "level": [1, 2, 3, 4, 5, 7, 13, 14, 22], "inform": [1, 2, 3, 5, 9, 10, 12, 13, 18, 24, 25, 26, 27, 30, 35], "conveni": [1, 2, 3, 6, 13, 25, 27, 32, 35], "group": [1, 2, 19, 24, 29, 31, 34], "command": [1, 2, 6, 14, 22, 24, 34, 35], "operand": [1, 2, 22], "one": [1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 21, 22, 24, 25, 27, 31, 32, 34], "want": [1, 2, 3, 5, 6, 9, 13, 21, 23, 29, 32], "retriev": [1, 2, 3, 12, 21, 24], "from": [1, 2, 3, 5, 7, 8, 9, 12, 13, 14, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35], "determin": [1, 3, 13, 23, 24, 27], "element": [1, 3, 5, 13, 14, 19, 25, 28, 35], "should": [1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 21, 22, 23, 24, 25, 27, 32, 33, 35], "edit": [1, 2, 3, 5, 6, 12, 13, 25, 30], "reconstruct": [1, 2], "becaus": [1, 2, 3, 6, 7, 8, 12, 13, 14, 22, 24, 25, 27, 32, 33, 34, 35], "some": [1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 32, 33, 34], "subtleti": 1, "lost": 1, "pars": [1, 2, 3, 5, 12, 13, 14, 16, 17, 22], "lower": [1, 2, 3], "consid": [1, 2, 3, 5, 6, 12, 14, 22, 25], "each": [1, 2, 7, 8, 12, 13, 21, 23, 27, 28, 32, 34], "comment": [1, 2, 3, 14, 22], "distinguish": 1, "differ": [1, 2, 3, 6, 8, 9, 13, 14, 15, 21, 24, 25, 29, 32, 34, 35], "space": [1, 3, 24, 29], "allow": [1, 2, 3, 5, 13, 17, 19, 24, 27, 28, 33, 35], "modifi": [1, 2, 3, 5, 7, 12, 13, 14, 17, 25, 32, 35], "A": [1, 2, 3, 5, 12, 13, 14, 22,
24, 26, 27, 28, 32, 34, 35], "tokenfilt": [1, 3, 14], "subclass": [1, 3, 15, 16, 27, 34], "special": [1, 2, 3, 9, 14, 15, 27, 30, 34, 35], "how": [1, 2, 3, 5, 9, 13, 14, 19, 29, 30, 31, 32, 33, 34, 35], "transform": [1, 2, 3, 5, 13, 20, 22, 29, 30], "parse_content_stream": [1, 2, 14, 15, 17, 22], "page_or_stream": 1, "sequenc": [1, 2, 3, 24], "instruct": [1, 2, 3, 6, 22, 30, 34], "list": [1, 2, 3, 6, 13, 14, 15, 19, 21, 22, 24, 25, 27, 28, 32, 35], "where": [1, 2, 3, 6, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 28], "render": [1, 2, 3, 34], "start": [1, 2, 3], "point": [1, 2, 7, 22, 23, 27], "analyz": 1, "If": [1, 2, 3, 5, 6, 7, 8, 12, 13, 15, 21, 22, 23, 24, 25, 27, 29, 32, 33], "input": [1, 2, 3, 5, 13, 15, 22, 31, 35], "page": [1, 2, 3, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 34], "arrai": [1, 2, 3, 12, 13, 14, 15, 16, 21, 22, 26, 27, 30], "automat": [1, 2, 3, 5, 12, 13, 14, 15, 16, 17, 20, 23, 28, 32, 34], "treat": [1, 2, 23, 27, 32], "coalesc": [1, 2, 3], "contain": [1, 2, 3, 5, 8, 9, 12, 13, 14, 17, 21, 22, 24, 25, 27, 29, 30, 32, 34, 35], "least": [1, 14], "zero": [1, 3, 22, 28], "more": [1, 2, 3, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 25, 27, 28, 29, 32, 33, 34, 35], "function": [1, 2, 3, 7, 9, 12, 13, 14, 16, 17, 18, 20, 23, 32, 34, 35], "have": [1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 27, 32, 33, 34, 35], "anyth": [1, 24], "do": [1, 2, 3, 5, 6, 7, 12, 14, 15, 21, 22, 23, 29, 30, 32, 33, 34], "open": [1, 2, 3, 5, 7, 8, 9, 12, 13, 14, 15, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33], "file": [1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35], "itself": [1, 2, 13, 27, 34], "process": [1, 2, 3, 7, 9, 14, 20, 22, 27], "It": [1, 2, 3, 5, 6, 7, 12, 13, 14, 15, 22, 24, 25, 29, 32, 33, 34], "insid": [1, 2, 3, 9, 12, 13, 22, 34], "alreadi": [1, 2, 3, 5, 6, 8, 14, 23, 32], "paramet": [1, 2, 3, 4, 12, 13, 14, 15, 16, 19, 24], "attach": [1, 2, 3, 5, 12, 13, 15, 16, 17, 20, 25, 26, 27, 30, 31, 34], "anoth": [1, 2, 3, 5, 7, 9, 13, 14, 22, 24, 25, 27, 28, 32, 34], "form": [1, 2, 3, 5, 13, 14, 19, 22, 24, 29, 33, 34], "xobject": [1, 2, 3, 12, 13, 19, 22, 24, 29, 30, 34, 35], "str": [1, 2, 3, 13, 15, 23, 27], "separ": [1, 8, 15, 22], "string": [1, 2, 3, 8, 12, 13, 14, 23, 27, 33, 35], "whitelist": 1, "For": [1, 2, 3, 9, 10, 13, 14, 19, 22, 25, 27, 28, 29, 30, 31, 33, 35], "exampl": [1, 2, 3, 5, 6, 7, 9, 14, 16, 21, 22, 24, 25, 27, 28, 29, 30, 32, 35], "q": [1, 3, 22, 29, 30, 35], "cm": [1, 22], "onli": [1, 2, 3, 5, 6, 8, 12, 13, 14, 17, 21, 22, 23, 24, 25, 27, 33, 34, 35], "pertain": 1, "bi": [1, 2], "id": [1, 2, 25, 26], "ei": [1, 2], "inlin": [1, 2, 3, 12, 13, 14, 15, 17], "other": [1, 2, 3, 5, 8, 10, 13, 14, 15, 16, 17, 20, 21, 24, 25, 27, 29, 31, 33, 34, 35], "associ": [1, 2, 3, 10, 12, 22, 32], "ignor": [1, 2, 3, 13, 17, 31], "blank": [1, 2, 3, 32, 33], "accept": [1, 12, 14, 15, 32, 35], "contentstreaminstruct": [1, 2, 15], "contentstreaminlineimag": [1, 2, 15], "input_pdf": 1, "print": [1, 2, 3, 5, 15, 19, 25, 26, 29], "chang": [1, 2, 3, 5, 9, 13, 14, 17, 18, 19, 20, 23, 25, 27, 31, 32], "instead": [1, 2, 3, 5, 8, 9, 12, 13, 14, 15, 18, 19, 24, 25, 26, 29, 32], "tupl": [1, 2, 3, 14], "item": [1, 2, 3, 5, 13, 15, 20, 24, 28], "duck": [1, 15], "compat": [1, 2, 8, 13, 14, 15, 17, 18, 19, 23, 25, 33], "previou": [1, 3, 7, 13, 14, 15, 16], "unparse_content_stream": [1, 2, 13, 14, 15, 22], "convert": [1, 2, 3, 4, 5, 13, 14, 20, 22, 23, 24, 27, 29], "byte": [1, 2, 3, 14, 15, 23, 25, 27, 34], "suitabl": [1, 2, 3, 24, 27], "store": [1, 2, 3, 25, 26], "given": [1, 2, 3, 13, 17, 22], "embed": [1, 2, 3, 5, 13, 14, 20, 21, 26, 27], "alwai": [1, 2, 3, 8, 13, 14, 17, 19, 22, 27, 35], "follow": [1, 2, 3, 6, 8, 19, 22, 28, 30, 32, 33, 35], "unparseablecontentstreaminstruct": 1, "binari": [1, 2, 3, 9, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 27, 34], "make_stream": [1, 2, 13, 19, 22, 24], "now": [1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 32, 35], "ani": [1, 2, 3, 9, 11, 14, 15, 19, 21, 24, 26, 27, 31, 32, 33, 35], "mixtur": 1, "older": [1, 2, 3, 6, 13, 14, 23, 25], "2": [1, 2, 3, 5, 11, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 35], "x": [1, 2, 3, 5, 13, 14, 15, 16, 25, 30, 35], "class": [1, 2, 3, 8, 13, 14, 15, 16, 20, 24, 27, 35], "properti": [1, 2, 3, 12, 13, 18, 24, 25, 30, 35], "raw_valu": 1, "represent": [1, 2, 3, 15, 22], "type_": 1, "tokentyp": [1, 15], "valu": [1, 2, 3, 12, 13, 16, 20, 25, 27, 30, 31, 35], "label": [1, 2, 3, 5, 14, 17, 35], "accord": [1, 2, 3, 14, 35], "role": 1, "plai": [1, 5], "standard": [1, 2, 3, 9, 13, 16, 23, 24, 25, 35], "array_open": 1, "array_clos": 1, "brace_open": 1, "brace_clos": 1, "dict_open": 1, "dict_clos": 1, "These": [1, 2, 3, 5, 6, 13, 15, 22, 24, 27, 31], "mark": [1, 2, 3, 13, 16, 17, 20, 23], "end": [1, 2, 3, 12, 13, 14, 16, 22, 25, 29], "dictionari": [1, 2, 3, 5, 12, 13, 14, 15, 19, 21, 22, 24, 26, 27, 30, 31, 32, 34], "respect": [1, 2, 3, 5, 15, 25], "integ": [1, 2, 3, 12, 27], "real": [1, 2, 12, 22, 33], "null": [1, 2, 12, 17, 27], "bool": [1, 2, 3, 12, 27], "repres": [1, 2, 3, 14, 27, 34, 35], "number": [1, 2, 3, 4, 5, 12, 13, 14, 16, 17, 20, 22, 27, 28, 30, 31, 34, 35], "boolean": [1, 2, 12, 27], "name_": [1, 2, 15], "name": [1, 2, 3, 5, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 31, 34, 35], "practic": [1, 3, 5, 33], "among": 1, "most": [1, 2, 3, 6, 13, 14, 15, 19, 22, 23, 25, 27, 32, 33, 34], "interest": [1, 3, 8, 13, 34, 35], "than": [1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 15, 22, 25, 29, 32, 33], "interf": [1, 15], "semant": [1, 2, 3, 11, 13, 14, 25], "enum": [1, 15], "so": [1, 2, 3, 6, 7, 9, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 27, 30, 32, 35], "fix": [1, 2, 3, 13, 14, 16, 17, 18, 19, 20, 22, 23], "inline_imag": 1, "singl": [1, 2, 3, 5, 8, 24, 27, 28, 30, 35], "lexic": 1, "signifi": 1, "appear": [1, 2, 3, 5, 13, 14, 24, 35], "word": [1, 34], "otherwis": [1, 2, 3, 6, 14, 22, 23, 34], "uncategor": 1, "bad": 1, "invalid": [1, 2, 5, 12, 13, 17, 20, 27], "whitespac": [1, 22], "within": [1, 2, 3, 5, 8, 11, 12, 13, 24, 28, 29, 35], "eof": 1, "denot": [1, 2], "handle_token": [1, 14], "self": [1, 2, 3], "handl": [1, 2, 3, 5, 12, 13, 14, 16, 17, 18, 27, 28], "abstract": [1, 2, 3], "method": [1, 2, 3, 8, 9, 12, 13, 17, 18, 20, 24, 27, 32], "defin": [1, 2, 3, 13, 14, 16, 17, 23, 30, 32, 34], "call": [1, 2, 3, 13, 14, 15, 27, 28, 32, 34, 35], "implement": [1, 2, 3, 6, 7, 12, 13, 14, 20, 21, 22, 23, 27, 33], "either": [1, 2, 3, 14, 16, 22, 28], "none": [1, 2, 3, 12, 19, 27], "discard": [1, 17, 19, 25], "origin": [1, 2, 3, 13, 14, 22, 27], "iter": [1, 2, 3, 12, 13, 16, 24], "also": [1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 35], "buffer": [1, 2, 3, 13], "releas": [1, 2, 6, 12, 13, 14, 16, 17, 18, 19, 20], "them": [1, 2, 3, 5, 6, 7, 9, 13, 14, 20, 22, 24, 26, 29, 31, 32, 34, 35], "could": [1, 2, 13, 14, 20, 22, 24, 25, 32, 34, 35], "entir": [1, 2, 13, 19, 33], "its": [1, 2, 3, 5, 6, 12, 13, 14, 18, 20, 21, 22, 23, 24, 25, 27, 32, 33, 34], "final": [1, 2, 3, 12, 13, 22], "unless": [1, 2, 8, 9, 14, 28], "except": [1, 2, 3, 5, 6, 12, 13, 14, 15, 17, 18, 19, 20, 25, 32], "rais": [1, 2, 3, 12, 13, 14, 15, 18, 32], "caught": 1, "c": [1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 16, 19, 20, 22, 27], "consum": 1, "replac": [1, 2, 5, 12, 13, 16, 17, 22, 32], "less": [1, 2, 3, 12, 14, 18], "get_warn": [1, 2, 13], "view": [1, 2, 3, 9, 21, 24, 30, 33, 35], "memori": [2, 3, 5, 7, 9, 12, 13, 14, 17, 19, 21, 35], "root": [2, 3, 5, 6, 14, 15, 21, 25, 26, 27, 28, 31, 35], "add_blank_pag": [2, 13, 35], "page_s": 2, "612": 2, "792": 2, "add": [2, 3, 5, 6, 12, 13, 14, 18, 19, 20, 28, 29, 32], "exist": [2, 3, 5, 12, 13, 14, 19, 25, 27, 28, 29, 30, 35], "ad": [2, 3, 12, 13, 14, 15, 16, 17, 19, 20, 21, 28], "reorder": 2, "caller": [2, 3], "after": [2, 3, 7, 12, 13, 14, 15, 17, 22, 25, 27, 35], "creat": [2, 3, 5, 9, 12, 13, 14, 16, 17, 19, 22, 24, 25, 27, 29, 32, 33], "size": [2, 3, 5, 14, 16, 18, 22, 24], "unit": [2, 3, 30, 32], "72": [2, 21, 22, 30], "inch": 2, "35mm": 2, "default": [2, 3, 4, 5, 13, 16, 19, 25, 28, 29, 35], "set": [2, 3, 5, 6, 8, 9, 12, 13, 14, 16, 17, 20, 21, 24, 25, 28, 31, 33, 35], "u": 2, "letter": 2, "8": [2, 3, 5, 6, 11, 12, 15, 16, 17, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 35], "permiss": [2, 3, 5, 14, 33, 35], "report": [2, 3, 13, 14, 17, 32], "By": [2, 3, 5, 25, 29, 35], "replic": [2, 3, 27, 35], "save": [2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 17, 18, 20, 22, 25, 28, 29, 31, 32, 33, 34], "being": [2, 3, 5, 7, 13, 14, 16, 17, 18, 19, 22], "avail": [2, 3, 12, 13, 19, 21, 23, 25, 31], "encrypt": [2, 3, 5, 13, 17, 21, 33, 35], "ha": [2, 3, 5, 6, 8, 12, 13, 14, 15, 16, 19, 20, 22, 24, 25, 27, 30, 32, 33], "enforc": [2, 3, 33], "map": [2, 3, 13, 22, 23, 27], "prefer": [2, 8, 21, 28, 31, 35], "read": [2, 3, 5, 6, 7, 12, 13, 22, 25, 29, 35], "write": [2, 3, 5, 7, 9, 12, 13, 20, 22, 24, 35], "filenam": [2, 3, 12, 13, 14, 21, 24, 35], "check": [2, 3, 5, 6, 8, 13, 14, 16, 17, 19, 27, 33, 35], "syntact": 2, "well": [2, 3, 5, 13, 14, 22, 24], "similar": [2, 3, 8, 13, 24, 27], "qpdf": [2, 3, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 20], "syntax": [2, 12, 14, 15, 25, 35], "problem": [2, 3, 13, 14, 17, 18, 23, 32], "mainli": [2, 3, 7, 17, 18], "develop": [2, 3, 5, 6, 8, 9, 14, 33, 34], "averag": 2, "user": [2, 3, 5, 7, 8, 13, 14, 21, 27, 29, 31, 33, 35], "still": [2, 3, 7, 13, 15, 19, 20, 25, 32], "correctli": [2, 3, 13], "viewer": [2, 3, 5, 13, 23, 24, 28, 33], "capabl": [2, 5, 6, 25], "around": [2, 3, 5, 8, 14, 17, 18, 20, 22, 27, 30, 35], "issu": [2, 3, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 33], "thei": [2, 3, 7, 8, 13, 14, 16, 17, 18, 21, 23, 24, 27, 28, 35], "mani": [2, 3, 5, 7, 8, 9, 13, 14, 15, 16, 17, 19, 25, 26, 27, 30, 33, 35], "case": [2, 3, 5, 12, 13, 14, 15, 17, 19, 22, 23, 24, 26, 27, 28, 30, 35], "can": [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 16, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32,
33, 34, 35], "found": [2, 3, 17, 25], "xref": 2, "tabl": [2, 6, 13, 20, 31, 32], "miss": [2, 6, 12, 13, 14, 17, 20, 35], "wrong": [2, 3, 6, 13, 14, 15], "kei": [2, 3, 12, 13, 24, 26, 27, 30, 35], "mediabox": [2, 3, 22, 30, 35], "sort": [2, 3, 8], "were": [2, 3, 5, 7, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 27, 32, 34], "xml": [2, 3, 12, 13, 14, 19, 25], "checker": 2, "would": [2, 3, 5, 7, 13, 14, 16, 17, 20, 22, 24, 30, 32, 35], "tell": [2, 14, 21, 28], "valid": [2, 3, 12, 13, 14, 25, 32], "xhtml": 2, "usabl": [2, 3, 27], "web": [2, 25], "decompress": [2, 3, 20, 34], "jbig2": [2, 13, 14, 16, 17, 18], "present": [2, 3, 7, 12, 13, 17, 23, 28, 29, 34, 35], "warn": [2, 3, 13, 14, 15, 17, 34], "occur": [2, 3, 13, 14, 15, 19, 22, 25], "subject": 2, "stabl": [2, 11], "api": [2, 3, 11, 12, 13, 14, 15, 17, 18, 19, 20, 27, 30, 32, 35], "empti": [2, 3, 12, 13, 19, 25, 32, 33, 35], "check_linear": 2, "sy": 2, "stderr": 2, "": [2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35], "linear": [2, 5, 17], "too": [2, 8, 12, 14, 35], "flush": 2, "true": [2, 3, 5, 12, 13, 18, 24, 27], "fals": [2, 3, 14, 25, 29, 35], "incorrectli": [2, 13, 14], "runtimeerror": 2, "question": [2, 22], "close": [2, 3, 13, 14, 15, 21, 27, 32, 35], "resourc": [2, 3, 5, 12, 13, 14, 19, 21, 22, 24, 25, 26, 30, 32, 35], "acquir": 2, "e": [2, 3, 5, 6, 8, 12, 13, 23, 28], "g": [2, 3, 6, 8, 9, 12, 13, 28], "path": [2, 3, 17, 21, 35], "block": [2, 3, 13, 17, 18, 19, 25, 32], "exit": [2, 13, 25], "lazili": [2, 3, 27], "load": [2, 3, 9, 13, 14, 27, 31], "implicitli": [2, 3], "depend": [2, 3, 5, 6, 12, 13, 14, 15, 16, 18, 19, 20, 25, 27, 33], "might": [2, 3, 6, 8, 21, 29, 32, 35], "destin": [2, 3, 5, 15, 26, 32], "immedi": [2, 13, 27], "desir": [2, 3, 6, 9, 25, 29], "sourc": [2, 3, 5, 7, 8, 10, 13, 15, 16, 17, 18, 19, 20, 27, 32], "actual": [2, 3, 13, 14, 22, 27], "reset": [2, 29], "veri": [2, 12, 13, 20, 29], "short": [2, 3, 35], "code": [2, 3, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 20, 22, 23, 32], "quirk": 2, "arg": [2, 3], "kwarg": [2, 3], "overload": [2, 3, 13, 14], "h": [2, 8], "own": [2, 3, 5, 6, 13, 23, 32, 34], "previous": [2, 3, 12, 13, 14, 15, 17, 19, 20], "been": [2, 5, 6, 8, 12, 13, 14, 15, 16, 17, 19, 20], "even": [2, 3, 7, 8, 17, 22, 24, 30, 35], "meantim": 2, "pdf_b": 2, "pdf_a": 2, "That": [2, 3, 8, 14, 22], "interfac": [2, 3, 5, 7, 11, 12, 16, 18, 25, 26, 32], "account": [2, 3, 13, 22], "deep": [2, 13], "recurs": [2, 3, 22], "preserv": [2, 3, 13, 29, 32, 34], "object_a": 2, "object_x": 2, "object_b": 2, "object_i": 2, "object_c": 2, "object_z": 2, "share": [2, 3, 13], "descend": 2, "both": [2, 3, 5, 6, 9, 13, 14, 15, 25, 28], "same": [2, 3, 5, 6, 7, 12, 14, 15, 20, 21, 22, 23, 24, 25, 28, 32, 33, 34], "sinc": [2, 3, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 27, 29, 33, 35], "larg": [2, 12, 18, 19, 29], "amount": 2, "done": [2, 3, 8, 20], "stop": 2, "boundari": [2, 3, 7], "thu": [2, 32], "updat": [2, 3, 5, 13, 14, 15, 17, 19, 20, 24], "direct": [2, 3, 12, 14, 17, 20, 27], "need": [2, 3, 6, 9, 13, 17, 19, 21, 22, 27, 29, 32, 33, 34], "note": [2, 3, 6, 14, 16, 17, 19, 20, 22, 24, 25, 31, 33], "incom": 2, "requir": [2, 3, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 27, 35], "treatment": [2, 3, 17], "see": [2, 3, 6, 8, 9, 10, 20, 22, 25, 27, 29, 32, 33, 35], "copyforeignobject": 2, "messag": [2, 9, 14, 15, 16, 17, 18], "improv": [2, 3, 6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 32, 34], "arg0": [2, 3, 4, 13], "docinfo": [2, 3, 14, 25], "deprec": [2, 3, 13, 14, 15, 16, 17, 18, 20, 25], "document": [2, 3, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 28, 29, 31, 33, 35], "brief": [2, 35], "metadata": [2, 3, 5, 12, 13, 14, 17, 19, 20, 29, 32, 34], "record": [2, 3, 9, 25], "about": [2, 3, 6, 9, 10, 13, 14, 22, 25, 27, 33, 34], "remov": [2, 3, 5, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20, 32, 35], "perspect": 2, "open_metadata": [2, 3, 25], "which": [2, 3, 5, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 33, 34, 35], "modern": [2, 3, 14, 17], "unfortun": [2, 14, 15, 20, 22, 23, 24, 33, 34], "complic": [2, 22, 30], "xmp": [2, 3, 5, 12, 13, 14, 17, 19, 20, 34], "synchron": [2, 25], "simplifi": [2, 13, 14, 19, 25, 26], "ensur": [2, 3, 6, 9, 14, 19, 23, 29], "like": [2, 3, 5, 6, 8, 12, 14, 16, 17, 20, 22, 24, 27, 32, 33, 34, 35], "titl": [2, 3, 25], "del": [2, 12, 13, 14, 25, 32, 35], "re": [2, 3, 8, 22, 32], "4": [2, 3, 5, 11, 21, 22, 24, 25, 26, 28, 29, 30, 32, 35], "encryptioninfo": [2, 3, 5], "flatten_annot": [2, 14], "mode": [2, 3, 9, 12, 20, 31], "flatten": 2, "annot": [2, 3, 5, 14, 17, 29], "regular": [2, 3, 6], "markup": 2, "review": [2, 8], "highlight": 2, "proofread": [2, 14], "enter": [2, 25], "interact": [2, 3, 25], "field": [2, 3, 13, 25, 27], "count": [2, 5, 13, 14, 19, 28, 35], "burn": 2, "fact": [2, 13, 22, 27], "onc": [2, 8, 24], "prepar": [2, 24], "longer": [2, 13, 14, 15, 16, 17, 18, 19, 20, 27, 30, 32], "One": [2, 8, 28, 32], "screen": [2, 3, 31], "omit": [2, 3, 13, 20, 35], "those": [2, 3, 5, 7, 10, 19, 26, 32, 33], "flag": [2, 3], "noview": 2, "generate_appearance_stream": [2, 14], "acroform": 2, "exactli": [2, 24], "free": [2, 12, 13, 24], "everi": [2, 22, 32], "limit": [2, 3, 7, 13, 18, 25, 33], "abil": [2, 12, 17], "invok": 2, "best": [2, 3, 9, 13, 22], "befor": [2, 3, 6, 12, 13, 27, 29], "expect": [2, 13, 15, 17, 29], "needappear": 2, "action": [2, 3, 6, 14, 21, 28], "taken": 2, "http": [2, 3, 8, 25], "github": [2, 6, 14], "com": [2, 25], "blob": 2, "bf6b9ba1c681a6fac6d585c6262fb2778d4bb9d2": 2, "qpdfformfieldobjecthelp": 2, "hh": 2, "l216": 2, "get_object": 2, "objgen": [2, 12, 26, 32], "int": [2, 3, 4, 12, 27], "look": [2, 5, 8, 13, 14, 17, 22, 23, 29, 32, 35], "up": [2, 3, 5, 9, 14, 17, 21, 22, 32, 33, 35], "objid": 2, "gen": 2, "is_encrypt": [2, 14], "natur": [2, 22, 35], "is_linear": 2, "iff": 2, "addit": [2, 3, 7, 9, 14, 16, 22], "make_indirect": [2, 21, 27], "indirect": [2, 5, 32, 35], "encod": [2, 3, 5, 13, 14, 17, 24, 30, 33, 34], "english": [2, 5], "locat": [2, 3, 9, 16, 22, 28], "certain": [2, 3, 6, 13, 14, 15, 16, 17, 18, 20, 35], "consult": 2, "confirm": [2, 8], "is_indirect": [2, 27], "obj": [2, 3, 12, 13, 15, 19, 21, 24, 27, 30, 35], "d": [2, 3, 22, 25], "__new__": 2, "static": [2, 3, 5, 33], "scratch": [2, 5, 13, 28, 30, 35], "split": [2, 3, 5, 35], "part": [2, 3, 14, 20, 23, 25, 32, 35], "rather": [2, 3, 6, 8, 9, 13, 14, 15, 29, 32], "relat": [2, 3, 12, 13, 14, 29], "_objectlist": [2, 22], "hex_password": 2, "ignore_xref_stream": 2, "suppress_warn": 2, "attempt_recoveri": 2, "inherit_page_attribut": 2, "access_mod": [2, 13], "accessmod": [2, 13, 18], "allow_overwriting_input": [2, 13], "filename_or_stream": 2, "while": [2, 3, 14, 17, 20, 24, 29, 32, 33], "undefin": [2, 17], "behavior": [2, 3, 13, 14, 15, 17, 20, 23, 25, 29, 32], "despit": [2, 5], "restrict": [2, 3, 5, 35], "try": [2, 6, 22], "o": [2, 5, 9, 22, 23], "servic": [2, 25], "obtain": [2, 27, 32], "exclus": [2, 3, 14, 35], "lock": [2, 7], "applic": [2, 3, 5, 6, 9, 11, 13, 22, 27, 33], "temporari": [2, 3, 12, 13, 14], "behaviour": 2, "overwrit": [2, 12, 13, 35], "persist": [2, 9], "seek": [2, 13], "readabl": [2, 13], "privat": [2, 7, 11, 14, 15, 17, 19], "whenev": [2, 3, 4, 25, 35], "give": [2, 3, 35], "appropri": [2, 3, 6, 9, 13, 23, 27, 30], "test": [2, 3, 5, 6, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 30, 32, 35], "rosebud": 2, "binaryio": [2, 3], "seekabl": [2, 13, 35], "owner": [2, 3, 14, 30, 33, 35], "utf": [2, 3, 12, 23, 33], "verbatim": [2, 24], "pad": 2, "truncat": 2, "32": [2, 3, 12, 18, 20, 23, 24, 32], "ascii": [2, 22, 23, 33], "maximum": [2, 3], "hex": [2, 23], "exact": 2, "normal": [2, 3, 6, 22, 32, 35], "comput": [2, 3, 23], "forens": 2, "cross": 2, "recov": [2, 13], "push": [2, 3, 22, 29], "attribut": [2, 3, 5, 12, 15, 28, 34], "individu": [2, 29, 32, 35], "decid": [2, 3, 25, 32], "select": [2, 3, 6, 7, 35], "fallback": 2, "fail": [2, 6, 12, 13, 14, 16, 18, 19, 20, 29], "mmap": [2, 13, 18], "mmap_onli": 2, "sigbu": 2, "signal": 2, "posix": [2, 3], "event": 2, "successfulli": 2, "later": [2, 14], "goe": 2, "awai": 2, "recent": [2, 6, 14, 32], "especi": [2, 6], "reason": [2, 3, 8, 13, 14], "we": [2, 3, 6, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 29, 32, 35], "typeerror": [2, 3, 14, 15], "filenotfounderror": [2, 12], "network": 2, "assum": [2, 3, 13, 17, 35], "cach": 2, "achiev": [2, 7], "fetch": 2, "over": [2, 3, 29], "respons": 2, "request": [2, 3, 8, 13, 14, 21], "matter": [2, 3, 27], "small": [2, 13, 14], "poorli": 2, "easier": [2, 5, 8, 13, 14, 22, 33, 35], "download": [2, 6, 9], "local": [2, 6, 9, 13, 14, 15], "storag": [2, 18], "io": [2, 13, 14, 34], "bytesio": [2, 15, 20, 34], "upload": 2, "keyword": [2, 3, 12, 13, 15, 18, 25, 35], "argument": [2, 3, 12, 13, 14, 15, 18, 25, 35], "mandatori": 2, "everyth": [2, 12, 29, 32], "first": [2, 3, 13, 14, 15, 20, 22, 24, 28, 29, 32], "set_pikepdf_as_editor": 2, "update_docinfo": 2, "strict": [2, 3, 12, 14], "There": [2, 3, 23, 24, 27, 30, 32], "intend": [2, 3, 5, 13, 16], "histor": 2, "featur": [2, 3, 5, 8, 13, 14, 17, 19, 24, 25, 34, 35], "coordin": [2, 3, 7, 22, 24, 25], "consist": [2, 3, 12, 13, 17, 25, 32], "atom": 2, "thread": [2, 5, 13], "disk": 2, "meta": [2, 25], "dc": [2, 3, 14, 21, 25], "dublic": 2, "core": [2, 6, 35], "descript": [2, 3, 13, 14, 21, 25, 32], "put": [2, 32], "here": [2, 3, 21, 22, 25, 27, 32, 35], "produc": [2, 3, 5, 6, 16, 24, 25, 30, 33], "show": [2, 3, 5, 21, 22, 24, 35], "softwar": [2, 3, 9, 13, 29, 33, 34, 35], "metadatad": 2, "timestamp": [2, 14], "recommend": [2, 12, 22, 24, 32, 35], "documentinfo": [2, 3, 13, 14, 20, 25], "old": [2, 6, 12, 14, 16, 22, 25], "match": [2, 3, 6, 13, 14, 15, 22, 23, 25], "correspond": [2, 3], "pdfmetadata": [2, 3, 5, 19, 25], "docinfo_map": 2, "nonstandard": [2, 13], "equival": [2, 3, 12, 13, 23, 24, 28, 34], "aggress": [2, 5], "trivial": [2, 12], "incomplet": [2, 13], "skeleton": 2, "never": [2, 3, 5, 8, 12, 14, 15, 16], "proper": [2,
13, 14], "log": [2, 9, 14, 18], "open_outlin": [2, 3, 28], "max_depth": [2, 3], "15": [2, 3, 11, 21, 24, 32, 35], "bookmark": [2, 13, 28, 32], "commit": [2, 25], "insert": [2, 3, 14, 22, 32], "outlineitem": [2, 3, 5, 28], "intro": 2, "depth": [2, 3], "import": [2, 5, 6, 7, 8, 11, 12, 15, 17, 19, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 35], "written": [2, 3, 6, 7, 13, 14, 31], "mean": [2, 3, 22, 30, 31, 32, 35], "sub": 2, "beyond": 2, "silent": [2, 3], "With": [2, 3], "loop": [2, 22], "cancel": 2, "further": [2, 13, 14, 16], "node": [2, 3, 12], "particular": [2, 3, 5, 16, 19, 23, 24, 25, 27], "leav": [2, 32, 33], "place": [2, 3, 14, 22, 24, 32], "similarli": [2, 3], "accident": 2, "duplic": 2, "reproduc": [2, 13, 16, 18], "owner_password_match": [2, 14, 33], "possibl": [2, 3, 6, 7, 12, 13, 15, 16, 17, 19, 24, 27, 29, 32, 34], "10": [2, 6, 11, 15, 16, 17, 18, 20, 21, 24, 25, 28, 32, 35], "pagelist": [2, 13], "pdf_version": [2, 32], "remove_unreferenced_resourc": [2, 3, 32], "referenc": [2, 3, 21, 24, 27, 35], "purg": 2, "unnecessari": [2, 12, 15, 27], "entri": [2, 3, 13, 14, 25, 28, 32], "clariti": [2, 15, 16, 35], "exclud": 2, "output": [2, 3, 5, 9, 13, 14, 15, 20, 22, 24, 31], "convers": [2, 12, 16, 23], "discover": 2, "make": [2, 3, 5, 6, 8, 9, 12, 13, 14, 15, 17, 19, 22, 26, 35], "suggest": [2, 12, 27], "static_id": 2, "preserve_pdfa": 2, "min_vers": [2, 13, 32], "force_vers": 2, "fix_metadata_vers": [2, 13, 25], "compress_stream": [2, 12], "stream_decode_level": [2, 12], "object_stream_mod": [2, 13], "objectstreammod": [2, 5], "normalize_cont": 2, "qdf": [2, 12], "progress": [2, 12], "recompress_fl": 2, "deterministic_id": [2, 18], "modif": 2, "overwritten": 2, "permit": [2, 3, 25, 33], "corrupt": [2, 13, 20], "lazi": [2, 13], "calcul": [2, 5, 14, 15, 22], "hash": 2, "debug": [2, 5, 14, 18, 25], "get": [2, 3, 4, 8, 12, 14, 20, 23, 29, 35], "manner": [2, 3, 9, 25, 32], "compliant": [2, 3, 6], "stricter": [2, 15], "variant": 2, "minimum": [2, 3, 12], "left": [2, 3, 22, 28, 31], "alon": 2, "second": [2, 3, 13, 22, 29, 35], "extens": [2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 24, 25], "what": [2, 3, 5, 15, 19, 22, 24, 25, 35], "overrid": [2, 14, 31], "potenti": [2, 3, 12, 20], "displai": [2, 3, 5, 21, 22, 24, 27, 31], "detail": [2, 3, 6, 27, 28, 30, 33, 34, 35], "option": [2, 3, 12, 13, 14, 30, 31, 33, 34], "correct": [2, 3, 6, 8, 14, 15, 17, 22, 23, 32], "placehold": [2, 13], "pdfversion": [2, 13, 25], "regardless": [2, 22], "disabl": [2, 9, 13, 29], "prevent": [2, 13, 16], "keep": [2, 3, 7, 14, 19, 27, 32], "wherev": [2, 35], "smallest": 2, "enabl": [2, 5, 13, 14, 34], "compress": [2, 3, 4, 5, 13, 14, 19, 24, 30, 34], "uncompress": [2, 34], "inspect": [2, 5, 23, 24, 30], "whether": [2, 3, 14, 23, 27, 35], "indirectli": [2, 27], "merg": [2, 5, 27, 28, 29, 35], "trigger": 2, "non": [2, 3, 12, 13, 33], "recompress": [2, 14], "facilit": 2, "parser": [2, 5, 22, 24], "don": [2, 8, 14, 25, 27], "t": [2, 8, 12, 14, 25, 27, 32], "understand": [2, 13], "full": [2, 3, 7, 22, 24, 25, 31, 35], "streamdecodelevel": [2, 3, 5], "specifi": [2, 3, 13, 17, 22, 24, 26, 29, 35], "flate": [2, 4, 14], "algorithm": [2, 3, 4, 33, 35], "reformat": [2, 5], "fast": 2, "organ": 2, "sequenti": 2, "begin": [2, 8, 13, 23, 25, 32, 35], "As": [2, 13, 19, 20, 21, 27, 32, 35], "drawback": 2, "tend": [2, 21], "larger": [2, 14, 16], "editor": [2, 23, 24], "program": [2, 8, 9, 17, 22, 24, 35], "back": [2, 3, 13, 14, 20, 22, 27, 32], "callabl": 2, "callback": [2, 12], "between": [2, 3, 16, 22, 32], "100": [2, 13, 22], "sole": 2, "percentag": 2, "almost": [2, 35], "certainli": 2, "altern": [2, 3, 21], "determinist": 2, "At": [2, 13, 23], "runtim": [2, 6, 13, 16], "cost": 2, "multipl": [2, 3, 8, 9, 19, 21, 24, 29, 32, 34, 35], "valueerror": [2, 3, 14], "continu": [2, 3, 6, 13, 22, 32, 35], "possibli": [2, 13, 27], "elimin": [2, 12, 13, 14], "increment": [2, 14], "interrupt": [2, 20], "dure": [2, 3, 18], "state": [2, 3, 14, 22], "manag": [2, 3, 5, 6, 9, 13, 24, 25, 26, 35], "directori": [2, 6, 9, 13, 16, 17, 20], "move": [2, 28], "directli": [2, 3, 7, 11, 12, 13, 22, 24, 25, 27, 30, 34], "prior": [2, 5], "result": [2, 3, 8, 9, 13], "show_xref_t": 2, "pretti": [2, 5, 32], "trailer": 2, "section": [2, 3, 27, 28, 30, 32, 35], "speak": [2, 27], "user_password_match": [2, 14, 33], "alia": [2, 3], "compact": 2, "third": [2, 6, 16, 18, 19, 25, 35], "parti": [2, 6, 16, 18, 19, 25], "librari": [2, 3, 7, 9, 12, 13, 16, 17, 19, 20, 23, 25, 33, 35], "appli": [2, 3, 13, 14, 17, 22, 25, 34, 35], "filter": [2, 3, 5, 12, 13, 19, 22, 24, 30, 34, 35], "remain": [2, 13, 34], "lzwdecod": 2, "ascii85decod": 2, "asciihexdecod": 2, "flatedecod": [2, 13, 24], "effect": [2, 3, 9, 13, 16, 22, 24], "effici": [2, 7, 24, 34], "lossi": [2, 24], "runlengthdecod": 2, "dctdecod": [2, 30, 35], "jpeg": [2, 12, 13, 24, 30], "again": [2, 14, 23], "accumul": 2, "loss": [2, 17, 20], "avoid": [2, 3, 8, 12, 13, 14, 17, 18, 19, 32], "cycl": 2, "mostli": [2, 18], "low": [2, 3, 5, 22], "pdfimag": [2, 3, 5, 12, 13, 15, 18, 20, 24], "r": [2, 3, 21], "ae": [2, 3, 33, 35], "liter": [2, 3], "append": [2, 3, 13, 22, 24, 28, 32], "as_dict": 2, "_objectmap": [2, 3], "as_list": 2, "emplac": [2, 13, 14], "parent": [2, 14, 19, 30, 35], "particularli": [2, 34], "top": [2, 3, 13, 22, 28, 29], "link": [2, 5, 13, 16, 17], "Or": [2, 6], "assign": [2, 14, 19, 27, 28, 32], "new_pag": 2, "know": [2, 24], "optim": [2, 5, 22], "restructur": 2, "visual": [2, 13, 33, 35], "reorgan": [2, 12, 17], "n": [2, 3, 5, 22, 25, 32, 35], "compositor": 2, "anymor": 2, "take": [2, 3, 18, 22], "precaut": [2, 20], "child": [2, 9, 19], "inadvert": [2, 14], "16": [2, 11, 20, 23, 24, 29, 32, 35], "extend": [2, 13, 14, 28, 32], "behav": [2, 3, 12, 32, 35], "dict": [2, 3, 27, 35], "get_raw_stream_buff": 2, "protocol": [2, 3, 35], "raw": [2, 3, 24, 25, 30], "get_stream_buff": [2, 3, 13, 34], "decode_level": [2, 3], "is_owned_bi": [2, 12], "possible_own": 2, "is_rectangl": 2, "rectangl": [2, 3, 16, 22, 29], "pair": [2, 3, 29], "definit": [2, 3, 32], "necessarili": [2, 24], "usual": [2, 3, 6, 13, 14, 21, 23, 27, 29, 32], "uncommon": [2, 13], "long": [2, 3, 9, 13, 20], "cpu": [2, 9], "consolid": 2, "read_byt": [2, 3, 13, 19, 21, 25, 27, 34], "read_raw_byt": [2, 34], "same_owner_a": 2, "stream_dict": [2, 14], "to_json": [2, 13], "derefer": 2, "schema_vers": 2, "json": [2, 13, 35], "readthedoc": [2, 14, 17], "en": 2, "html": [2, 6, 22, 24, 34], "Not": [2, 8, 20, 24], "wild": 2, "unrepresent": 2, "charact": [2, 5, 12, 33], "uhhhh": 2, "just": [2, 14, 22, 27, 34, 35], "reserv": 2, "serial": [2, 13, 22], "schema": [2, 3], "bytestr": 2, "x00": 2, "xff": [2, 24], "0000": [2, 22, 30, 35], "00ff": 2, "mojibak": 2, "unpars": [2, 12, 13, 14, 22], "rel": [2, 3, 5, 13, 22], "defer": [2, 12, 13], "with_same_owner_a": [2, 14], "14": [2, 3, 6, 11, 21, 24, 32, 35], "wrap_in_arrai": [2, 13], "wrap": [2, 3, 8, 12, 15, 30, 35], "decode_parm": [2, 3, 12, 13], "type_check": 2, "your": [2, 6, 9, 21, 25, 29, 33, 35], "deflat": 2, "lossless": [2, 24], "png": [2, 3, 24], "tiff": [2, 3, 19], "intention": 2, "index": [2, 3, 13, 14, 35], "notat": [2, 5], "former": [2, 20], "latter": [2, 28], "dynam": 2, "cl": 2, "matrix": [2, 3, 19, 20, 22, 29], "nameon": 2, "nametwo": 2, "arbitrari": [2, 3], "payload": 2, "initi": [2, 3, 22, 25, 31], "shall": [2, 3, 8, 32], "length": [2, 3, 13, 14, 30, 35], "s1": 2, "b": [2, 3, 6, 9, 19, 21, 22, 23, 24, 25, 30, 35], "bitspercompon": [2, 24, 30, 35], "colorspac": [2, 3, 13, 15, 24, 30, 35], "devicergb": [2, 24, 30, 35], "s2": 2, "creation": [2, 3, 5, 13, 35], "roughli": [2, 6, 28], "mini": 2, "languag": [2, 22], "line": [2, 3, 14, 20, 22, 35], "virtual": [2, 3, 6, 9, 14], "canva": [2, 34], "along": [2, 11, 14, 16], "2d": 2, "affin": 2, "matric": [2, 3], "devic": 2, "six": [2, 22], "numer": [2, 3, 12, 32], "f": [2, 3, 14, 21, 22, 32], "bmatrix": 2, "approxim": [2, 3], "horizont": [2, 3], "scale": [2, 3, 16, 22, 24, 34], "factor": [2, 3], "skew": [2, 3], "vertic": [2, 3], "translat": [2, 3, 13, 22], "column": [2, 3, 31], "transpos": 2, "textbook": [2, 3], "typic": [2, 3, 6, 13, 22, 29, 32, 35], "vc": [2, 3, 6], "y": [2, 3, 22], "vr": [2, 3], "row": [2, 3], "system": [2, 3, 9, 12, 13, 14, 17, 22, 35], "untransform": 2, "equat": 2, "concaten": [2, 3, 5, 29], "pre": [2, 3, 20], "multipli": [2, 3], "next": [2, 5, 19, 20, 22, 24], "onto": [2, 29], "rotat": [2, 3, 5, 20, 22], "chain": 2, "meaning": [2, 3], "context": [2, 3, 13, 27], "immut": [2, 3], "__array__": [2, 3], "numpi": [2, 3, 19], "instal": [2, 3, 9, 14, 16, 17, 20], "throw": [2, 6, 14, 34], "__init__": [2, 3], "ident": [2, 3, 14, 16, 23, 32, 33], "float": [2, 3, 4, 13, 27], "t6": 2, "__matmul__": [2, 3], "product": [2, 3, 11, 32], "compos": [2, 3, 26, 33], "as_arrai": 2, "invers": [2, 3, 19], "revers": [2, 3, 5], "rare": [2, 13, 14, 17, 20, 21], "situat": [2, 7, 13, 14, 27, 34], "angle_degrees_ccw": [2, 3], "angl": [2, 3, 35], "degre": [2, 3, 5], "counterclockwis": 2, "arg1": 2, "shorthand": [2, 3, 35], "rect": [2, 3, 21], "tightli": [2, 16], "bound": [2, 17, 30], "polygon": 2, "four": [2, 29, 35], "corner": [2, 22], "unlik": [2, 5, 14], "raster": [2, 5, 16, 24], "upper": [2, 17], "right": [2, 3, 6, 15, 22, 31], "llx": 2, "lly": 2, "urx": 2, "uri": [2, 3], "9": [2, 3, 4, 6, 10, 11, 16, 17, 21, 24, 25, 28, 32, 35], "degener": 2, "strictli": 2, "intersect": 2, "height": [2, 3, 22, 24, 25, 30, 35], "axi": [2, 3, 22], "lower_left": 2, "lower_right": 2, "upper_left": 2, "upper_right": 2, "width": [2, 3, 22, 24, 30, 35], "complet": [2, 3, 8, 14], "declar": [2, 12, 13, 16, 25], "iimag": 2, "whose": 2, "fictiti": 2, "explicitli": [2, 14, 32], "_core": [2, 3, 6, 7, 9, 11, 16, 19, 20, 21, 22], "enumer": [2, 3, 32], "rang": [2, 13], "subset": [2, 22], "tree": [2, 3, 5, 10, 13, 15, 17, 19, 35], "from_objgen": [2, 35], "find": [2, 3, 5, 24, 35], "this_pag": [2, 3], "belong": [2, 3, 35], "helper": [2, 3, 5, 13, 16, 18, 24, 34], "base": [2, 3, 5, 8, 14, 16, 22, 28], "p": [2, 3, 13, 32], "pnum": 2,
"ordin": 2, "neg": [2, 12, 13], "custom": [2, 6, 14, 17, 19, 32], "front": 2, "roman": [2, 3, 32], "bodi": [2, 32], "arab": [2, 32], "clear": [2, 3, 23], "l": [2, 6, 24], "pop": [2, 3, 22, 29], "last": [2, 3, 32], "objecttyp": [2, 15], "instanc": [2, 12, 14, 16], "vast": [2, 19, 24], "major": [2, 8, 12, 14, 16, 19, 20, 24, 35], "isinst": [2, 13, 18, 27], "issubclass": 2, "expos": [2, 3, 17], "through": [2, 3, 5, 9, 13, 14, 16, 23, 24, 28, 32], "_type_cod": 2, "uniniti": 2, "probabl": [2, 3, 13, 14, 25], "bug": [2, 14], "circular": [2, 19], "bit": [2, 3, 12, 13, 16, 18, 20], "sign": [2, 33], "decim": [2, 3, 4, 8, 12, 13, 22, 26, 27], "inlineimag": [2, 27], "necessari": [2, 3, 9, 14, 15, 17, 20, 23, 30, 32, 34], "combin": [2, 24, 32], "implicit": [2, 16, 30], "packag": [2, 5, 6, 7, 12, 16, 17, 18, 19, 20], "json_dict": 2, "prognam": 2, "equal": [2, 16, 30], "run": [2, 6, 9, 13], "check_configur": 2, "configur": [2, 6, 9, 13, 15, 22], "create_pdf": 2, "execut": [2, 9, 35], "stage": 2, "creates_output": 2, "encryption_statu": 2, "statu": [2, 8], "exit_cod": 2, "has_warn": 2, "job_json_schema": 2, "built": [2, 6, 13, 14, 15, 16, 20], "json_out_schema": 2, "message_prefix": 2, "prefix": [2, 3, 11, 14, 21, 24], "write_pdf": 2, "upon": 3, "establish": [3, 22], "did": [3, 14], "objecthelp": [3, 5, 16, 17, 27], "wrapper": [3, 5, 13, 27, 30, 35], "underli": [3, 7, 15, 27, 30], "add_content_token_filt": 3, "tf": 3, "content": [3, 5, 7, 12, 13, 14, 15, 17, 19, 20, 24, 25, 27, 29, 30, 31, 32, 34, 35], "token": [3, 5, 13], "reopen": 3, "add_overlai": [3, 16, 29], "push_stack": [3, 29], "shrink": 3, "expand": [3, 14, 19], "overlai": [3, 5, 14, 32], "drawn": [3, 22, 24, 29], "trimbox": [3, 29, 30], "cropbox": 3, "stack": [3, 13, 22, 29], "offici": [3, 13, 25], "toler": 3, "excess": 3, "caus": [3, 9, 12, 13, 14, 16, 17, 20], "writer": [3, 8, 14], "fit": [3, 28], "aspect": [3, 29], "ratio": [3, 29], "add_resourc": [3, 14], "res_typ": 3, "replace_exist": 3, "extgstat": 3, "pattern": [3, 22], "shade": 3, "font": [3, 22], "random": [3, 12, 14, 16], "enough": [3, 13, 32], "global": [3, 4, 7, 14], "uniqu": 3, "namespac": [3, 12, 17, 19], "im": 3, "mutual": 3, "resource_nam": 3, "formxobj": 3, "add_underlai": [3, 16, 29], "underlai": [3, 5, 32], "beneath": 3, "overdrawn": [3, 29], "partial": 3, "underneath": [3, 29], "artbox": [3, 20], "art": [3, 24], "box": [3, 5, 13, 20], "area": [3, 13], "white": 3, "as_form_xobject": [3, 29], "handle_transform": 3, "thumbnail": [3, 29, 31], "shallow": [3, 13, 14, 32], "anywher": 3, "userunit": 3, "bleedbox": [3, 20], "bleed": 3, "region": 3, "clip": 3, "environ": [3, 6, 9, 17], "calc_form_xobject_plac": [3, 15, 29], "formx": 3, "invert_transform": 3, "allow_shrink": 3, "allow_expand": 3, "segment": 3, "placement": [3, 29], "dimens": [3, 20, 22, 24, 29], "occupi": 3, "contents_add": 3, "prepend": [3, 22], "contents_coalesc": 3, "spot": 3, "middl": 3, "confus": [3, 18, 24, 32], "crop": [3, 24], "mere": [3, 25], "externalize_inline_imag": 3, "min_siz": 3, "extern": [3, 14], "nest": [3, 28], "form_xobject": [3, 19], "get_filtered_cont": 3, "search": [3, 17], "prefac": [3, 32], "ii": [3, 32], "iii": [3, 32], "appendix": [3, 32], "guarante": [3, 32], "ordinari": [3, 14], "rule": [3, 14, 27, 30], "media": [3, 30], "physic": 3, "medium": 3, "parse_cont": 3, "streampars": [3, 15], "alter": [3, 5], "elsewher": [3, 25, 30, 34], "walk": 3, "track": [3, 22, 27], "somewher": 3, "Then": 3, "unus": [3, 20], "across": [3, 7, 13, 29], "90": 3, "clockwis": 3, "trim": [3, 30], "finish": 3, "smaller": [3, 12, 13], "cut": 3, "color": [3, 13, 20, 24], "bar": [3, 31], "pdfmatrix": [3, 5, 20], "3x3": 3, "summar": [3, 31], "homogen": 3, "pure": [3, 5, 14, 22, 27], "premultipl": 3, "mathemat": 3, "importerror": [3, 6], "subtli": 3, "post": [3, 14, 18], "notic": [3, 5], "compens": 3, "break": [3, 13, 14, 19, 22, 32], "irregular": 3, "difficult": [3, 5, 13, 22], "introduc": [3, 13, 19], "address": [3, 32], "difficulti": 3, "spirit": 3, "pillow": [3, 16, 17, 18, 20, 24, 35], "as_pil_imag": [3, 24], "extract": [3, 5, 6, 12, 13, 14, 15, 17, 19, 25, 33, 35], "bits_per_compon": 3, "per": [3, 16], "compon": [3, 16], "decodeparm": [3, 12, 13, 14, 17], "extract_to": [3, 13, 24], "fileprefix": [3, 13, 24], "transcod": [3, 24], "known": [3, 5, 6, 13, 15, 22, 35], "until": [3, 16, 27, 35], "renam": [3, 12, 15, 19, 20, 28], "jpg": [3, 24], "bytes_io": 3, "tmp": 3, "image00": 3, "writabl": [3, 24], "filter_decodeparm": 3, "lot": [3, 8, 12, 13, 15, 24], "concern": [3, 14, 20], "absent": 3, "filternam": 3, "decodeparmnam": 3, "pixel": [3, 13, 22, 24], "icc": [3, 13], "imagecmsprofil": 3, "profil": [3, 5, 13], "image_mask": 3, "mask": [3, 12, 24], "palett": [3, 12, 13], "is_device_n": 3, "devicen": [3, 15], "is_separ": 3, "pil": [3, 13, 14, 24], "palettedata": 3, "unencod": 3, "howev": [3, 5, 24, 25, 27, 28, 35], "pdfinlineimag": [3, 5, 18], "image_data": 3, "image_object": 3, "pikepdf_mark": 3, "sync_docinfo": 3, "overwrite_invalid_xml": 3, "newer": [3, 6, 12, 13, 14, 17, 19, 21], "platform": [3, 8, 13, 14, 17, 18, 20, 21, 25], "documentinform": 3, "primarili": [3, 8, 35], "kept": [3, 14, 19], "purl": [3, 25], "org": [3, 8, 25], "sever": [3, 5, 6, 12, 13, 14, 16, 17, 18, 19, 27, 29, 34], "common": [3, 5, 13, 14, 15, 19, 22, 25, 32], "regist": [3, 13, 16, 19, 23], "load_from_docinfo": [3, 13, 25], "delete_miss": 3, "raise_failur": 3, "popul": [3, 13], "failur": [3, 12, 13, 14, 17, 18, 20], "few": [3, 12, 13, 14, 17, 27, 35], "pdfa_statu": [3, 25], "conform": [3, 5, 14], "claim": [3, 25], "independ": 3, "verifi": [3, 25], "verapdf": [3, 12, 14, 25], "truli": 3, "1a": 3, "1b": [3, 25], "2a": 3, "2b": 3, "2u": 3, "3a": 3, "3b": 3, "3u": 3, "pdfx_statu": 3, "classmethod": 3, "register_xml_namespac": [3, 19], "secur": [3, 5, 14, 20], "handler": [3, 20, 35], "choos": 3, "highest": 3, "rc4": 3, "grant": 3, "decrypt": 3, "control": [3, 21, 29, 31], "reader": [3, 14], "anyon": [3, 33], "maintain": [3, 8, 16, 17, 22], "intuit": 3, "12": [3, 6, 11, 20, 21, 24, 25, 28, 32, 35], "jump": [3, 35], "newli": 3, "page_loc": 3, "bottom": [3, 22], "zoom": [3, 5], "click": [3, 21], "pageloc": 3, "supplement": [3, 10], "simpl": [3, 22, 24, 26, 27, 35], "fith": 3, "Will": 3, "viewport": 3, "neighbor": 3, "xyz": [3, 26], "pagelocationentri": 3, "from_dictionary_object": 3, "to_dictionary_object": 3, "create_new": 3, "modify_annot": 3, "modify_assembli": 3, "modify_form": 3, "modify_oth": 3, "print_lowr": 3, "print_highr": 3, "peopl": [3, 22, 33], "who": [3, 5, 14, 33], "suffici": [3, 13, 19], "person": [3, 33], "unencrypt": [3, 15, 35], "arrang": 3, "fill": [3, 29], "out": [3, 5, 13, 21, 22, 24, 25, 26, 30, 32, 35], "high": 3, "resolut": [3, 5, 24], "encryptionmethod": [3, 5], "unknown": 3, "obsolet": [3, 14, 16], "aesv3": [3, 10], "adob": [3, 10, 21, 25], "iso": [3, 10], "32000": [3, 10], "128": 3, "256": [3, 35], "deriv": [3, 16, 27], "encdict": 3, "due": [3, 9, 12, 13, 14, 18, 19, 20], "overlap": 3, "revis": [3, 14], "v": [3, 16], "encryption_kei": 3, "file_method": 3, "stream_method": 3, "string_method": 3, "user_password": 3, "unicod": [3, 12, 13, 14, 20, 22], "underlin": 3, "widget": [3, 14], "redact": 3, "3d": 3, "sound": [3, 5], "video": 3, "terminologi": [3, 34], "appearance_dict": 3, "appearance_st": 3, "checkbox": 3, "radio": 3, "button": 3, "On": [3, 9, 22], "off": [3, 17], "get_appearance_stream": 3, "rollov": 3, "down": [3, 22], "pass": [3, 12, 25, 27, 28], "get_page_content_for_appear": 3, "required_flag": 3, "forbidden_flag": 3, "Its": [3, 5], "subtyp": [3, 21, 30, 35], "abc": 3, "mutablemap": 3, "attachedfilespec": [3, 5, 21], "k": [3, 13, 26], "els": [3, 29, 32], "keyerror": 3, "popitem": 3, "setdefault": 3, "lack": [3, 12, 14], "target": [3, 5, 6, 16, 27, 28, 29, 32], "get_fil": [3, 21], "txt": [3, 9, 14, 21], "construct": [3, 5, 15, 19, 27, 35], "from_filepath": [3, 21], "spreadsheet": 3, "xlsx": 3, "concept": [3, 13], "fork": [3, 14], "theori": 3, "ought": [3, 13, 14, 17], "perhap": [3, 8, 32], "window": [3, 9, 12, 13, 14, 18, 20, 21, 23, 31, 35], "arguabl": 3, "deal": [3, 12], "get_all_filenam": 3, "mime_typ": [3, 21], "creation_d": 3, "mod_dat": 3, "relationship": [3, 20], "unspecifi": 3, "spec": [3, 14], "shown": [3, 8, 21, 28, 32], "help": [3, 5, 9, 14, 24, 25, 32, 35], "date": [3, 13, 14], "canon": [3, 12], "encryptedpayload": 3, "formdata": 3, "main": [3, 5, 12, 19, 20, 21, 28, 35], "prioriti": 3, "uf": 3, "unix": 3, "mac": 3, "mime": 3, "infer": 3, "holdov": 3, "era": 3, "punctuat": 3, "forbidden": [3, 13], "attachedfil": [3, 5, 21], "primari": 3, "md5": 3, "checksum": 3, "creator": [3, 14, 24, 25], "nametre": [3, 5, 15, 17, 26], "confusingli": 3, "dictmap": 3, "intern": [3, 5, 8, 12, 13, 15, 16, 27, 32], "fairli": [3, 22, 25, 30, 32], "repair": [3, 5], "auto_repair": 3, "catalog": [3, 27, 35], "dest": [3, 26, 28], "nt": [3, 26], "numbertre": [3, 5, 17, 19], "spars": 3, "much": [3, 5, 7, 8, 14, 29, 35], "thing": [3, 5, 12, 14, 15, 23, 32, 33], "face": 3, "pagelabel": [3, 32], "lowercas": 3, "iv": 3, "tune": 4, "get_decimal_precis": [4, 5], "digit": [4, 5, 13, 26], "set_decimal_precis": [4, 5], "set_flate_compression_level": [4, 5], "increas": [4, 14, 18], "northern": 5, "pike": [5, 11], "esox": 5, "luciu": 5, "py": [5, 6, 8, 9, 13, 14], "pyqpdf": 5, "dyslexia": 5, "fun": [5, 8], "But": [5, 22, 32], "sai": [5, 6, 22, 27, 35], "loud": 5, "abus": 5, "thank": [5, 13, 14, 16, 17, 18, 20], "180": 5, "my_pdf": 5, "knowledg": 5, "familiar": [5, 13], "build": [5, 12, 13, 14, 15, 16, 17, 18, 19, 20], "app": 5, "fish": [5, 6, 8], "tough": 5, "hard": [5, 23], "fight": 5, "predat": 5, "rest": 5, "reposit": 5, "acrobat": [5, 10, 13, 21], "downsampl": 5, "dedupl": 5, "charg": 5, "scan": [5, 24, 32], "project": [5, 6, 13], "materi": [5, 32], "meet": 5, "purpos": [5, 9, 35], "pikemen": 5, "brace": 5, "calvari": 5, "carri": 5, "pymupdf": 5, "pypdfium2": 5, "poppler": 5, "ghostscript": [5, 25], "paper": 5, "captur": [5, 13, 21, 29], "epub": 5, "xp": 5,
"djvu": 5, "postscript": [5, 22], "mupdf": 5, "reportlab": [5, 22], "pypdf": 5, "design": [5, 9, 17], "wheel": [5, 12, 13, 14, 15, 16, 17, 18, 19, 20], "made": [5, 13, 14, 16, 17, 18, 32], "leverag": 5, "matur": 5, "damag": 5, "impur": 5, "proud": 5, "impress": 5, "agpl": 5, "licens": [5, 8, 10, 13, 14, 17], "linux": [5, 9, 12, 13, 14, 16, 17, 18, 20], "bsd": 5, "distribut": [5, 17, 20], "author": [5, 14, 20], "ocrmypdf": [5, 14, 25], "graft": 5, "ocr": [5, 25], "layer": [5, 19, 24], "pdfinfo": 5, "suit": [5, 9, 12, 13, 14, 17, 25], "tutori": [5, 32], "repr": [5, 15, 19, 27], "step": [5, 6, 13, 14, 20, 34], "assembli": [5, 35], "model": [5, 12, 14, 17, 18, 24, 25, 30], "lifecycl": 5, "robustli": 5, "watermark": [5, 14, 32, 35], "pdfdocencod": [5, 13], "codec": [5, 13, 14], "info": 5, "signatur": [5, 12, 14], "certif": 5, "job": [5, 9, 17, 24], "architectur": 5, "safeti": 5, "contribut": [5, 13], "guidelin": 5, "big": [5, 22], "style": [5, 12, 15, 17, 22, 24], "guid": [5, 9], "port": [5, 13], "gdb": 5, "compil": [5, 6, 13, 14, 16, 19], "against": [5, 13, 14, 16, 17, 22], "trace": 5, "valgrind": 5, "pymemtrac": 5, "maco": [6, 9, 13, 14, 16, 17, 18, 21], "x64": [6, 20], "pip": [6, 9, 14], "pypi": [6, 14, 16, 17, 18, 20], "intel": 6, "silicon": [6, 14, 16, 17, 20], "manylinux2014": [6, 16], "aarch64": [6, 17, 19, 20], "arm64": 6, "musllinux": 6, "wait": 6, "better": [6, 13, 14, 17, 22, 25, 29, 30, 34, 35], "20": [6, 24, 32, 35], "notabl": [6, 13, 14], "17": [6, 11, 16, 24, 32, 35], "libjpeg": [6, 19], "zlib": [6, 18, 24], "lag": 6, "behind": [6, 7], "dnf": 6, "apk": 6, "py3": 6, "pkg": 6, "py38": 6, "someth": [6, 12], "python3": [6, 16], "lxml": [6, 12, 13, 18], "pybind11": [6, 7, 8, 12, 13, 14, 15, 16, 17], "procedur": [6, 13, 24], "13": [6, 11, 18, 21, 24, 32, 35], "msvc": 6, "19": [6, 11, 24, 25, 32, 35], "header": [6, 8, 14, 17, 24], "repologi": [6, 8], "bundl": 6, "linker": [6, 16], "precis": [6, 13, 22, 27, 29], "abi": [6, 13], "setup": [6, 8, 9, 13, 14, 17, 18, 19], "pick": [6, 13], "variabl": [6, 7, 8, 9, 13, 14, 17, 19, 22], "cc": 6, "cxx": 6, "redirect": 6, "symbol": [6, 9, 14], "ones": 6, "brew": 6, "clone": 6, "repositori": 6, "activ": 6, "setuptool": [6, 17, 19, 20], "wish": [6, 22], "dev": 6, "cmake": [6, 9, 17], "usr": [6, 9], "env": [6, 9], "cxxflag": 6, "ldflag": 6, "lib": [6, 9], "bin": 6, "msvc64": 6, "zip": 6, "our": [6, 8, 13, 14, 15, 16, 22, 34, 35], "integr": [6, 9, 13, 16, 35], "script": [6, 9, 13, 15, 20], "appveyor": [6, 12], "yml": 6, "pain": 6, "precompil": 6, "dll": 6, "mix": [6, 7], "mingw": 6, "detect": [6, 13, 29], "forc": [6, 9, 14, 23], "prompt": [6, 21], "vs140comntool": 6, "vcvarsal": 6, "bat": 6, "distutils_use_sdk": 6, "mssdk": 6, "microsoft": [6, 13], "abov": [6, 9, 19, 22, 27, 28, 32], "src": [6, 9, 24, 28, 32], "folder": 6, "registri": 6, "machin": [6, 14, 15], "abl": 6, "cd": [6, 9], "qpdf_source_tre": [6, 9], "dcmake_build_typ": [6, 9], "relwithdebinfo": 6, "dbuild_shared_lib": 6, "ON": [6, 9], "parallel": [6, 7, 14], "qpdf_build_libdir": [6, 9], "pwd": 6, "pikepdf_source_tre": 6, "latest": 6, "yaml": 6, "sphinx": [6, 17], "regener": 6, "doc": [6, 14, 20], "cpython": [6, 9, 20], "benefit": [6, 19], "nativ": [6, 9], "bind": [7, 8, 9, 13, 14, 15, 17, 19], "evalu": [7, 13], "cython": 7, "cffi": 7, "swig": 7, "solut": 7, "clean": [7, 13, 22], "modul": [7, 9, 11, 14, 15, 16, 17, 19, 34], "_qpdf": [7, 17, 19], "underscor": [7, 11], "although": [7, 24, 34], "gil": [7, 13, 16, 17], "safe": [7, 13], "gain": 7, "pickl": 7, "marshal": 7, "multiprocess": [7, 14], "send": [7, 27], "divid": 7, "worker": 7, "technic": 7, "assembl": [7, 28], "held": [7, 16, 17, 27], "welcom": 8, "pleas": 8, "discuss": [8, 32], "propos": 8, "idea": [8, 9], "contempl": 8, "half": 8, "branch": [8, 12, 20], "pep8": 8, "black": [8, 13], "isort": 8, "pyproject": [8, 17, 19], "toml": [8, 16, 17, 19], "cfg": [8, 14, 18, 19], "pull": 8, "doubl": 8, "quot": 8, "clang": [8, 13, 14], "formatt": 8, "imperfect": 8, "eagerli": 8, "await": 8, "dangl": [8, 14], "parenthesi": 8, "llvm": 8, "d33029": 8, "snake_cas": 8, "camelcas": 8, "convent": [8, 22, 32, 35], "closer": 8, "auto": 8, "module_": 8, "attr": 8, "though": 8, "tradit": 8, "cpp": 8, "repetit": 8, "inl": 8, "suffix": [8, 13], "inclus": [8, 16], "raii": 8, "nake": 8, "pointer": [8, 27], "stl": 8, "std": [8, 14], "char": 8, "pragma": 8, "guard": 8, "silli": 8, "ifdef": 8, "25": [8, 13, 22, 24, 32, 35], "year": [8, 13], "come": [8, 34], "debian": 8, "red": 8, "hat": 8, "life": [8, 13, 14, 16], "downstream": [8, 17], "spell": 8, "capit": 8, "sentenc": 8, "period": 8, "allus": 8, "energet": 8, "mildli": 8, "amus": 8, "simultan": 9, "denable_qtc": 9, "j": 9, "build_ext": 9, "inplac": 9, "subdirectori": 9, "multi": 9, "ll": [9, 35], "ld_library_path": 9, "protect": [9, 13, 33, 35], "dyld_library_path": 9, "install_name_tool": 9, "dylib": 9, "debugg": 9, "lldb": 9, "enable_qtc": 9, "tc_scope": 9, "tc_filenam": 9, "your_log_fil": 9, "libqpdf_log": 9, "my_pikepdf_script": 9, "cprofil": 9, "fine": 9, "explor": [9, 35], "spy": 9, "spent": 9, "demangl": 9, "happili": 9, "recompil": 9, "export": [9, 12, 13], "speedscop": 9, "svg": [9, 34], "illeg": [9, 13], "templat": 9, "npm": 9, "sudo": 9, "some_script": 9, "browser": 9, "pytest": [9, 13, 14], "n0": 9, "usag": [9, 13], "diagnos": 9, "leak": [9, 17, 19], "2008": 10, "basevers": 10, "extensionlevel": 10, "june": 10, "copyright": 10, "reus": 10, "dep5": 10, "polici": 11, "v8": 11, "v7": 11, "v6": [11, 17], "v5": 11, "v4": 11, "v3": 11, "v2": [11, 12, 13], "v1": 11, "18": [11, 24, 32, 35], "v0": 11, "segfault": [12, 19], "appar": 12, "commonli": [12, 23], "ns1": 12, "etc": [12, 14, 15, 31], "skip": [12, 13, 32], "wouldn": 12, "timezon": [12, 14], "scalar": [12, 25, 27], "defusedxml": [12, 13], "toolkit": [12, 25], "libexempi": [12, 25], "multibyt": 12, "had": [12, 13, 14, 16, 18, 19], "themselv": [12, 24, 35], "pdfobj": 12, "beta": [12, 14], "stream_data_mod": 12, "drop": [12, 13, 16, 18, 19, 20], "favor": [12, 20], "occasion": 12, "qpdffakenam": 12, "vendor": 12, "jpeg2000": [12, 24], "subtre": 12, "attributenam": 12, "cmyk": 12, "grayscal": [12, 24], "rgb": 12, "yuv": 12, "properli": [12, 25], "foo": [12, 14], "temporarili": 12, "unreleas": [12, 13], "remove_unneeded_resourc": 12, "catch": 12, "unparse_resolv": 12, "ipython": [12, 14, 24, 35], "jupyt": [12, 24, 35], "slice": [12, 32, 35], "began": 12, "notebook": [12, 35], "yet": [12, 13, 16], "setter": 12, "anywai": [12, 19, 20, 23], "check_own": 12, "get_object_id": 12, "public": [12, 18], "becom": [12, 13], "submodul": 12, "hold": [12, 13, 19, 21, 30, 32], "eas": [12, 13], "oppos": [12, 13], "upstream": 13, "stabil": 13, "unsupport": [13, 16], "switch": [13, 16], "rdf": [13, 25], "effort": 13, "learn": 13, "ccitt": [13, 17, 19], "cherri": 13, "workaround": [13, 16, 17, 19], "pr": [13, 18], "2223": 13, "coverag": [13, 14, 17, 20], "accomplish": 13, "hit": [13, 18], "junk": 13, "crash": 13, "114": 13, "freed": 13, "oldest": 13, "ci": [13, 14, 20], "109": 13, "iamg": 13, "108": 13, "opt": [13, 14], "consider": [13, 19], "jbig2dec": [13, 14], "side": [13, 16], "interfer": 13, "stdout": 13, "unexpect": [13, 18], "tag": [13, 17, 24, 34], "reach": [13, 16], "septemb": 13, "2020": 13, "moment": [13, 19], "9beta": 13, "fedora": 13, "33": [13, 32], "regress": 13, "fulli": [13, 35], "exceed": 13, "round": 13, "refus": 13, "nan": 13, "infin": 13, "futur": 13, "clarifi": [13, 34], "matthia": 13, "erll": 13, "hypothesi": [13, 16, 20], "cygwin": [13, 14], "jhgarrison": 13, "defens": 13, "101": 13, "delint": 13, "minor": [13, 14, 17, 20], "randomli": [13, 16, 18, 20], "deadlin": 13, "nonfre": 13, "rebuild": [13, 14, 16, 17, 18], "87": 13, "86": 13, "80": 13, "lambi": 13, "broken": [13, 14, 17], "maxwel": 13, "packet": 13, "recoveri": 13, "assist": 13, "confid": 13, "essenti": 13, "apart": 13, "fluff": 13, "71": 13, "portabl": 13, "patch": 13, "manylinux2010": [13, 16], "deploi": 13, "infrastructur": 13, "migrat": 13, "azur": [13, 14], "pipelin": [13, 14], "ccittfaxdecod": 13, "g4": 13, "encodedbytealign": 13, "speckl": 13, "affect": [13, 14, 15, 17, 28, 32], "ambigu": 13, "adjust": [13, 15, 16, 17, 20, 25], "alpin": [13, 20], "musl": 13, "libc": 13, "struct": 13, "metaprogram": 13, "mention": [13, 16, 27, 30], "freebsd": [13, 14], "logic": 13, "manylinux1": 13, "emb": [13, 21, 24], "reflect": [13, 27], "pdfdoc": [13, 14, 17, 23], "deadlock": 13, "27": [13, 24, 32, 35], "reject": 13, "absenc": 13, "harden": 13, "revert": 13, "intermedi": 13, "filepath": 13, "suppress": [13, 25], "colortransform": 13, "pink": 13, "variou": [13, 20, 27, 32, 35], "datetim": [13, 20], "strftime": 13, "augment": 13, "inspector": 13, "imghdr": 13, "autoformat": [13, 14], "xmpmeta": [13, 25], "rebuilt": [13, 17, 20], "proven": 13, "synthet": 13, "entiti": [13, 14], "escap": 13, "nul": 13, "linter": 14, "tighten": 14, "mara004": 14, "unicodeencodeerror": 14, "identifi": [14, 25, 26], "regebro": 14, "218": 14, "kraptor": 14, "219": 14, "hint": [14, 16, 20], "amend": 14, "makefil": [14, 17], "appl": [14, 16, 17, 20], "No": [14, 18], "composit": [14, 29], "solv": [14, 20], "task": 14, "involv": [14, 17, 20, 27, 34], "footer": 14, "42": 14, "213": 14, "214": 14, "extra": 14, "isol": 14, "imbu": 14, "stringstream": 14, "happen": [14, 22, 24, 30], "x86_64": 14, "abbrevi": 14, "problemat": 14, "lead": 14, "poor": 14, "typo": [14, 17, 34], "precommit": 14, "ongo": 14, "unreach": 14, "160": 14, "tri": 14, "cmd_class": 14, "cmdclass": 14, "go": [14, 28], "m": [14, 16, 20], "holger": [14, 16, 20], "xxe": 14, "vulner": [14, 20], "eric": 14, "therond": 14, "sonarsourc": 14, "upgrad": 14, "cve": 14, "2021": [14, 16], "29421": 14, "expans": 14, "__repr__": [14, 20], "_method": 14, "_repr_mimebundle_": 14, "regard": 14, "strang": 14, "provabl": 14, "demo": 14, "readm": [14, 17, 19, 20, 21], "md": [14, 21], "publish": [14, 17], "codecov": 14, "_roundtrip": 14, "post1": 14, "transit": [14, 17], "subtl": [14, 19], "post2": 14,
"grow": 14, "aw": 14, "lambda": 14, "strip": 14, "mitig": [14, 33], "broke": 14, "ever": 14, "promis": 14, "explicit": 14, "unown": 14, "pypy3": [14, 18], "surrog": 14, "behalf": 14, "hopefulli": 14, "150": 14, "143": 14, "mypi": 14, "mojav": 14, "sens": 14, "namedtupl": 14, "strong": [14, 33], "assumpt": 14, "superclass": 14, "__eq__": [14, 17], "notimpl": [14, 17], "uncompar": 14, "pdfjpximag": 14, "significantli": [14, 26], "258": 15, "261": 15, "refactor": [15, 16, 17], "idiom": [15, 27], "strongli": [15, 22], "page_contents_": 15, "contents_": 15, "_attach": 15, "_process": 15, "counterpart": 15, "examin": [15, 35], "209": 15, "printer": 15, "237": 15, "232": 15, "cibuildwheel": [15, 17], "constructor": [15, 35], "gcc": 16, "jerkenbilt": 16, "dead": 16, "tomli": 16, "instabl": 16, "rwgk": 16, "relev": [16, 25], "qulog": 16, "distutil": 16, "sjahu": 16, "277": 16, "bordaigorl": 16, "276": 16, "282": 16, "271": 16, "compar": [16, 20], "chri": 16, "lamb": 16, "sean": 16, "whitton": 16, "cherryblossom000": 16, "soon": 16, "backport": 16, "critic": 16, "decemb": 16, "photometri": 17, "blackis1": 17, "seem": 17, "plan": 17, "inconsist": 17, "willanglei": 17, "sdist": [17, 20], "qpdf_": 17, "cflag": 17, "pabloalexis611": 17, "spdx": [17, 21], "throughout": 17, "chore": 17, "qpdfjob": 17, "instanti": 17, "scm": [17, 20], "encount": 17, "299": 17, "git": 17, "archiv": 17, "roll": 17, "testabl": 17, "pluggabl": 17, "setuptools_scm": 17, "359": 17, "unhelp": 17, "attemp": 17, "341": 17, "349": 17, "panel": [17, 21, 31], "pkg_resourc": 17, "importlib": 17, "backward": [17, 18, 20, 25, 32], "importlib_metadata": 17, "317": 17, "manylinux": [17, 18, 19, 20], "328": 17, "pep": 17, "621": 17, "323": 17, "homebrew": 17, "turn": 17, "shim": [17, 19], "322": 17, "conjunct": 17, "quicker": 17, "lookup": 17, "redo": 18, "botch": 18, "gb": 18, "newlin": 18, "advantag": 18, "64": 18, "zachgoulet": 18, "noisi": 18, "flakei": 18, "mgorni": 18, "unchang": 18, "josch": 18, "align": [18, 29], "incompat": 18, "busi": 18, "is_inlin": 18, "interoper": 19, "465": 19, "436": 19, "437": 19, "401": 19, "432": 19, "believ": 19, "aliv": 19, "consequ": [19, 20], "def": 19, "make_obj_and_return": 19, "surround": [19, 23], "shared_ptr": 19, "lighterweight": 19, "unique_ptr": 19, "61": 19, "turbo": 19, "advertis": 20, "promot": 20, "truthi": 20, "cover": [20, 27], "albeit": 20, "circumst": [20, 23, 25], "1050": 20, "unclear": [20, 33], "musllinux_1_2": 20, "tweak": 20, "atomic_overwrit": 20, "seriou": 20, "earlier": 20, "webp": 20, "afrelationship": 20, "monochrom": 20, "invert": 20, "517": 20, "pyi": 20, "510": 20, "xfail": 20, "503": 20, "site": 20, "447": 20, "utcnow": 20, "499": 20, "timelin": 20, "flaki": 20, "mysteri": 20, "490": 20, "visibl": [20, 31], "488": 20, "462": 20, "master": 20, "deleg": 20, "cirru": 20, "preview": 20, "delai": 20, "quick": 21, "let": [21, 22, 25, 32, 34, 35], "pathlib": [21, 35], "fourpag": [21, 32, 35], "filespec": 21, "50": [21, 22, 30, 35], "filecopyrighttext": 21, "2022": 21, "jame": 21, "barlow": 21, "memfilespec": 21, "plain": 21, "alphabet": 21, "pagemod": 21, "useattach": [21, 31], "pane": 21, "honor": 21, "icon": 21, "pushpin": 21, "fileattach": 21, "graphpushpin": 21, "twice": 21, "noth": 22, "thought": [22, 27], "loos": 22, "sometim": [22, 24, 27, 28, 34], "mistakenli": 22, "grammar": 22, "condit": 22, "image1": 22, "extrem": 22, "congress": [22, 24, 30, 32, 35], "200": [22, 30, 35], "304": [22, 30, 35], "im0": [22, 24, 30, 35], "contriv": 22, "ctm": 22, "figur": 22, "answer": 22, "35": [22, 30, 32], "mm": [22, 30], "substitut": 22, "paint": [22, 24], "center": [22, 25, 29], "reduc": [22, 24], "rewrit": 22, "border": 22, "new_matrix": 22, "152": 22, "76": 22, "nail": 22, "quadrant": 22, "cartesian": 22, "graph": [22, 32], "flip": 22, "new_content_stream": 22, "n100": 22, "nq": 22, "illustr": 22, "simplic": 22, "offset": 22, "And": 22, "often": [22, 27, 34], "predict": 22, "total": 22, "guess": [22, 32, 33], "glyph": 22, "transpar": [22, 23, 24, 27], "dump": 22, "perfectli": 22, "legal": 22, "unconvent": 22, "scrape": 22, "pdfminer": 22, "three": [23, 28, 34], "scienc": 23, "\u0499": 23, "\u02b9\u02b9": 23, "\u02b9": 23, "marseil": 23, "folog": 23, "126": 23, "0x20": 23, "0x7e": 23, "parenthes": 23, "hello": 23, "world": 23, "x81": 23, "win": 23, "fortun": [23, 34], "quit": [23, 35], "pdfdoc_pikepdf": 23, "obscur": 23, "winansiencod": 23, "1252": 23, "cp1252": 23, "macromanencod": 23, "macroman": 23, "repeat": 24, "facil": 24, "img2pdf": 24, "pdf2img": 24, "page1": [24, 30, 35], "rawimag": 24, "backend": 24, "1000": [24, 28, 30, 35], "1520": [24, 30, 35], "straightforward": 24, "qualiti": 24, "jpegimageplugin": 24, "jpegimagefil": 24, "img": 24, "overdraw": 24, "togeth": [24, 28, 34], "pillowimag": 24, "resiz": 24, "tobyt": 24, "devicegrai": 24, "occurr": 24, "easi": [24, 34, 35], "1x1": 24, "imagemask": 24, "sandwich": [24, 25, 32], "21": [24, 25, 32, 35], "22": [24, 25, 32, 35], "image_nam": 24, "23": [24, 32, 35], "new_imag": 24, "24": [24, 32, 35], "26": [24, 32, 35], "28": [24, 32], "compound": [25, 26, 27], "quantiti": [25, 27], "creatortool": 25, "tesseract": 25, "05": 25, "01": 25, "t02": 25, "pdfen": 25, "kind": 25, "valuabl": 25, "xpacket": 25, "w5m0mpcehihzreszntczkc9d": 25, "xmln": 25, "www": 25, "w3": 25, "1999": 25, "02": 25, "seq": 25, "li": 25, "consortium": 25, "xap": 25, "builder": 25, "created": 25, "2015": 25, "03": 25, "10t17": 25, "00": 25, "modifyd": 25, "pdfaid": 25, "aiim": 25, "pdfa": 25, "w": 25, "worth": 25, "troubl": 25, "live": 25, "touch": 25, "creationd": 25, "20170911132748": 25, "07": 25, "moddat": 25, "gpl": 25, "primit": 26, "url": 26, "javascript": 26, "89": 26, "29": [26, 32], "qpdfobjecthandl": 27, "importantli": 27, "shouldn": 27, "simplest": [27, 28], "stand": [27, 32], "offer": [27, 33], "superset": 27, "eafp": 27, "partli": 27, "express": [27, 35], "catalog_nam": 27, "neatli": 27, "great": 27, "came": 27, "hundr": 27, "inner": 27, "hide": 27, "dereferenc": 27, "tediou": 27, "asid": [28, 35], "navig": 28, "1st": 28, "3rd": 28, "9th": 28, "document_with_outlin": 28, "glob": [28, 32], "page_count": 28, "oi": 28, "len": [28, 32, 35], "fitb": 28, "make_page_destin": 28, "children": 28, "main_item": 28, "slide": 29, "destination_pag": 29, "300": 29, "page1_with_page2_thumbnail": 29, "basic": 29, "hyperlink": [29, 32], "encapsul": 29, "ideal": 30, "good": 30, "n200": [30, 35], "192956": [30, 35], "dct": 30, "pt": 30, "impli": 30, "harmless": 30, "layout": 31, "singlepag": 31, "fullscreen": 31, "below": 31, "onecolumn": 31, "twocolumnleft": 31, "odd": 31, "twocolumnright": 31, "twopageleft": 31, "twopageright": 31, "usenon": 31, "neither": 31, "nor": 31, "useoutlin": 31, "usethumb": 31, "menu": 31, "useoc": 31, "breviti": 32, "dst": 32, "02d": 32, "transfer": 32, "sampl": [32, 35], "sophist": 32, "unreferenc": 32, "chose": 32, "max": 32, "suppos": [32, 33], "easili": 32, "mayb": 32, "scanner": 32, "nice": 32, "isn": 32, "bump": 32, "ahead": 32, "therefor": 32, "think": 32, "demolish": 32, "interior": 32, "hous": 32, "30": 32, "31": 32, "donor": 32, "34": 32, "36": 32, "accessor": 32, "37": 32, "38": 32, "39": 32, "scheme": 32, "introductori": 32, "40": 32, "parlanc": 32, "wide": [33, 35], "theatr": 33, "everyon": 33, "useless": 33, "bypass": 33, "crack": 33, "motiv": 33, "unlimit": 33, "chanc": 33, "signific": 33, "weak": 33, "prove": 33, "widest": 33, "regularli": 34, "varieti": 34, "term": 34, "taxonomi": 34, "realli": 34, "fillabl": 34, "noteworthi": 34, "saniti": 34, "page_contents_coalesc": 34, "filelike_object": 34, "introduct": 35, "orient": 35, "paradigm": 35, "topic": 35, "contrast": 35, "cleverli": 35, "cours": 35, "conflict": 35, "uppercas": 35, "blank_pag": 35, "fundament": 35, "rich": 35, "suffic": 35, "attrdict": 35, "kid": 35, "obj_page1": 35, "observ": 35, "bracket": 35, "eval": 35, "arbitrarili": 35, "chosen": 35, "whatev": 35, "cumbersom": 35, "robust": 35, "glom": 35, "everywher": 35, "strongest": 35, "no_extract": 35, "job_json": 35, "inputfil": 35}, "objects": {"pikepdf": [[3, 0, 1, "", "Annotation"], [2, 0, 1, "", "Array"], [3, 0, 1, "", "AttachedFileSpec"], [2, 0, 1, "", "ContentStreamInlineImage"], [2, 0, 1, "", "ContentStreamInstruction"], [0, 3, 1, "", "DataDecodingError"], [0, 3, 1, "", "DeletedObjectError"], [2, 0, 1, "", "Dictionary"], [0, 3, 1, "", "ForeignObjectError"], [2, 0, 1, "", "Job"], [2, 0, 1, "", "Matrix"], [2, 0, 1, "", "Name"], [3, 0, 1, "", "NameTree"], [3, 0, 1, "", "NumberTree"], [2, 0, 1, "", "Object"], [3, 0, 1, "", "ObjectHelper"], [2, 0, 1, "", "ObjectStreamMode"], [2, 0, 1, "", "ObjectType"], [2, 0, 1, "", "Operator"], [0, 3, 1, "", "OutlineStructureError"], [3, 0, 1, "", "Page"], [0, 3, 1, "", "PasswordError"], [2, 0, 1, "", "Pdf"], [0, 3, 1, "", "PdfError"], [3, 0, 1, "", "PdfImage"], [3, 0, 1, "", "PdfInlineImage"], [3, 0, 1, "", "PdfMatrix"], [3, 0, 1, "", "Permissions"], [2, 0, 1, "", "Rectangle"], [2, 0, 1, "", "Stream"], [2, 0, 1, "", "StreamDecodeLevel"], [2, 0, 1, "", "String"], [1, 0, 1, "", "Token"], [1, 0, 1, "", "TokenFilter"], [1, 0, 1, "", "TokenType"], [0, 3, 1, "", "UnsupportedImageTypeError"], [2, 5, 1, "", "new"], [2, 5, 1, "", "open"], [1, 5, 1, "", "parse_content_stream"], [1, 5, 1, "", "unparse_content_stream"]], "pikepdf.Annotation": [[3, 1, 1, "", "appearance_dict"], [3, 1, 1, "", "appearance_state"], [3, 1, 1, "", "flags"], [3, 2, 1, "", "get_appearance_stream"], [3, 2, 1, "", "get_page_content_for_appearance"], [3, 1, 1, "", "subtype"]], "pikepdf.Array": [[2, 2, 1, "", "__new__"]], "pikepdf.AttachedFileSpec": [[3, 2, 1, "", "__init__"], [3, 1, 1, "", "description"], [3, 1, 1, "", "filename"], [3, 2, 1, "", "from_filepath"], [3, 2, 1, "", "get_all_filenames"], [3, 2, 1, "", "get_file"], [3, 1, 1, "", "obj"]], "pikepdf.ContentStreamInlineImage": [[2, 1, 1, "", "iimage"], [2, 1, 1, "", "operands"], [2, 1, 1, "", "operator"]], "pikepdf.ContentStreamInstruction": [[2, 1, 1, "", "operands"], [2,
1, 1, "", "operator"]], "pikepdf.Dictionary": [[2, 2, 1, "", "__new__"]], "pikepdf.Job": [[2, 2, 1, "", "__init__"], [2, 2, 1, "", "check_configuration"], [2, 2, 1, "", "create_pdf"], [2, 1, 1, "", "creates_output"], [2, 1, 1, "", "encryption_status"], [2, 1, 1, "", "exit_code"], [2, 1, 1, "", "has_warnings"], [2, 2, 1, "", "job_json_schema"], [2, 2, 1, "", "json_out_schema"], [2, 1, 1, "", "message_prefix"], [2, 2, 1, "", "run"], [2, 2, 1, "", "write_pdf"]], "pikepdf.Matrix": [[2, 2, 1, "", "__array__"], [2, 2, 1, "", "__init__"], [2, 2, 1, "", "__matmul__"], [2, 2, 1, "", "as_array"], [2, 2, 1, "", "encode"], [2, 2, 1, "", "inverse"], [2, 2, 1, "", "rotated"], [2, 2, 1, "", "scaled"], [2, 1, 1, "", "shorthand"], [2, 2, 1, "", "transform"], [2, 2, 1, "", "translated"]], "pikepdf.Name": [[2, 2, 1, "", "__new__"]], "pikepdf.NameTree": [[3, 2, 1, "", "clear"], [3, 2, 1, "", "get"], [3, 2, 1, "", "new"], [3, 1, 1, "", "obj"], [3, 2, 1, "", "pop"], [3, 2, 1, "", "popitem"], [3, 2, 1, "", "setdefault"], [3, 2, 1, "", "update"]], "pikepdf.NumberTree": [[3, 2, 1, "", "clear"], [3, 2, 1, "", "get"], [3, 2, 1, "", "new"], [3, 2, 1, "", "pop"], [3, 2, 1, "", "popitem"], [3, 2, 1, "", "setdefault"], [3, 2, 1, "", "update"]], "pikepdf.Object": [[2, 2, 1, "", "append"], [2, 2, 1, "", "as_dict"], [2, 2, 1, "", "as_list"], [2, 2, 1, "", "emplace"], [2, 2, 1, "", "extend"], [2, 2, 1, "", "get"], [2, 2, 1, "", "get_raw_stream_buffer"], [2, 2, 1, "", "get_stream_buffer"], [2, 2, 1, "", "is_owned_by"], [2, 1, 1, "", "is_rectangle"], [2, 2, 1, "", "items"], [2, 2, 1, "", "keys"], [2, 1, 1, "", "objgen"], [2, 2, 1, "", "parse"], [2, 2, 1, "", "read_bytes"], [2, 2, 1, "", "read_raw_bytes"], [2, 2, 1, "", "same_owner_as"], [2, 1, 1, "", "stream_dict"], [2, 2, 1, "", "to_json"], [2, 2, 1, "", "unparse"], [2, 2, 1, "", "with_same_owner_as"], [2, 2, 1, "", "wrap_in_array"], [2, 2, 1, "", "write"]], "pikepdf.ObjectHelper": [[3, 1, 1, "", "obj"]], "pikepdf.ObjectStreamMode": [[2, 4, 1, "", "disable"], [2, 4, 1, "", "generate"], [2, 4, 1, "", "preserve"]], "pikepdf.ObjectType": [[2, 4, 1, "", "array"], [2, 4, 1, "", "boolean"], [2, 4, 1, "", "dictionary"], [2, 4, 1, "", "inlineimage"], [2, 4, 1, "", "integer"], [2, 4, 1, "", "name_"], [2, 4, 1, "", "null"], [2, 4, 1, "", "operator"], [2, 4, 1, "", "real"], [2, 4, 1, "", "reserved"], [2, 4, 1, "", "stream"], [2, 4, 1, "", "string"], [2, 4, 1, "", "uninitialized"]], "pikepdf.Page": [[3, 2, 1, "", "add_content_token_filter"], [3, 2, 1, "", "add_overlay"], [3, 2, 1, "", "add_resource"], [3, 2, 1, "", "add_underlay"], [3, 1, 1, "", "artbox"], [3, 2, 1, "", "as_form_xobject"], [3, 1, 1, "", "bleedbox"], [3, 2, 1, "", "calc_form_xobject_placement"], [3, 2, 1, "", "contents_add"], [3, 2, 1, "", "contents_coalesce"], [3, 1, 1, "", "cropbox"], [3, 2, 1, "", "externalize_inline_images"], [3, 1, 1, "", "form_xobjects"], [3, 2, 1, "", "get_filtered_contents"], [3, 1, 1, "", "images"], [3, 1, 1, "", "index"], [3, 1, 1, "", "label"], [3, 1, 1, "", "mediabox"], [3, 1, 1, "", "obj"], [3, 2, 1, "", "parse_contents"], [3, 2, 1, "", "remove_unreferenced_resources"], [3, 1, 1, "", "resources"], [3, 2, 1, "", "rotate"], [3, 1, 1, "", "trimbox"]], "pikepdf.Pdf": [[2, 1, 1, "", "Root"], [2, 2, 1, "", "add_blank_page"], [2, 1, 1, "", "allow"], [2, 1, 1, "", "attachments"], [2, 2, 1, "", "check"], [2, 2, 1, "", "check_linearization"], [2, 2, 1, "", "close"], [2, 2, 1, "", "copy_foreign"], [2, 1, 1, "", "docinfo"], [2, 1, 1, "", "encryption"], [2, 1, 1, "", "filename"], [2, 2, 1, "", "flatten_annotations"], [2, 2, 1, "", "generate_appearance_streams"], [2, 2, 1, "", "get_object"], [2, 2, 1, "", "get_warnings"], [2, 1, 1, "", "is_encrypted"], [2, 1, 1, "", "is_linearized"], [2, 2, 1, "", "make_indirect"], [2, 2, 1, "", "make_stream"], [2, 2, 1, "", "new"], [2, 1, 1, "", "objects"], [2, 2, 1, "", "open"], [2, 2, 1, "", "open_metadata"], [2, 2, 1, "", "open_outline"], [2, 1, 1, "", "owner_password_matched"], [2, 1, 1, "", "pages"], [2, 1, 1, "", "pdf_version"], [2, 2, 1, "", "remove_unreferenced_resources"], [2, 2, 1, "", "save"], [2, 2, 1, "", "show_xref_table"], [2, 1, 1, "", "trailer"], [2, 1, 1, "", "user_password_matched"]], "pikepdf.PdfImage": [[3, 2, 1, "", "as_pil_image"], [3, 1, 1, "", "bits_per_component"], [3, 1, 1, "", "colorspace"], [3, 1, 1, "", "decode_parms"], [3, 2, 1, "", "extract_to"], [3, 1, 1, "", "filter_decodeparms"], [3, 1, 1, "", "filters"], [3, 2, 1, "", "get_stream_buffer"], [3, 1, 1, "", "height"], [3, 1, 1, "", "icc"], [3, 1, 1, "", "image_mask"], [3, 1, 1, "", "indexed"], [3, 1, 1, "", "is_device_n"], [3, 1, 1, "", "is_separation"], [3, 1, 1, "", "mode"], [3, 1, 1, "", "palette"], [3, 2, 1, "", "read_bytes"], [3, 2, 1, "", "show"], [3, 1, 1, "", "size"], [3, 1, 1, "", "width"]], "pikepdf.PdfMatrix": [[3, 2, 1, "", "__array__"], [3, 2, 1, "", "__init__"], [3, 2, 1, "", "__matmul__"], [3, 1, 1, "", "a"], [3, 1, 1, "", "b"], [3, 1, 1, "", "c"], [3, 1, 1, "", "d"], [3, 1, 1, "", "e"], [3, 2, 1, "", "encode"], [3, 1, 1, "", "f"], [3, 2, 1, "", "identity"], [3, 2, 1, "", "inverse"], [3, 2, 1, "", "rotated"], [3, 2, 1, "", "scaled"], [3, 1, 1, "", "shorthand"], [3, 2, 1, "", "translated"]], "pikepdf.Permissions": [[3, 4, 1, "", "accessibility"], [3, 4, 1, "", "extract"], [3, 4, 1, "", "modify_annotation"], [3, 4, 1, "", "modify_assembly"], [3, 4, 1, "", "modify_form"], [3, 4, 1, "", "modify_other"], [3, 4, 1, "", "print_highres"], [3, 4, 1, "", "print_lowres"]], "pikepdf.Rectangle": [[2, 2, 1, "", "as_array"], [2, 1, 1, "", "height"], [2, 1, 1, "", "llx"], [2, 1, 1, "", "lly"], [2, 1, 1, "", "lower_left"], [2, 1, 1, "", "lower_right"], [2, 1, 1, "", "upper_left"], [2, 1, 1, "", "upper_right"], [2, 1, 1, "", "urx"], [2, 1, 1, "", "ury"], [2, 1, 1, "", "width"]], "pikepdf.Stream": [[2, 2, 1, "", "__new__"]], "pikepdf.StreamDecodeLevel": [[2, 4, 1, "", "all"], [2, 4, 1, "", "generalized"], [2, 4, 1, "", "none"], [2, 4, 1, "", "specialized"]], "pikepdf.String": [[2, 2, 1, "", "__new__"]], "pikepdf.Token": [[1, 1, 1, "", "raw_value"], [1, 1, 1, "", "type_"], [1, 1, 1, "", "value"]], "pikepdf.TokenFilter": [[1, 2, 1, "", "handle_token"]], "pikepdf.TokenType": [[1, 4, 1, "", "array_close"], [1, 4, 1, "", "array_open"], [1, 4, 1, "", "bad"], [1, 4, 1, "", "bool"], [1, 4, 1, "", "brace_close"], [1, 4, 1, "", "brace_open"], [1, 4, 1, "", "comment"], [1, 4, 1, "", "dict_close"], [1, 4, 1, "", "dict_open"], [1, 4, 1, "", "eof"], [1, 4, 1, "", "inline_image"], [1, 4, 1, "", "integer"], [1, 4, 1, "", "name_"], [1, 4, 1, "", "null"], [1, 4, 1, "", "real"], [1, 4, 1, "", "space"], [1, 4, 1, "", "word"]], "pikepdf._core": [[3, 0, 1, "", "AttachedFile"], [3, 0, 1, "", "Attachments"], [2, 0, 1, "", "PageList"], [2, 0, 1, "", "_ObjectList"]], "pikepdf._core.AttachedFile": [[3, 1, 1, "", "md5"], [3, 1, 1, "", "mime_type"], [3, 1, 1, "", "obj"], [3, 1, 1, "", "size"]], "pikepdf._core.Attachments": [[3, 2, 1, "", "clear"], [3, 2, 1, "", "get"], [3, 2, 1, "", "items"], [3, 2, 1, "", "keys"], [3, 2, 1, "", "pop"], [3, 2, 1, "", "popitem"], [3, 2, 1, "", "setdefault"], [3, 2, 1, "", "update"], [3, 2, 1, "", "values"]], "pikepdf._core.PageList": [[2, 2, 1, "", "append"], [2, 2, 1, "", "extend"], [2, 2, 1, "", "from_objgen"], [2, 2, 1, "", "index"], [2, 2, 1, "", "insert"], [2, 2, 1, "", "p"], [2, 2, 1, "", "remove"], [2, 2, 1, "", "reverse"]], "pikepdf._core._ObjectList": [[2, 2, 1, "", "append"], [2, 2, 1, "", "clear"], [2, 2, 1, "", "count"], [2, 2, 1, "", "extend"], [2, 2, 1, "", "insert"], [2, 2, 1, "", "pop"], [2, 2, 1, "", "remove"]], "pikepdf.models": [[3, 0, 1, "", "Encryption"], [3, 0, 1, "", "EncryptionInfo"], [3, 0, 1, "", "EncryptionMethod"], [3, 0, 1, "", "Outline"], [3, 0, 1, "", "OutlineItem"], [3, 0, 1, "", "PdfMetadata"]], "pikepdf.models.Encryption": [[3, 4, 1, "", "R"], [3, 4, 1, "", "aes"], [3, 4, 1, "", "allow"], [3, 4, 1, "", "metadata"], [3, 4, 1, "", "owner"], [3, 4, 1, "", "user"]], "pikepdf.models.EncryptionInfo": [[3, 1, 1, "", "P"], [3, 1, 1, "", "R"], [3, 1, 1, "", "V"], [3, 1, 1, "", "bits"], [3, 1, 1, "", "encryption_key"], [3, 1, 1, "", "file_method"], [3, 1, 1, "", "stream_method"], [3, 1, 1, "", "string_method"], [3, 1, 1, "", "user_password"]], "pikepdf.models.EncryptionMethod": [[3, 4, 1, "", "aes"], [3, 4, 1, "", "aesv3"], [3, 4, 1, "", "none"], [3, 4, 1, "", "rc4"], [3, 4, 1, "", "unknown"]], "pikepdf.models.Outline": [[3, 2, 1, "", "add"], [3, 1, 1, "", "root"]], "pikepdf.models.OutlineItem": [[3, 2, 1, "", "from_dictionary_object"], [3, 2, 1, "", "to_dictionary_object"]], "pikepdf.models.PdfMetadata": [[3, 2, 1, "", "load_from_docinfo"], [3, 1, 1, "", "pdfa_status"], [3, 1, 1, "", "pdfx_status"], [3, 2, 1, "", "register_xml_namespace"]], "pikepdf.settings": [[4, 5, 1, "", "get_decimal_precision"], [4, 5, 1, "", "set_decimal_precision"], [4, 5, 1, "", "set_flate_compression_level"]]}, "objtypes": {"0": "py:class", "1": "py:property", "2": "py:method", "3": "py:exception", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "property", "Python property"], "2": ["py", "method", "Python method"], "3": ["py", "exception", "Python exception"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"except": 0, "content": [1, 2, 22, 33], "stream": [1, 2, 22, 34], "parser": 1, "token": 1, "filter": 1, "main": 2, "object": [2, 27, 34], "construct": 2, "common": 2, "pdf": [2, 21, 22, 25, 27, 31, 32, 33, 35], "data": 2, "structur": [2, 28], "element": 2, "intern": [2, 7], "job": [2, 35], "support": [3, 6], "model": [3, 27], "set": 4, "pikepdf": [5, 9], "document": [5, 6, 25, 32], "At": 5, "glanc": 5, "requir": [5, 6], "similar": 5, "librari": [5, 6], "In": 5, "us": [5, 9, 32], "introduct": 5, "releas": [5, 11], "note": [5, 11, 21], "topic": 5, "api": 5, "refer": 5, "instal": 6, "basic": 6, "binari": 6, "wheel": 6, "avail": 6, "python": [6, 8, 9, 34], "platform": 6, "debian": 6, "ubuntu":
6, "other": [6, 23, 32], "apt": 6, "base": 6, "distribut": 6, "fedora": 6, "alpin": 6, "linux": 6, "freebsd": 6, "build": [6, 9], "from": [6, 22, 32], "sourc": [6, 9], "fa": 6, "appl": 6, "gcc": 6, "clang": 6, "link": [6, 9], "system": 6, "user": 6, "window": 6, "On": 6, "visual": 6, "studio": 6, "2015": 6, "against": [6, 9], "qpdf": [6, 9, 35], "tree": [6, 9, 26], "pypy3": 6, "architectur": 7, "thread": 7, "safeti": 7, "file": [7, 21], "handl": 7, "contribut": 8, "guidelin": 8, "big": 8, "chang": [8, 15, 16, 35], "code": 8, "style": 8, "c": [8, 9], "test": 8, "new": [8, 15], "depend": 8, "english": 8, "guid": 8, "known": 8, "port": 8, "packag": 8, "debug": 9, "gdb": 9, "compil": 9, "enabl": 9, "trace": 9, "valgrind": 9, "profil": 9, "pymemtrac": 9, "resourc": 10, "v0": 12, "10": [12, 13, 14], "2": [12, 13, 14, 15, 16, 17, 18, 19, 20], "fix": [12, 15], "1": [12, 13, 14, 15, 16, 17, 18, 19, 20], "0": [12, 13, 14, 15, 16, 17, 18, 19, 20], "9": [12, 13, 14, 18], "updat": [12, 25], "break": [12, 15, 16], "3": [12, 13, 14, 16, 17, 18, 20], "7": [12, 13, 14, 18, 20], "6": [12, 13, 14, 17, 18, 20], "5": [12, 13, 14, 16, 17, 18, 20], "4": [12, 13, 14, 16, 17, 18, 20], "v1": 13, "19": 13, "18": 13, "17": 13, "16": [13, 14], "15": [13, 14], "14": [13, 14], "13": [13, 14], "12": [13, 14], "11": [13, 14], "8": [13, 14, 18], "v2": 14, "0b2": 14, "0b1": 14, "v3": 15, "function": 15, "v4": 16, "v5": 17, "v6": 18, "v7": 19, "v8": 20, "attach": 21, "gener": 21, "how": [21, 22], "find": 21, "viewer": [21, 31], "creat": [21, 28, 35], "annot": 21, "work": [22, 24, 30], "pretti": 22, "print": 22, "draw": 22, "imag": [22, 24], "edit": [22, 28], "robustli": 22, "extract": [22, 24], "text": 22, "charact": 23, "encod": 23, "pdfdocencod": 23, "codec": 23, "plai": 24, "replac": 24, "an": 24, "remov": [24, 25], "metadata": 25, "automat": 25, "access": [25, 32], "item": [25, 35], "check": 25, "A": 25, "conform": 25, "notic": 25, "applic": 25, "develop": 25, "low": 25, "level": 25, "xmp": 25, "The": 25, "info": 25, "dictionari": [25, 35], "name": 26, "make": 27, "lifecycl": 27, "memori": 27, "manag": 27, "indirect": 27, "helper": 27, "outlin": 28, "destin": 28, "overlai": 29, "underlai": 29, "watermark": 29, "n": 29, "up": 29, "page": [30, 32, 35], "box": 30, "default": 31, "appear": 31, "pagelayout": 31, "definit": 31, "pagemod": 31, "split": 32, "merg": 32, "assembli": 32, "singl": 32, "concaten": 32, "sever": 32, "revers": 32, "order": 32, "copi": 32, "emplac": 32, "within": 32, "count": 32, "number": 32, "label": 32, "inform": 32, "root": 32, "secur": [33, 35], "password": 33, "unicod": 33, "restrict": 33, "digit": 33, "signatur": 33, "certif": 33, "read": 34, "i": 34, "o": 34, "tutori": 35, "open": 35, "save": 35, "inspect": 35, "repr": 35, "output": 35, "attribut": 35, "notat": 35, "delet": 35, "run": 35, "through": 35, "next": 35, "step": 35}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 60}, "alltitles": {"Exceptions": [[0, "exceptions"]], "Content streams": [[1, "content-streams"]], "Content stream parsers": [[1, "content-stream-parsers"]], "Content stream token filters": [[1, "content-stream-token-filters"]], "Main objects": [[2, "main-objects"]], "Object construction": [[2, "object-construction"]], "Common PDF data structures": [[2, "common-pdf-data-structures"]], "Content stream elements": [[2, "content-stream-elements"]], "Internal objects": [[2, "internal-objects"]], "Jobs": [[2, "jobs"]], "Support models": [[3, "support-models"]], "Settings": [[4, "settings"]], "pikepdf Documentation": [[5, "pikepdf-documentation"]], "At a glance": [[5, "at-a-glance"]], "Requirements": [[5, "requirements"], [6, "requirements"]], "Similar libraries": [[5, "similar-libraries"]], "In use": [[5, "in-use"]], "Introduction": [[5, null]], "Release notes": [[5, null], [11, "release-notes"]], "Topics": [[5, null]], "API": [[5, null]], "Reference": [[5, null]], "Installation": [[6, "installation"]], "Basic installation": [[6, "basic-installation"]], "Binary wheel availability": [[6, "binary-wheel-availability"]], "Python binary wheel availability": [[6, "id31"]], "Platform support": [[6, "platform-support"]], "Debian, Ubuntu and other APT-based distributions": [[6, "debian-ubuntu-and-other-apt-based-distributions"]], "Fedora": [[6, "fedora"]], "Alpine Linux": [[6, "alpine-linux"]], "Installing on FreeBSD": [[6, "installing-on-freebsd"]], "Building from source": [[6, "building-from-source"]], ":fa:`linux` :fa:`apple` GCC or Clang, linking to system libraries": [[6, "fa-linux-fa-apple-gcc-or-clang-linking-to-system-libraries"]], ":fa:`linux` :fa:`apple` GCC or Clang and linking to user libraries": [[6, "fa-linux-fa-apple-gcc-or-clang-and-linking-to-user-libraries"]], ":fa:`windows` On Windows (requires Visual Studio 2015)": [[6, "fa-windows-on-windows-requires-visual-studio-2015"]], ":fa:`linux` :fa:`apple` :fa:`windows` Building against a QPDF source tree": [[6, "fa-linux-fa-apple-fa-windows-building-against-a-qpdf-source-tree"]], "Building the documentation": [[6, "building-the-documentation"]], "PyPy3 support": [[6, "pypy3-support"]], "Architecture": [[7, "architecture"]], "Internals": [[7, "internals"]], "Thread safety": [[7, "thread-safety"]], "File handles": [[7, "file-handles"]], "Contributing guidelines": [[8, "contributing-guidelines"]], "Big changes": [[8, "big-changes"]], "Code style: Python": [[8, "code-style-python"]], "Code style: C++": [[8, "code-style-c"]], "Tests": [[8, "tests"]], "New dependencies": [[8, "new-dependencies"]], "English style guide": [[8, "english-style-guide"]], "Known ports/packagers": [[8, "known-ports-packagers"]], "Debugging": [[9, "debugging"]], "Using gdb to debug C++ and Python": [[9, "using-gdb-to-debug-c-and-python"]], "Compiling a debug build of QPDF": [[9, "compiling-a-debug-build-of-qpdf"]], "Compile and link against QPDF source tree": [[9, "compile-and-link-against-qpdf-source-tree"]], "Enabling QPDF tracing": [[9, "enabling-qpdf-tracing"]], "Valgrind": [[9, "valgrind"]], "Profiling pikepdf": [[9, "profiling-pikepdf"]], "pymemtrace": [[9, "pymemtrace"]], "Resources": [[10, "resources"]], "v0.10.2": [[12, "v0-10-2"]], "Fixes": [[12, "fixes"], [12, "fixes-1"], [12, "fixes-2"], [12, "fixes-3"], [12, "fixes-4"], [12, "fixes-5"], [12, "fixes-6"], [12, "fixes-7"], [12, "fixes-8"], [15, "fixes"]], "v0.10.1": [[12, "v0-10-1"]], "v0.10.0": [[12, "v0-10-0"]], "v0.9.2": [[12, "v0-9-2"]], "v0.9.1": [[12, "v0-9-1"]], "v0.9.0": [[12, "v0-9-0"]], "Updates": [[12, "updates"], [12, "updates-1"], [12, "updates-2"], [12, "updates-3"], [12, "updates-4"], [12, "updates-5"]], "Breaking": [[12, "breaking"], [12, "breaking-1"], [12, "breaking-2"], [12, "breaking-3"], [12, "breaking-4"]], "v0.3.7": [[12, "v0-3-7"]], "v0.3.6": [[12, "v0-3-6"]], "v0.3.5": [[12, "v0-3-5"]], "v0.3.4": [[12, "v0-3-4"]], "v0.3.3": [[12, "v0-3-3"]], "v0.3.2": [[12, "v0-3-2"]], "v0.3.1": [[12, "v0-3-1"]], "v0.3.0": [[12, "v0-3-0"]], "v0.2.2": [[12, "v0-2-2"]], "v0.2.1": [[12, "v0-2-1"]], "v0.2.0": [[12, "v0-2-0"]], "v1.19.4": [[13, "v1-19-4"]], "v1.19.3": [[13, "v1-19-3"]], "v1.19.2": [[13, "v1-19-2"]], "v1.19.1": [[13, "v1-19-1"]], "v1.19.0": [[13, "v1-19-0"]], "v1.18.0": [[13, "v1-18-0"]], "v1.17.3": [[13, "v1-17-3"]], "v1.17.2": [[13, "v1-17-2"]], "v1.17.1": [[13, "v1-17-1"]], "v1.17.0": [[13, "v1-17-0"]], "v1.16.1": [[13, "v1-16-1"]], "v1.16.0": [[13, "v1-16-0"]], "v1.15.1": [[13, "v1-15-1"]], "v1.15.0": [[13, "v1-15-0"]], "v1.14.0": [[13, "v1-14-0"]], "v1.13.0": [[13, "v1-13-0"]], "v1.12.0": [[13, "v1-12-0"]], "v1.11.2": [[13, "v1-11-2"]], "v1.11.1": [[13, "v1-11-1"]], "v1.11.0": [[13, "v1-11-0"]], "v1.10.4": [[13, "v1-10-4"]], "v1.10.3": [[13, "v1-10-3"]], "v1.10.2": [[13, "v1-10-2"]], "v1.10.1": [[13, "v1-10-1"]], "v1.10.0": [[13, "v1-10-0"]], "v1.9.0": [[13, "v1-9-0"]], "v1.8.3": [[13, "v1-8-3"]], "v1.8.2": [[13, "v1-8-2"]], "v1.8.1": [[13, "v1-8-1"]], "v1.8.0": [[13, "v1-8-0"]], "v1.7.1": [[13, "v1-7-1"]], "v1.7.0": [[13, "v1-7-0"]], "v1.6.5": [[13, "v1-6-5"]], "v1.6.4": [[13, "v1-6-4"]], "v1.6.3": [[13, "v1-6-3"]], "v1.6.2": [[13, "v1-6-2"]], "v1.6.1": [[13, "v1-6-1"]], "v1.6.0": [[13, "v1-6-0"]], "v1.5.0": [[13, "v1-5-0"]], "v1.4.0": [[13, "v1-4-0"]], "v1.3.1": [[13, "v1-3-1"]], "v1.3.0": [[13, "v1-3-0"]], "v1.2.0": [[13, "v1-2-0"]], "v1.1.0": [[13, "v1-1-0"]], "v1.0.5": [[13, "v1-0-5"]], "v1.0.4": [[13, "v1-0-4"]], "v1.0.3": [[13, "v1-0-3"]], "v1.0.2": [[13, "v1-0-2"]], "v1.0.1": [[13, "v1-0-1"]], "v1.0.0": [[13, "v1-0-0"]], "v2.16.1": [[14, "v2-16-1"]], "v2.16.0": [[14, "v2-16-0"]], "v2.15.1": [[14, "v2-15-1"]], "v2.15.0": [[14, "v2-15-0"]], "v2.14.2": [[14, "v2-14-2"]], "v2.14.1": [[14, "v2-14-1"]], "v2.14.0": [[14, "v2-14-0"]], "v2.13.0": [[14, "v2-13-0"]], "v2.12.2": [[14, "v2-12-2"]], "v2.12.1": [[14, "v2-12-1"]], "v2.12.0": [[14, "v2-12-0"]], "v2.11.4": [[14, "v2-11-4"]], "v2.11.3": [[14, "v2-11-3"]], "v2.11.2": [[14, "v2-11-2"]], "v2.11.1": [[14, "v2-11-1"]], "v2.11.0": [[14, "v2-11-0"]], "v2.10.0": [[14, "v2-10-0"]], "v2.9.2": [[14, "v2-9-2"]], "v2.9.1": [[14, "v2-9-1"]], "v2.9.0": [[14, "v2-9-0"]], "v2.8.0": [[14, "v2-8-0"]], "v2.7.0": [[14, "v2-7-0"]], "v2.6.0": [[14, "v2-6-0"]], "v2.5.2": [[14, "v2-5-2"]], "v2.5.1": [[14, "v2-5-1"]], "v2.5.0": [[14, "v2-5-0"]], "v2.4.0": [[14, "v2-4-0"]], "v2.3.0": [[14, "v2-3-0"]], "v2.2.5": [[14, "v2-2-5"]], "v2.2.4": [[14, "v2-2-4"]], "v2.2.3": [[14, "v2-2-3"]], "v2.2.2": [[14, "v2-2-2"]], "v2.2.1": [[14, "v2-2-1"]], "v2.2.0": [[14, "v2-2-0"]], "v2.1.2": [[14, "v2-1-2"]], "v2.1.1": [[14, "v2-1-1"]], "v2.1.0": [[14, "v2-1-0"]], "v2.0.0": [[14, "v2-0-0"]], "v2.0.0b2": [[14, "v2-0-0b2"]], "v2.0.0b1": [[14, "v2-0-0b1"]], "v3.2.0": [[15, "v3-2-0"]], "v3.1.1": [[15, "v3-1-1"]], "v3.1.0": [[15, "v3-1-0"]], "v3.0.0": [[15,
"v3-0-0"]], "Breaking changes": [[15, "breaking-changes"], [16, "breaking-changes"]], "New functionality": [[15, "new-functionality"]], "v4.5.0": [[16, "v4-5-0"]], "v4.4.1": [[16, "v4-4-1"]], "v4.4.0": [[16, "v4-4-0"]], "v4.3.1": [[16, "v4-3-1"]], "v4.3.0": [[16, "v4-3-0"]], "v4.2.0": [[16, "v4-2-0"]], "v4.1.0": [[16, "v4-1-0"]], "v4.0.2": [[16, "v4-0-2"]], "v4.0.1": [[16, "v4-0-1"]], "v4.0.0": [[16, "v4-0-0"]], "v5.6.1": [[17, "v5-6-1"]], "v5.6.0": [[17, "v5-6-0"]], "v5.5.0": [[17, "v5-5-0"]], "v5.4.2": [[17, "v5-4-2"]], "v5.4.1": [[17, "v5-4-1"]], "v5.4.0": [[17, "v5-4-0"]], "v5.3.2": [[17, "v5-3-2"]], "v5.3.1": [[17, "v5-3-1"]], "v5.3.0": [[17, "v5-3-0"]], "v5.2.0": [[17, "v5-2-0"]], "v5.1.5": [[17, "v5-1-5"]], "v5.1.4": [[17, "v5-1-4"]], "v5.1.3": [[17, "v5-1-3"]], "v5.1.2": [[17, "v5-1-2"]], "v5.1.1": [[17, "v5-1-1"]], "v5.1.0": [[17, "v5-1-0"]], "v5.0.1": [[17, "v5-0-1"]], "v5.0.0": [[17, "v5-0-0"]], "v6.2.9": [[18, "v6-2-9"]], "v6.2.8": [[18, "v6-2-8"]], "v6.2.7": [[18, "v6-2-7"]], "v6.2.6": [[18, "v6-2-6"]], "v6.2.5": [[18, "v6-2-5"]], "v6.2.4": [[18, "v6-2-4"]], "v6.2.3": [[18, "v6-2-3"]], "v6.2.2": [[18, "v6-2-2"]], "v6.2.1": [[18, "v6-2-1"]], "v6.2.0": [[18, "v6-2-0"]], "v6.1.0": [[18, "v6-1-0"]], "v6.0.2": [[18, "v6-0-2"]], "v6.0.1": [[18, "v6-0-1"]], "v6.0.0": [[18, "v6-0-0"]], "v7.2.0": [[19, "v7-2-0"]], "v7.1.2": [[19, "v7-1-2"]], "v7.1.1": [[19, "v7-1-1"]], "v7.1.0": [[19, "v7-1-0"]], "v7.0.0": [[19, "v7-0-0"]], "v8.7.1": [[20, "v8-7-1"]], "v8.7.0": [[20, "v8-7-0"]], "v8.6.0": [[20, "v8-6-0"]], "v8.5.3": [[20, "v8-5-3"]], "v8.5.2": [[20, "v8-5-2"]], "v8.5.1": [[20, "v8-5-1"]], "v8.5.0": [[20, "v8-5-0"]], "v8.4.1": [[20, "v8-4-1"]], "v8.4.0": [[20, "v8-4-0"]], "v8.3.2": [[20, "v8-3-2"]], "v8.3.1": [[20, "v8-3-1"]], "v8.3.0": [[20, "v8-3-0"]], "v8.2.3": [[20, "v8-2-3"]], "v8.2.2": [[20, "v8-2-2"]], "v8.2.1": [[20, "v8-2-1"]], "v8.2.0": [[20, "v8-2-0"]], "v8.1.1": [[20, "v8-1-1"]], "v8.1.0": [[20, "v8-1-0"]], "v8.0.0": [[20, "v8-0-0"]], "Attaching files to a PDF": [[21, "attaching-files-to-a-pdf"]], "General notes on attached files": [[21, "general-notes-on-attached-files"]], "How to find attachments in a PDF viewer": [[21, "how-to-find-attachments-in-a-pdf-viewer"]], "Creating attachment annotations": [[21, "creating-attachment-annotations"]], "Working with content streams": [[22, "working-with-content-streams"]], "Pretty-printing content streams": [[22, "pretty-printing-content-streams"]], "How content streams draw images": [[22, "how-content-streams-draw-images"]], "Editing a content stream": [[22, "editing-a-content-stream"]], "Editing content streams robustly": [[22, "editing-content-streams-robustly"]], "Extracting text from PDFs": [[22, "extracting-text-from-pdfs"]], "Character encoding": [[23, "character-encoding"]], "PDFDocEncoding": [[23, "pdfdocencoding"]], "Other codecs": [[23, "other-codecs"]], "Working with images": [[24, "working-with-images"]], "Playing with images": [[24, "playing-with-images"]], "Extracting images": [[24, "extracting-images"]], "Replacing an image": [[24, "replacing-an-image"]], "Removing an image": [[24, "removing-an-image"]], "Metadata": [[25, "metadata"]], "Automatic metadata updates": [[25, "automatic-metadata-updates"]], "Accessing metadata": [[25, "accessing-metadata"]], "Removing metadata items": [[25, "removing-metadata-items"]], "Checking PDF/A conformance": [[25, "checking-pdf-a-conformance"]], "Notice for application developers": [[25, "notice-for-application-developers"]], "Low-level XMP metadata access": [[25, "low-level-xmp-metadata-access"]], "The Document Info dictionary": [[25, "the-document-info-dictionary"]], "Name trees": [[26, "name-trees"]], "Object model": [[27, "object-model"]], "Making PDF objects": [[27, "making-pdf-objects"]], "Object lifecycle and memory management": [[27, "object-lifecycle-and-memory-management"]], "Indirect objects": [[27, "indirect-objects"]], "Object helpers": [[27, "object-helpers"]], "Outlines": [[28, "outlines"]], "Creating outlines": [[28, "creating-outlines"]], "Editing outlines": [[28, "editing-outlines"]], "Destinations": [[28, "destinations"]], "Outline structure": [[28, "outline-structure"]], "Overlays, underlays, watermarks, n-up": [[29, "overlays-underlays-watermarks-n-up"]], "Working with pages": [[30, "working-with-pages"]], "Page boxes": [[30, "page-boxes"]], "Default appearance in PDF viewers": [[31, "default-appearance-in-pdf-viewers"]], "PageLayout definitions": [[31, "id1"]], "PageMode definitions": [[31, "id2"]], "PDF split, merge, and document assembly": [[32, "pdf-split-merge-and-document-assembly"]], "Split a PDF into single page PDFs": [[32, "split-a-pdf-into-single-page-pdfs"]], "Merge (concatenate) PDF from several PDFs": [[32, "merge-concatenate-pdf-from-several-pdfs"]], "Reversing the order of pages": [[32, "reversing-the-order-of-pages"]], "Copying pages from other PDFs": [[32, "copying-pages-from-other-pdfs"]], "Emplacing pages": [[32, "emplacing-pages"]], "Copying pages within a PDF": [[32, "copying-pages-within-a-pdf"]], "Using counting numbers": [[32, "using-counting-numbers"]], "Accessing page labels": [[32, "accessing-page-labels"]], "Pages information from Root": [[32, "pages-information-from-root"]], "PDF security": [[33, "pdf-security"]], "Password security": [[33, "password-security"]], "Unicode in passwords": [[33, "unicode-in-passwords"]], "PDF content restrictions": [[33, "pdf-content-restrictions"]], "Digital signatures and certificates": [[33, "digital-signatures-and-certificates"]], "Stream objects": [[34, "stream-objects"]], "Reading stream objects": [[34, "reading-stream-objects"]], "Reading stream objects as a Python I/O streams": [[34, "reading-stream-objects-as-a-python-i-o-streams"]], "Tutorial": [[35, "tutorial"]], "Opening and saving PDFs": [[35, "opening-and-saving-pdfs"]], "Creating PDFs": [[35, "creating-pdfs"]], "Inspecting pages": [[35, "inspecting-pages"]], "PDF dictionaries": [[35, "pdf-dictionaries"]], "Page dictionaries": [[35, "page-dictionaries"]], "repr() output": [[35, "repr-output"]], "Item and attribute notation": [[35, "item-and-attribute-notation"]], "Deleting pages": [[35, "deleting-pages"]], "Saving changes": [[35, "saving-changes"]], "Saving secure PDFs": [[35, "saving-secure-pdfs"]], "Running QPDF through Jobs": [[35, "running-qpdf-through-jobs"]], "Next steps": [[35, "next-steps"]]}, "indexentries": {"datadecodingerror": [[0, "pikepdf.DataDecodingError"]], "deletedobjecterror": [[0, "pikepdf.DeletedObjectError"]], "foreignobjecterror": [[0, "pikepdf.ForeignObjectError"]], "outlinestructureerror": [[0, "pikepdf.OutlineStructureError"]], "passworderror": [[0, "pikepdf.PasswordError"]], "pdferror": [[0, "pikepdf.PdfError"]], "unsupportedimagetypeerror": [[0, "pikepdf.UnsupportedImageTypeError"]], "token (class in pikepdf)": [[1, "pikepdf.Token"]], "tokenfilter (class in pikepdf)": [[1, "pikepdf.TokenFilter"]], "array_close (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.array_close"]], "array_open (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.array_open"]], "bad (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.bad"]], "bool (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.bool"]], "brace_close (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.brace_close"]], "brace_open (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.brace_open"]], "comment (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.comment"]], "dict_close (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.dict_close"]], "dict_open (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.dict_open"]], "eof (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.eof"]], "handle_token() (pikepdf.tokenfilter method)": [[1, "pikepdf.TokenFilter.handle_token"]], "inline_image (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.inline_image"]], "integer (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.integer"]], "name_ (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.name_"]], "null (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.null"]], "parse_content_stream() (in module pikepdf)": [[1, "pikepdf.parse_content_stream"]], "pikepdf.tokentype (built-in class)": [[1, "pikepdf.TokenType"]], "raw_value (pikepdf.token property)": [[1, "pikepdf.Token.raw_value"]], "real (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.real"]], "space (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.space"]], "type_ (pikepdf.token property)": [[1, "pikepdf.Token.type_"]], "unparse_content_stream() (in module pikepdf)": [[1, "pikepdf.unparse_content_stream"]], "value (pikepdf.token property)": [[1, "pikepdf.Token.value"]], "word (pikepdf.tokentype attribute)": [[1, "pikepdf.TokenType.word"]], "array (class in pikepdf)": [[2, "pikepdf.Array"]], "contentstreaminlineimage (class in pikepdf)": [[2, "pikepdf.ContentStreamInlineImage"]], "contentstreaminstruction (class in pikepdf)": [[2, "pikepdf.ContentStreamInstruction"]], "dictionary (class in pikepdf)": [[2, "pikepdf.Dictionary"]], "job (class in pikepdf)": [[2, "pikepdf.Job"]], "matrix (class in pikepdf)": [[2, "pikepdf.Matrix"]], "name (class in pikepdf)": [[2, "pikepdf.Name"]], "object (class in pikepdf)": [[2, "pikepdf.Object"]], "operator (class in pikepdf)": [[2, "pikepdf.Operator"]], "pagelist (class in pikepdf._core)": [[2, "pikepdf._core.PageList"]], "pdf (class in pikepdf)": [[2, "pikepdf.Pdf"]], "rectangle (class in pikepdf)": [[2, "pikepdf.Rectangle"]], "root (pikepdf.pdf property)": [[2, "pikepdf.Pdf.Root"]], "stream (class in pikepdf)": [[2, "pikepdf.Stream"]], "string (class in pikepdf)": [[2, "pikepdf.String"]], "_objectlist (class in pikepdf._core)": [[2, "pikepdf._core._ObjectList"]], "__array__() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.__array__"]], "__init__() (pikepdf.job method)": [[2, "pikepdf.Job.__init__"]], "__init__() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.__init__"]], "__matmul__() (pikepdf.matrix method)": [[2,
"pikepdf.Matrix.__matmul__"]], "__new__() (pikepdf.array static method)": [[2, "pikepdf.Array.__new__"]], "__new__() (pikepdf.dictionary static method)": [[2, "pikepdf.Dictionary.__new__"]], "__new__() (pikepdf.name static method)": [[2, "pikepdf.Name.__new__"]], "__new__() (pikepdf.stream static method)": [[2, "pikepdf.Stream.__new__"]], "__new__() (pikepdf.string static method)": [[2, "pikepdf.String.__new__"]], "add_blank_page() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.add_blank_page"]], "all (pikepdf.streamdecodelevel attribute)": [[2, "pikepdf.StreamDecodeLevel.all"]], "allow (pikepdf.pdf property)": [[2, "pikepdf.Pdf.allow"]], "append() (pikepdf.object method)": [[2, "pikepdf.Object.append"]], "append() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.append"]], "append() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.append"]], "array (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.array"]], "as_array() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.as_array"]], "as_array() (pikepdf.rectangle method)": [[2, "pikepdf.Rectangle.as_array"]], "as_dict() (pikepdf.object method)": [[2, "pikepdf.Object.as_dict"]], "as_list() (pikepdf.object method)": [[2, "pikepdf.Object.as_list"]], "attachments (pikepdf.pdf property)": [[2, "pikepdf.Pdf.attachments"]], "boolean (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.boolean"]], "built-in function": [[2, "pikepdf.new"], [2, "pikepdf.open"]], "check() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.check"]], "check_configuration() (pikepdf.job method)": [[2, "pikepdf.Job.check_configuration"]], "check_linearization() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.check_linearization"]], "clear() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.clear"]], "close() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.close"]], "copy_foreign() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.copy_foreign"]], "count() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.count"]], "create_pdf() (pikepdf.job method)": [[2, "pikepdf.Job.create_pdf"]], "creates_output (pikepdf.job property)": [[2, "pikepdf.Job.creates_output"]], "dictionary (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.dictionary"]], "disable (pikepdf.objectstreammode attribute)": [[2, "pikepdf.ObjectStreamMode.disable"]], "docinfo (pikepdf.pdf property)": [[2, "pikepdf.Pdf.docinfo"]], "emplace() (pikepdf.object method)": [[2, "pikepdf.Object.emplace"]], "encode() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.encode"]], "encryption (pikepdf.pdf property)": [[2, "pikepdf.Pdf.encryption"]], "encryption_status (pikepdf.job property)": [[2, "pikepdf.Job.encryption_status"]], "exit_code (pikepdf.job property)": [[2, "pikepdf.Job.exit_code"]], "extend() (pikepdf.object method)": [[2, "pikepdf.Object.extend"]], "extend() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.extend"]], "extend() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.extend"]], "filename (pikepdf.pdf property)": [[2, "pikepdf.Pdf.filename"]], "flatten_annotations() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.flatten_annotations"]], "from_objgen() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.from_objgen"]], "generalized (pikepdf.streamdecodelevel attribute)": [[2, "pikepdf.StreamDecodeLevel.generalized"]], "generate (pikepdf.objectstreammode attribute)": [[2, "pikepdf.ObjectStreamMode.generate"]], "generate_appearance_streams() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.generate_appearance_streams"]], "get() (pikepdf.object method)": [[2, "pikepdf.Object.get"]], "get_object() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.get_object"]], "get_raw_stream_buffer() (pikepdf.object method)": [[2, "pikepdf.Object.get_raw_stream_buffer"]], "get_stream_buffer() (pikepdf.object method)": [[2, "pikepdf.Object.get_stream_buffer"]], "get_warnings() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.get_warnings"]], "has_warnings (pikepdf.job property)": [[2, "pikepdf.Job.has_warnings"]], "height (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.height"]], "iimage (pikepdf.contentstreaminlineimage property)": [[2, "pikepdf.ContentStreamInlineImage.iimage"]], "index() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.index"]], "inlineimage (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.inlineimage"]], "insert() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.insert"]], "insert() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.insert"]], "integer (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.integer"]], "inverse() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.inverse"]], "is_encrypted (pikepdf.pdf property)": [[2, "pikepdf.Pdf.is_encrypted"]], "is_linearized (pikepdf.pdf property)": [[2, "pikepdf.Pdf.is_linearized"]], "is_owned_by() (pikepdf.object method)": [[2, "pikepdf.Object.is_owned_by"]], "is_rectangle (pikepdf.object property)": [[2, "pikepdf.Object.is_rectangle"]], "items() (pikepdf.object method)": [[2, "pikepdf.Object.items"]], "job_json_schema() (pikepdf.job static method)": [[2, "pikepdf.Job.job_json_schema"]], "json_out_schema() (pikepdf.job static method)": [[2, "pikepdf.Job.json_out_schema"]], "keys() (pikepdf.object method)": [[2, "pikepdf.Object.keys"]], "llx (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.llx"]], "lly (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.lly"]], "lower_left (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.lower_left"]], "lower_right (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.lower_right"]], "make_indirect() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.make_indirect"]], "make_stream() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.make_stream"]], "message_prefix (pikepdf.job property)": [[2, "pikepdf.Job.message_prefix"]], "name_ (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.name_"]], "new() (pikepdf.pdf static method)": [[2, "pikepdf.Pdf.new"]], "none (pikepdf.streamdecodelevel attribute)": [[2, "pikepdf.StreamDecodeLevel.none"]], "null (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.null"]], "objects (pikepdf.pdf property)": [[2, "pikepdf.Pdf.objects"]], "objgen (pikepdf.object property)": [[2, "pikepdf.Object.objgen"]], "open() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.open"]], "open_metadata() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.open_metadata"]], "open_outline() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.open_outline"]], "operands (pikepdf.contentstreaminlineimage property)": [[2, "pikepdf.ContentStreamInlineImage.operands"]], "operands (pikepdf.contentstreaminstruction property)": [[2, "pikepdf.ContentStreamInstruction.operands"]], "operator (pikepdf.contentstreaminlineimage property)": [[2, "pikepdf.ContentStreamInlineImage.operator"]], "operator (pikepdf.contentstreaminstruction property)": [[2, "pikepdf.ContentStreamInstruction.operator"]], "operator (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.operator"]], "owner_password_matched (pikepdf.pdf property)": [[2, "pikepdf.Pdf.owner_password_matched"]], "p() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.p"]], "pages (pikepdf.pdf property)": [[2, "pikepdf.Pdf.pages"]], "parse() (pikepdf.object static method)": [[2, "pikepdf.Object.parse"]], "pdf_version (pikepdf.pdf property)": [[2, "pikepdf.Pdf.pdf_version"]], "pikepdf.objectstreammode (built-in class)": [[2, "pikepdf.ObjectStreamMode"]], "pikepdf.objecttype (built-in class)": [[2, "pikepdf.ObjectType"]], "pikepdf.streamdecodelevel (built-in class)": [[2, "pikepdf.StreamDecodeLevel"]], "pikepdf.new()": [[2, "pikepdf.new"]], "pikepdf.open()": [[2, "pikepdf.open"]], "pop() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.pop"]], "preserve (pikepdf.objectstreammode attribute)": [[2, "pikepdf.ObjectStreamMode.preserve"]], "read_bytes() (pikepdf.object method)": [[2, "pikepdf.Object.read_bytes"]], "read_raw_bytes() (pikepdf.object method)": [[2, "pikepdf.Object.read_raw_bytes"]], "real (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.real"]], "remove() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.remove"]], "remove() (pikepdf._core._objectlist method)": [[2, "pikepdf._core._ObjectList.remove"]], "remove_unreferenced_resources() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.remove_unreferenced_resources"]], "reserved (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.reserved"]], "reverse() (pikepdf._core.pagelist method)": [[2, "pikepdf._core.PageList.reverse"]], "rotated() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.rotated"]], "run() (pikepdf.job method)": [[2, "pikepdf.Job.run"]], "same_owner_as() (pikepdf.object method)": [[2, "pikepdf.Object.same_owner_as"]], "save() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.save"]], "scaled() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.scaled"]], "shorthand (pikepdf.matrix property)": [[2, "pikepdf.Matrix.shorthand"]], "show_xref_table() (pikepdf.pdf method)": [[2, "pikepdf.Pdf.show_xref_table"]], "specialized (pikepdf.streamdecodelevel attribute)": [[2, "pikepdf.StreamDecodeLevel.specialized"]], "stream (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.stream"]], "stream_dict (pikepdf.object property)": [[2, "pikepdf.Object.stream_dict"]], "string (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.string"]], "to_json() (pikepdf.object method)": [[2, "pikepdf.Object.to_json"]], "trailer (pikepdf.pdf property)": [[2, "pikepdf.Pdf.trailer"]], "transform() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.transform"]], "translated() (pikepdf.matrix method)": [[2, "pikepdf.Matrix.translated"]], "uninitialized (pikepdf.objecttype attribute)": [[2, "pikepdf.ObjectType.uninitialized"]], "unparse() (pikepdf.object method)": [[2, "pikepdf.Object.unparse"]], "upper_left (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.upper_left"]], "upper_right (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.upper_right"]], "urx (pikepdf.rectangle property)": [[2,
"pikepdf.Rectangle.urx"]], "ury (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.ury"]], "user_password_matched (pikepdf.pdf property)": [[2, "pikepdf.Pdf.user_password_matched"]], "width (pikepdf.rectangle property)": [[2, "pikepdf.Rectangle.width"]], "with_same_owner_as() (pikepdf.object method)": [[2, "pikepdf.Object.with_same_owner_as"]], "wrap_in_array() (pikepdf.object method)": [[2, "pikepdf.Object.wrap_in_array"]], "write() (pikepdf.object method)": [[2, "pikepdf.Object.write"]], "write_pdf() (pikepdf.job method)": [[2, "pikepdf.Job.write_pdf"]], "annotation (class in pikepdf)": [[3, "pikepdf.Annotation"]], "attachedfile (class in pikepdf._core)": [[3, "pikepdf._core.AttachedFile"]], "attachedfilespec (class in pikepdf)": [[3, "pikepdf.AttachedFileSpec"]], "attachments (class in pikepdf._core)": [[3, "pikepdf._core.Attachments"]], "encryption (class in pikepdf.models)": [[3, "pikepdf.models.Encryption"]], "encryptioninfo (class in pikepdf.models)": [[3, "pikepdf.models.EncryptionInfo"]], "nametree (class in pikepdf)": [[3, "pikepdf.NameTree"]], "numbertree (class in pikepdf)": [[3, "pikepdf.NumberTree"]], "objecthelper (class in pikepdf)": [[3, "pikepdf.ObjectHelper"]], "outline (class in pikepdf.models)": [[3, "pikepdf.models.Outline"]], "outlineitem (class in pikepdf.models)": [[3, "pikepdf.models.OutlineItem"]], "p (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.P"]], "page (class in pikepdf)": [[3, "pikepdf.Page"]], "pdfimage (class in pikepdf)": [[3, "pikepdf.PdfImage"]], "pdfinlineimage (class in pikepdf)": [[3, "pikepdf.PdfInlineImage"]], "pdfmatrix (class in pikepdf)": [[3, "pikepdf.PdfMatrix"]], "pdfmetadata (class in pikepdf.models)": [[3, "pikepdf.models.PdfMetadata"]], "permissions (class in pikepdf)": [[3, "pikepdf.Permissions"]], "r (pikepdf.models.encryption attribute)": [[3, "pikepdf.models.Encryption.R"]], "r (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.R"]], "v (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.V"]], "__array__() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.__array__"]], "__init__() (pikepdf.attachedfilespec method)": [[3, "pikepdf.AttachedFileSpec.__init__"]], "__init__() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.__init__"]], "__matmul__() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.__matmul__"]], "a (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.a"]], "accessibility (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.accessibility"]], "add() (pikepdf.models.outline method)": [[3, "pikepdf.models.Outline.add"]], "add_content_token_filter() (pikepdf.page method)": [[3, "pikepdf.Page.add_content_token_filter"]], "add_overlay() (pikepdf.page method)": [[3, "pikepdf.Page.add_overlay"]], "add_resource() (pikepdf.page method)": [[3, "pikepdf.Page.add_resource"]], "add_underlay() (pikepdf.page method)": [[3, "pikepdf.Page.add_underlay"]], "aes (pikepdf.models.encryption attribute)": [[3, "pikepdf.models.Encryption.aes"]], "aes (pikepdf.models.encryptionmethod attribute)": [[3, "pikepdf.models.EncryptionMethod.aes"]], "aesv3 (pikepdf.models.encryptionmethod attribute)": [[3, "pikepdf.models.EncryptionMethod.aesv3"]], "allow (pikepdf.models.encryption attribute)": [[3, "pikepdf.models.Encryption.allow"]], "appearance_dict (pikepdf.annotation property)": [[3, "pikepdf.Annotation.appearance_dict"]], "appearance_state (pikepdf.annotation property)": [[3, "pikepdf.Annotation.appearance_state"]], "artbox (pikepdf.page property)": [[3, "pikepdf.Page.artbox"]], "as_form_xobject() (pikepdf.page method)": [[3, "pikepdf.Page.as_form_xobject"]], "as_pil_image() (pikepdf.pdfimage method)": [[3, "pikepdf.PdfImage.as_pil_image"]], "b (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.b"]], "bits (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.bits"]], "bits_per_component (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.bits_per_component"]], "bleedbox (pikepdf.page property)": [[3, "pikepdf.Page.bleedbox"]], "c (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.c"]], "calc_form_xobject_placement() (pikepdf.page method)": [[3, "pikepdf.Page.calc_form_xobject_placement"]], "clear() (pikepdf.nametree method)": [[3, "pikepdf.NameTree.clear"]], "clear() (pikepdf.numbertree method)": [[3, "pikepdf.NumberTree.clear"]], "clear() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.clear"]], "colorspace (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.colorspace"]], "contents_add() (pikepdf.page method)": [[3, "pikepdf.Page.contents_add"]], "contents_coalesce() (pikepdf.page method)": [[3, "pikepdf.Page.contents_coalesce"]], "cropbox (pikepdf.page property)": [[3, "pikepdf.Page.cropbox"]], "d (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.d"]], "decode_parms (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.decode_parms"]], "description (pikepdf.attachedfilespec property)": [[3, "pikepdf.AttachedFileSpec.description"]], "e (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.e"]], "encode() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.encode"]], "encryption_key (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.encryption_key"]], "externalize_inline_images() (pikepdf.page method)": [[3, "pikepdf.Page.externalize_inline_images"]], "extract (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.extract"]], "extract_to() (pikepdf.pdfimage method)": [[3, "pikepdf.PdfImage.extract_to"]], "f (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.f"]], "file_method (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.file_method"]], "filename (pikepdf.attachedfilespec property)": [[3, "pikepdf.AttachedFileSpec.filename"]], "filter_decodeparms (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.filter_decodeparms"]], "filters (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.filters"]], "flags (pikepdf.annotation property)": [[3, "pikepdf.Annotation.flags"]], "form_xobjects (pikepdf.page property)": [[3, "pikepdf.Page.form_xobjects"]], "from_dictionary_object() (pikepdf.models.outlineitem class method)": [[3, "pikepdf.models.OutlineItem.from_dictionary_object"]], "from_filepath() (pikepdf.attachedfilespec method)": [[3, "pikepdf.AttachedFileSpec.from_filepath"]], "get() (pikepdf.nametree method)": [[3, "pikepdf.NameTree.get"]], "get() (pikepdf.numbertree method)": [[3, "pikepdf.NumberTree.get"]], "get() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.get"]], "get_all_filenames() (pikepdf.attachedfilespec method)": [[3, "pikepdf.AttachedFileSpec.get_all_filenames"]], "get_appearance_stream() (pikepdf.annotation method)": [[3, "pikepdf.Annotation.get_appearance_stream"]], "get_file() (pikepdf.attachedfilespec method)": [[3, "pikepdf.AttachedFileSpec.get_file"]], "get_filtered_contents() (pikepdf.page method)": [[3, "pikepdf.Page.get_filtered_contents"]], "get_page_content_for_appearance() (pikepdf.annotation method)": [[3, "pikepdf.Annotation.get_page_content_for_appearance"]], "get_stream_buffer() (pikepdf.pdfimage method)": [[3, "pikepdf.PdfImage.get_stream_buffer"]], "height (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.height"]], "icc (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.icc"]], "identity() (pikepdf.pdfmatrix static method)": [[3, "pikepdf.PdfMatrix.identity"]], "image_mask (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.image_mask"]], "images (pikepdf.page property)": [[3, "pikepdf.Page.images"]], "index (pikepdf.page property)": [[3, "pikepdf.Page.index"]], "indexed (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.indexed"]], "inverse() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.inverse"]], "is_device_n (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.is_device_n"]], "is_separation (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.is_separation"]], "items() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.items"]], "keys() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.keys"]], "label (pikepdf.page property)": [[3, "pikepdf.Page.label"]], "load_from_docinfo() (pikepdf.models.pdfmetadata method)": [[3, "pikepdf.models.PdfMetadata.load_from_docinfo"]], "md5 (pikepdf._core.attachedfile property)": [[3, "pikepdf._core.AttachedFile.md5"]], "mediabox (pikepdf.page property)": [[3, "pikepdf.Page.mediabox"]], "metadata (pikepdf.models.encryption attribute)": [[3, "pikepdf.models.Encryption.metadata"]], "mime_type (pikepdf._core.attachedfile property)": [[3, "pikepdf._core.AttachedFile.mime_type"]], "mode (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.mode"]], "modify_annotation (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.modify_annotation"]], "modify_assembly (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.modify_assembly"]], "modify_form (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.modify_form"]], "modify_other (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.modify_other"]], "new() (pikepdf.nametree static method)": [[3, "pikepdf.NameTree.new"]], "new() (pikepdf.numbertree static method)": [[3, "pikepdf.NumberTree.new"]], "none (pikepdf.models.encryptionmethod attribute)": [[3, "pikepdf.models.EncryptionMethod.none"]], "obj (pikepdf.attachedfilespec property)": [[3, "pikepdf.AttachedFileSpec.obj"]], "obj (pikepdf.nametree property)": [[3, "pikepdf.NameTree.obj"]], "obj (pikepdf.objecthelper property)": [[3, "pikepdf.ObjectHelper.obj"]], "obj (pikepdf.page property)": [[3, "pikepdf.Page.obj"]], "obj (pikepdf._core.attachedfile property)": [[3, "pikepdf._core.AttachedFile.obj"]], "owner (pikepdf.models.encryption attribute)": [[3, "pikepdf.models.Encryption.owner"]], "palette (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.palette"]], "parse_contents() (pikepdf.page method)": [[3, "pikepdf.Page.parse_contents"]], "pdfa_status
(pikepdf.models.pdfmetadata property)": [[3, "pikepdf.models.PdfMetadata.pdfa_status"]], "pdfx_status (pikepdf.models.pdfmetadata property)": [[3, "pikepdf.models.PdfMetadata.pdfx_status"]], "pikepdf.models.encryptionmethod (built-in class)": [[3, "pikepdf.models.EncryptionMethod"]], "pop() (pikepdf.nametree method)": [[3, "pikepdf.NameTree.pop"]], "pop() (pikepdf.numbertree method)": [[3, "pikepdf.NumberTree.pop"]], "pop() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.pop"]], "popitem() (pikepdf.nametree method)": [[3, "pikepdf.NameTree.popitem"]], "popitem() (pikepdf.numbertree method)": [[3, "pikepdf.NumberTree.popitem"]], "popitem() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.popitem"]], "print_highres (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.print_highres"]], "print_lowres (pikepdf.permissions attribute)": [[3, "pikepdf.Permissions.print_lowres"]], "rc4 (pikepdf.models.encryptionmethod attribute)": [[3, "pikepdf.models.EncryptionMethod.rc4"]], "read_bytes() (pikepdf.pdfimage method)": [[3, "pikepdf.PdfImage.read_bytes"]], "register_xml_namespace() (pikepdf.models.pdfmetadata class method)": [[3, "pikepdf.models.PdfMetadata.register_xml_namespace"]], "remove_unreferenced_resources() (pikepdf.page method)": [[3, "pikepdf.Page.remove_unreferenced_resources"]], "resources (pikepdf.page property)": [[3, "pikepdf.Page.resources"]], "root (pikepdf.models.outline property)": [[3, "pikepdf.models.Outline.root"]], "rotate() (pikepdf.page method)": [[3, "pikepdf.Page.rotate"]], "rotated() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.rotated"]], "scaled() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.scaled"]], "setdefault() (pikepdf.nametree method)": [[3, "pikepdf.NameTree.setdefault"]], "setdefault() (pikepdf.numbertree method)": [[3, "pikepdf.NumberTree.setdefault"]], "setdefault() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.setdefault"]], "shorthand (pikepdf.pdfmatrix property)": [[3, "pikepdf.PdfMatrix.shorthand"]], "show() (pikepdf.pdfimage method)": [[3, "pikepdf.PdfImage.show"]], "size (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.size"]], "size (pikepdf._core.attachedfile property)": [[3, "pikepdf._core.AttachedFile.size"]], "stream_method (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.stream_method"]], "string_method (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.string_method"]], "subtype (pikepdf.annotation property)": [[3, "pikepdf.Annotation.subtype"]], "to_dictionary_object() (pikepdf.models.outlineitem method)": [[3, "pikepdf.models.OutlineItem.to_dictionary_object"]], "translated() (pikepdf.pdfmatrix method)": [[3, "pikepdf.PdfMatrix.translated"]], "trimbox (pikepdf.page property)": [[3, "pikepdf.Page.trimbox"]], "unknown (pikepdf.models.encryptionmethod attribute)": [[3, "pikepdf.models.EncryptionMethod.unknown"]], "update() (pikepdf.nametree method)": [[3, "pikepdf.NameTree.update"]], "update() (pikepdf.numbertree method)": [[3, "pikepdf.NumberTree.update"]], "update() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.update"]], "user (pikepdf.models.encryption attribute)": [[3, "pikepdf.models.Encryption.user"]], "user_password (pikepdf.models.encryptioninfo property)": [[3, "pikepdf.models.EncryptionInfo.user_password"]], "values() (pikepdf._core.attachments method)": [[3, "pikepdf._core.Attachments.values"]], "width (pikepdf.pdfimage property)": [[3, "pikepdf.PdfImage.width"]], "get_decimal_precision() (in module pikepdf.settings)": [[4, "pikepdf.settings.get_decimal_precision"]], "set_decimal_precision() (in module pikepdf.settings)": [[4, "pikepdf.settings.set_decimal_precision"]], "set_flate_compression_level() (in module pikepdf.settings)": [[4, "pikepdf.settings.set_flate_compression_level"]]}})

./usr/share/doc/python3-pikepdf/html/topics/attachments.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF				General notes on attached files

				How to find attachments in a PDF viewer

				Creating attachment annotations

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Attaching files to a PDF

				
 View page source

Attaching files to a PDF

New in version 3.0.

You can attach (or if you prefer, embed) any file to a PDF, including
other PDFs. As a quick example, let’s attach pikepdf’s README.md file
to one of its test files.

In [1]: from pikepdf import Pdf, AttachedFileSpec, Name, Dictionary, Array

In [2]: from pathlib import Path

In [3]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

In [4]: filespec = AttachedFileSpec.from_filepath(pdf, Path('../README.md'))

In [5]: pdf.attachments['README.md'] = filespec

In [6]: pdf.attachments
Out[6]: <pikepdf._core.Attachments with 1 attached files>

This creates an attached file named README.md, which holds the data in filespec.
Now we can retrieve the data.

In [7]: pdf.attachments['README.md']
Out[7]: <pikepdf._core.AttachedFileSpec for 'README.md', description ''>

In [8]: file = pdf.attachments['README.md'].get_file()

In [9]: file.read_bytes()[:50]
Out[9]: b'<!-- SPDX-FileCopyrightText: 2022 James R. Barlow '

If the data used to create an attachment is in memory:

In [10]: memfilespec = AttachedFileSpec(pdf, b'Some text', mime_type='text/plain')

In [11]: pdf.attachments['plain.txt'] = memfilespec

General notes on attached files

				If the main PDF is encrypted, any embedded files will be encrypted with the same
encryption settings.

				PDF viewers tend to display attachment filenames in alphabetical order. Use prefixes
if you want to control the display order.

				The AttachedFileSpec will capture all of the data when created, so the file object
used to create the data can be closed.

				Each attachment is a pikepdf.AttachedFileSpec. An attachment usually contains only
one pikepdf.AttachedFile, but might contain multiple objects of this
type. Usually, multiple versions are used to provide different versions of the
same file for alternate platforms, such as Windows and macOS versions of a file.
Newer PDFs rarely provide multiple versions.

How to find attachments in a PDF viewer

Your PDF viewer should have an attachments panel that shows available attachments.

Attachments in Adobe Acrobat DC.

Attachments added to Pdf.attachments will be shown here.

You may find it useful to set pdf.root.PageMode = Name.UseAttachments. This
tells the PDF viewer to open a pane that lists all attachments in the PDF. Note
that it is up to the PDF viewer to implement and honor this request.

Creating attachment annotations

You can also create PDF Annotations and Actions that contain attached files.

Here is an example of an annotation that displays an icon. Clicking the icon
prompt the user to view the attached document.

In [12]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

In [13]: filespec = AttachedFileSpec.from_filepath(pdf, Path('../README.md'))

In [14]: pushpin = Dictionary(
 : Type=Name.Annot,
 : Subtype=Name.FileAttachment,
 : Name=Name.GraphPushPin,
 : FS=filespec.obj,
 : Rect=[2*72, 9*72, 3*72, 10*72],
 :)
 :

In [15]: pdf.pages[0].Annots = pdf.make_indirect(Array([
 : pushpin
 :]))
 :

Files that are referenced as Annotations and Actions do not need to be added
to Pdf.attachments. If they are, the file will be attached twice.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/content_streams.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams				Pretty-printing content streams

				How content streams draw images

				Editing a content stream

				Editing content streams robustly

				Extracting text from PDFs

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Working with content streams

				
 View page source

Working with content streams

A content stream is a stream object associated with either a page or a Form
XObject that describes where and how to draw images, vectors, and text. (These
PDF streams have nothing to do with Python I/O streams.)

Content streams are binary data that can be thought of as a list of operators
and zero or more operands. Operands are given first, followed by the operator.
It is a stack-based language, loosely based on PostScript. (It’s not actually
PostScript, but sometimes well-meaning people mistakenly say that it is!)
Like HTML, it has a precise grammar, and also like (pure) HTML, it has no loops,
conditionals or variables.

A typical example is as follows (with additional whitespace and PostScript-style
%-comments):

q % 1. Push graphics stack.
100 0 0 100 0 0 cm % 2. The 6 numbers are the operands, followed by cm operator.
 % This configures the current transformation matrix.
/Image1 Do % 3. Draw the object named /Image1 from the /Resources
 % dictionary.
Q % 4. Pop graphics stack.

The pattern q, cm, <drawing commands>, Q is extremely common. The drawing
commands may recurse with another q, cm, ..., Q.

pikepdf provides a C++ optimized content stream parser and a filter. The parser
is best used for reading and interpreting content streams; the filter is better
for low level editing.

Pretty-printing content streams

To pretty-print a content stream, you can use parse and then unparse it. This
converts it from binary data form to pikepdf objects and back. In the process,
the content stream is cleaned up. Every instruction will be separated by a line
break.

In [1]: with pikepdf.open("../tests/resources/congress.pdf") as pdf:
 ...: page = pdf.pages[0]
 ...: instructions = pikepdf.parse_content_stream(page)
 ...: data = pikepdf.unparse_content_stream(instructions)
 ...: print(data.decode('ascii'))
 ...:
q
200.0000 0 0 304.0000 0.0000 0.0000 cm
/Im0 Do
Q

Note

Content streams are not always decodable to ASCII. This one just happens to be.

How content streams draw images

This example prints a typical content stream from a real file, which like the
contrived example above, displays an actual image.

In [2]: with pikepdf.open("../tests/resources/congress.pdf") as pdf:
 ...: page = pdf.pages[0]
 ...: commands = []
 ...: for operands, operator in pikepdf.parse_content_stream(page):
 ...: print(f"Operands {operands}, operator {operator}")
 ...: if operator == pikepdf.Operator('cm'):
 ...: matrix = pikepdf.Matrix(operands)
 ...: commands.append([operands, operator])
 ...:
Operands pikepdf._core._ObjectList([]), operator q
Operands pikepdf._core._ObjectList([Decimal('200.0000'), 0, 0, Decimal('304.0000'), Decimal('0.0000'), Decimal('0.0000')]), operator cm
Operands pikepdf._core._ObjectList([pikepdf.Name("/Im0")]), operator Do
Operands pikepdf._core._ObjectList([]), operator Q

PDF content streams are stateful. The commands q, cm and Q
manipulate the current transform matrix (CTM) which describes where we will draw
next. In most cases you have to track every manipulation of the CTM to figure
out what will happen, even to answer a question like, “where will this image
be drawn, and how big will it be?”

But in this simple case, we can read the matrix directly. The decimal numbers
200.0 and 304.0 establish the width and height at which the image should be drawn,
in PDF points (1/72” or about 0.35 mm). The pixel dimensions of the image have
no effect. If we substituted that image for another, the new image would be
drawn in the same location on the page, painted into the 200 × 304 rectangle
regardless of its pixel dimensions.

Editing a content stream

Let’s continue with the file above and center the image on the page, and reduce
its size by 50%. Because we can! For that, we need to rewrite the second command
in the content stream.

We take the original matrix (matrix) and then translated it to the center
of this page. We’re currently in a coordinate system where (0, 0) is the bottom
left corner of the page, and (1, 1) is the top right corner. Without actually
having to track the image’s position, we can translate it by 0.25 of its
dimensions (to create a border of 25% all around) and then scale it by 0.5.
(We could also scale by 50%, and then translate by 50%, which would be 25% in
the full image coordinate system.)

In [3]: new_matrix = matrix.translated(0.25, 0.25).scaled(0.5, 0.5)

In [4]: new_matrix
Out[4]: pikepdf.Matrix(100, 0, 0, 152, 50, 76)

On an important note, the PDF coordinate system is nailed to the bottom left
corner of the page, and on y-axis, up is positive. That is, the coordinate
system is more like the first quadrant of a Cartesian graph than the
down is positive convention normally used in pixel graphics:

(Some PDF programs insert a command to “flip” the coordinate system, by
translating to the top left corner and scaling by (1, -1).)

After calculating our new matrix, we need to insert it back into the parsed
content stream, “unparse” it to binary data, and replace the old content
stream.

In [5]: commands[1][0] = pikepdf.Array(new_matrix)

In [6]: new_content_stream = pikepdf.unparse_content_stream(commands)

In [7]: new_content_stream
Out[7]: b'q\n100 0 0 152 50 76 cm\n/Im0 Do\nQ'

In [8]: page.Contents = pdf.make_stream(new_content_stream)

You could save the file here to see it
pdf.save(...)

Note

To rotate an image, first translate it so that the image is centered at (0, 0),
rotate then apply the rotate, then translate it to its new center position.
This is because rotations occur around (0, 0).

Note

In this illustration, the page’s MediaBox is located at (0, 0) for simplicity.
The MediaBox can be offset from the origin, and code that edits content streams
may need to account for this relatively condition.

Editing content streams robustly

The stateful nature of PDF content streams makes editing them complicated. Edits
like the example above will work when the input file is known to have a fixed
structure (that is, the state at the time of editing is known). You can always
prepend content to the top of the content stream, since the initial state is
known. And you can often append content to the end the stream, since the final
state is predictable if every q (push state) has a matching Q (pop
state).

Otherwise, you must track the graphics state and maintain a stack of states.

Most applications will end up parsing the content stream into a higher level
representation that is easier edit and then serializing it back, totally
rewriting the content stream. Content streams should be thought of as an
output format.

Extracting text from PDFs

If you guessed that the content streams were the place to look for text inside a
PDF – you’d be correct. Unfortunately, extracting the text is fairly difficult
because content stream actually specifies as a font and glyph numbers to use.
Sometimes, there is a 1:1 transparent mapping between Unicode numbers and glyph
numbers, and dump of the content stream will show the text. In general, you
cannot rely on there being a transparent mapping; in fact, it is perfectly legal
for a font to specify no Unicode mapping at all, or to use an unconventional
mapping (when a PDF contains a subsetted font for example).

We strongly recommend against trying to scrape text from the content stream.

pikepdf does not currently implement text extraction. We recommend pdfminer.six, a
read-only text extraction tool. If you wish to write PDFs containing text, consider
reportlab.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/encoding.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding				PDFDocEncoding

				Other codecs

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Character encoding

				
 View page source

Character encoding

There are three hard problems in computer science:

1) Converting from PDF,

2) Converting to PDF, and

3) O̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳Ҙ҉҉҉ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃O̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳̳Ҙ҉҉҉ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃ʹʹ҉ʹ̨̨̨̨̨̨̨̨̃༃༃

—Marseille Folog

In most circumstances, pikepdf performs appropriate encodings and
decodings on its own, or returns pikepdf.String if it is not clear
whether to present data as a string or binary data.

str(pikepdf.String) is performed by inspecting the binary data. If the
binary data begins with a UTF-16 byte order mark, then the data is
interpreted as UTF-16 and returned as a Python str. Otherwise, the data
is returned as a Python str, if the binary data will be interpreted as
PDFDocEncoding and decoded to str. Again, in most cases this is correct
behavior and will operate transparently.

Some functions are available in circumstances where it is necessary to force
a particular conversion.

PDFDocEncoding

The PDF specification defines PDFDocEncoding, a character encoding used only
in PDFs. This encoding matches ASCII for code points 32 through 126 (0x20 to
0x7e). At all other code points, it is not ASCII and cannot be treated as
equivalent. If you look at a PDF in a binary file viewer (hex editor), a string
surrounded by parentheses such as (Hello World) is usually using
PDFDocEncoding.

When pikepdf is imported, it automatically registers "pdfdoc" as a codec
with the standard library, so that it may be used in string and byte
conversions.

"•".encode('pdfdoc') == b'\x81'

Other Python PDF libraries may register their own pdfdoc codecs. Unfortunately,
the order of imports will determine which codec “wins” and gets mapped
to the 'pdfdoc' string. Fortunately, these implementations should be
quite compatible with each other anyway since they do the same things.

pikepdf also registers 'pdfdoc_pikepdf', if you want to ensure use of
pikepdf’s codec, i.e. s.encode('pdfdoc_pikepdf').

Changed in version 5.0.0: Some issues with the conversion of obscure characters in PDFDocEncoding
were fixed. Older versions of pikepdf may not convert PDFDocEncoding
in all cases.

Other codecs

Two other codecs are commonly used in PDFs, but they are already part of the
standard library.

WinAnsiEncoding is identical Windows Code Page 1252, and may be converted
using the "cp1252" codec.

MacRomanEncoding may be converted using the "macroman" codec.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/images.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images				Playing with images

				Extracting images

				Replacing an image

				Removing an image

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Working with images

				
 View page source

Working with images

PDFs embed images as binary stream objects within the PDF’s data stream. The
stream object’s dictionary describes properties of the image such as its
dimensions and color space. The same image may be drawn multiple times on
multiple pages, at different scales and positions.

In some cases such as JPEG2000, the standard file format of the image
is used verbatim, even when the file format contains headers and information
that is repeated in the stream dictionary. In other cases such as for
PNG-style encoding, the image file format is not used directly.

pikepdf currently has no facility to embed new images into PDFs. We recommend
img2pdf instead, because it does the job so well. pikepdf instead allows
for image inspection and lossless/transcode free (where possible) “pdf2img”.

pikepdf also cannot extract vector images, that is images produced through a
combination of PDF drawing commands. These are produced by a content stream,
or sometimes a Form XObject. Unfortunately there may not be anything in the
PDF that indicates a particular sequence of operations produces an image,
and that sequence is not necessarily all in the same place. To extract a
vector image, use a PDF viewer/editor to crop to that image.

Playing with images

pikepdf provides a helper class PdfImage for manipulating
images in a PDF. The helper class helps manage the complexity of the image
dictionaries.

In [1]: from pikepdf import Pdf, PdfImage, Name

In [2]: example = Pdf.open('../tests/resources/congress.pdf')

In [3]: page1 = example.pages[0]

In [4]: list(page1.images.keys())
Out[4]: ['/Im0']

In [5]: rawimage = page1.images['/Im0'] # The raw object/dictionary

In [6]: pdfimage = PdfImage(rawimage)

In [7]: type(pdfimage)
Out[7]: pikepdf.models.image.PdfImage

In Jupyter (or IPython with a suitable backend) the image will be
displayed.

You can also inspect the properties of the image. The parameters are similar
to Pillow’s.

In [8]: pdfimage.colorspace
Out[8]: '/DeviceRGB'

In [9]: pdfimage.width, pdfimage.height
Out[9]: (1000, 1520)

Note

.width and .height are the resolution of the image in pixels, not
the size of the image in page coordinates. The size of the image in page
coordinates is determined by the content stream.

Extracting images

Extracting images is straightforward. extract_to() will
extract images to a specified file prefix. The extension is determined while
extracting and appended to the filename. Where possible, extract_to
writes compressed data directly to the stream without transcoding. (Transcoding
lossy formats like JPEG can reduce their quality.)

In [10]: pdfimage.extract_to(fileprefix='image')
Out[10]: 'image.jpg'

It also possible to extract to a writable Python stream using
.extract_to(stream=...`).

You can also retrieve the image as a Pillow image (this will transcode):

In [11]: type(pdfimage.as_pil_image())
Out[11]: PIL.JpegImagePlugin.JpegImageFile

Another way to view the image is using Pillow’s Image.show() method.

Not all image types can be extracted. Also, some PDFs describe an image with a
mask, with transparency effects. pikepdf can only extract the images
themselves, not rasterize them exactly as they would appear in a PDF viewer. In
the vast majority of cases, however, the image can be extracted as it appears.

Note

This simple example PDF displays a single full page image. Some PDF creators
will paint a page using multiple images, and features such as layers,
transparency and image masks. Accessing the first image on a page is like an
HTML parser that scans for the first tag it finds. A lot
more could be happening. There can be multiple images drawn multiple times
on a page, vector art, overdrawing, masking, and transparency. A set of
resources can be grouped together in a “Form XObject” (not to be confused
with a PDF Form), and drawn at all once. Images can be referenced by
multiple pages.

Replacing an image

In this example we extract an image and replace it with a grayscale
equivalent.

In [12]: import zlib

In [13]: rawimage = pdfimage.obj

In [14]: pillowimage = pdfimage.as_pil_image()

In [15]: grayscale = pillowimage.convert('L')

In [16]: grayscale = grayscale.resize((32, 32))

In [17]: rawimage.write(zlib.compress(grayscale.tobytes()), filter=Name("/FlateDecode"))

In [18]: rawimage.ColorSpace = Name("/DeviceGray")

In [19]: rawimage.Width, rawimage.Height = 32, 32

Notes on this example:

				It is generally possible to use zlib.compress() to
generate compressed image data, although this is not as efficient as using
a program that knows it is preparing a PDF.

				In general we can resize an image to any scale. The PDF content stream
specifies where to draw an image and at what scale.

				This example would replace all occurrences of the image if it were used
multiple times in a PDF.

Removing an image

The easy way to remove an image is to replace it with a 1x1 pixel transparent image.
A transparent image can be created by setting the /ImageMask to true.

Note that, if an image is referenced on multiple pages, this procedure only updates
the occurrence on one page. If all references to the image are deleted, it should
not be included in the output file.

In [20]: pdf = pikepdf.open('../tests/resources/sandwich.pdf')

In [21]: page = pdf.pages[0]

In [22]: image_name, image = next(iter(page.images.items()))

In [23]: new_image = pdf.make_stream(b'\xff')

In [24]: new_image.Width, new_image.Height = 1, 1

In [25]: new_image.BitsPerComponent = 1

In [26]: new_image.ImageMask = True

In [27]: new_image.Decode = [0, 1]

In [28]: page.Resources.XObject[image_name] = new_image

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/metadata.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata				Automatic metadata updates

				Accessing metadata

				Removing metadata items

				Checking PDF/A conformance

				Notice for application developers

				Low-level XMP metadata access

				The Document Info dictionary

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Metadata

				
 View page source

Metadata

PDF has two different types of metadata: XMP metadata, and DocumentInfo, which
is deprecated and removed as of PDF 2.0, but still relevant. For backward
compatibility, both should contain the same content. pikepdf provides a convenient
interface that coordinates edits to both, but is limited to the most common
metadata features.

XMP (Extensible Metadata Platform) Metadata is a metadata specification in XML
format that is used many formats other than PDF. For full information on XMP,
see Adobe’s XMP Developer Center.
The XMP Specification also provides useful information.

pikepdf can read compound metadata quantities, but can only modify scalars. For
more complex changes consider using the python-xmp-toolkit library and its
libexempi dependency; but note that it is not capable of synchronizing changes
to the older DocumentInfo metadata.

Automatic metadata updates

By default pikepdf will create a XMP metadata block and set pdf:PDFVersion
to a value that matches the PDF version declared elsewhere in the PDF, whenever
a PDF is saved. To suppress this behavior, save with
pdf.save(..., fix_metadata_version=False).

Also by default, Pdf.open_metadata() will synchronize the XMP metadata
with the older document information dictionary. This behavior can also be
adjusted using keyword arguments.

Accessing metadata

The XMP metadata stream is attached the PDF’s root object, but to simplify
management of this, use pikepdf.Pdf.open_metadata(). The returned
pikepdf.models.PdfMetadata object may be used for reading, or entered
with a with block to modify and commit changes. If you use this interface,
pikepdf will synchronize changes to new and old metadata.

A PDF must still be saved after metadata is changed.

In [1]: pdf = pikepdf.open('../tests/resources/sandwich.pdf')

In [2]: meta = pdf.open_metadata()

In [3]: meta['xmp:CreatorTool']
Out[3]: 'ocrmypdf 5.3.3 / Tesseract OCR-PDF 3.05.01'

If no XMP metadata exists, an empty XMP metadata container will be created.

Open metadata in a with block to open it for editing. When the block is
exited, changes are committed (updating XMP and the Document Info dictionary)
and attached to the PDF object. The PDF must still be saved. If an exception
occurs in the block, changes are discarded.

In [4]: with pdf.open_metadata() as meta:
 ...: meta['dc:title'] = "Let's change the title"
 ...:

The list of available metadata fields may be found in the XMP Specification.

Removing metadata items

After opening metadata, use del meta['dc:title'] to delete a metadata entry.

To remove all of a PDF’s metadata records, don’t use pdf.open_metadata.
Instead, use del pdf.Root.Metadata and del pdf.docinfo
to remove the XMP and document info metadata, respectively.

Checking PDF/A conformance

The metadata interface can also test if a file claims to be conformant
to the PDF/A specification.

In [5]: pdf = pikepdf.open('../tests/resources/veraPDF test suite 6-2-10-t02-pass-a.pdf')

In [6]: meta = pdf.open_metadata()

In [7]: meta.pdfa_status
Out[7]: '1B'

Note

Note that this property merely tests if the file claims to be conformant to
the PDF/A standard. Use a tool such as veraPDF (official tool), or third party
web services such as PDFEN or 3-HEIGHTS™ PDF VALIDATOR to verify conformance.

Notice for application developers

If you are using pikepdf to create some kind of PDF application, you should
update the fields xmp:CreatorTool and pdf:Producer. You could, for
example, set xmp:CreatorTool to your application’s name and version, and
pdf:Producer to pikepdf. Refer to Adobe’s documentation to decide what
describes the circumstances.

This will help PDF developers identify the application that generated a
particular PDF and is valuable debugging information.

Low-level XMP metadata access

You can read the raw XMP metadata if desired. For example, one could extract it and
edit it using the full featured python-xmp-toolkit library.

In [8]: xmp = pdf.Root.Metadata.read_bytes()

In [9]: type(xmp)
Out[9]: bytes

In [10]: print(xmp.decode())
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<x:xmpmeta xmlns:x="adobe:ns:meta/">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description xmlns:dc="http://purl.org/dc/elements/1.1/" rdf:about="">
 <dc:creator>
 <rdf:Seq>
 <rdf:li>veraPDF Consortium</rdf:li>
 </rdf:Seq>
 </dc:creator>
 </rdf:Description>
 <rdf:Description xmlns:xmp="http://ns.adobe.com/xap/1.0/" rdf:about="" xmp:CreatorTool="veraPDF Test Builder" xmp:CreateDate="2015-03-10T17:19:21+01:00" xmp:ModifyDate="2015-03-10T17:19:21+01:00"/>
 <rdf:Description xmlns:pdf="http://ns.adobe.com/pdf/1.3/" rdf:about="" pdf:Producer="veraPDF Test Builder 1.0 "/>
 <rdf:Description xmlns:pdfaid="http://www.aiim.org/pdfa/ns/id/" rdf:about="" pdfaid:part="1" pdfaid:conformance="B"/>
 </rdf:RDF>
</x:xmpmeta>
<?xpacket end='w'?>

Editing XMP with a generic XML library is probably not worth the trouble; the
semantics are fairly complex.

Warning

Manually changes to XMP stream object will not be synchronized with live
PdfMetadata object or the DocumentInfo block.

The Document Info dictionary

The Document Info block is an older, now deprecated object in which metadata
may be stored. The Document Info is not attached to the /Root object.
It may be accessed using the .docinfo property. If no Document Info exists,
touching the .docinfo will properly initialize an empty one.

Here is an example of a Document Info block.

In [11]: pdf = pikepdf.open('../tests/resources/sandwich.pdf')

In [12]: pdf.docinfo
Out[12]:
pikepdf.Dictionary({
 "/CreationDate": "D:20170911132748-07'00'",
 "/Creator": "ocrmypdf 5.3.3 / Tesseract OCR-PDF 3.05.01",
 "/ModDate": "D:20170911132748-07'00'",
 "/Producer": "GPL Ghostscript 9.21"
})

It is permitted in pikepdf to directly interact with Document Info as with
other PDF dictionaries. However, it is better to use .open_metadata()
because that interface will apply changes to both XMP and Document Info in a
consistent manner.

You may copy from data from a Document Info object in the current PDF or another
PDF into XMP metadata using load_from_docinfo().

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/nametrees.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Name trees

				
 View page source

Name trees

A name trees is a compound data structure in a PDFs, composed from primitive data
types, namely PDF dictionaries and arrays. pikepdf provides an interface that
significantly simplifies this complex data structure, making it as simple as
manipulating any Python dictionary.

In many cases, the PDF 1.7 Reference Manual specifies that some information is stored in a name
tree. To access and manipulate those objects, use pikepdf.NameTree.

Some objects that are stored in name trees include the objects in
Pdf.Root.Names:

				Dests: named destinations

				URLS: URLs

				JavaScript: embedded PDF JavaScript

				Pages: named pages

				IDS: digital identifiers

Attached files (or embedded files) are managed in a name tree, but pikepdf
provides an interface specifically for managing them. Use that instead.

In [1]: from pikepdf import Pdf, Page, NameTree

In [2]: pdf = Pdf.open('../tests/resources/outlines.pdf')

In [3]: nt = NameTree(pdf.Root.Names.Dests)

In [4]: print([k for k in nt.keys()])
['0', '1', '2', '3', '4', '5', '6', '7', '8']

In [5]: nt['2'][0].objgen, nt['2'][1], nt['2'][2]
Out[5]: ((3, 0), pikepdf.Name("/XYZ"), Decimal('89.29'))

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/objects.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model				Making PDF objects

				Object lifecycle and memory management

				Indirect objects

				Object helpers

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Object model

				
 View page source

Object model

This section covers the object model pikepdf uses in more detail.

A pikepdf.Object is a Python wrapper around a C++ QPDFObjectHandle
which, as the name suggests, is a handle (or pointer) to a data structure in
memory, or possibly a reference to data that exists in a file. Importantly, an
object can be a scalar quantity (like a string) or a compound quantity (like a
list or dict, that contains other objects). The fact that the C++ class involved
here is an object handle is an implementation detail; it shouldn’t matter for
a pikepdf user.

The simplest types in PDFs are directly represented as Python types: int,
bool, and None stand for PDF integers, booleans and the “null”.
Decimal is used for floating point numbers in PDFs. If a
value in a PDF is assigned a Python float, pikepdf will convert it to
Decimal.

Types that are not directly convertible to Python are represented as
pikepdf.Object, a compound object that offers a superset of possible
methods, some of which only if the underlying type is suitable. Use the
EAFP idiom, or
isinstance to determine the type more precisely. This partly reflects the
fact that the PDF specification allows many data fields to be one of several
types.

For convenience, the repr() of a pikepdf.Object will display a
Python expression that replicates the existing object (when possible), so it
will say:

>>> catalog_name = pdf.Root.Type
pikepdf.Name("/Catalog")
>>> isinstance(catalog_name, pikepdf.Name)
True
>>> isinstance(catalog_name, pikepdf.Object)
True

Making PDF objects

You may construct a new object with one of the classes:

				pikepdf.Array

				pikepdf.Dictionary

				pikepdf.Name - the type used for keys in PDF Dictionary objects

				pikepdf.String - a text string
(treated as bytes and str depending on context)

These may be thought of as subclasses of pikepdf.Object. (Internally they
are pikepdf.Object.)

There are a few other classes for special PDF objects that don’t
map to Python as neatly.

				pikepdf.Operator - a special object involved in processing content
streams

				pikepdf.Stream - a special object similar to a Dictionary with
binary data attached

				pikepdf.InlineImage - an image that is embedded in content streams

The great news is that it’s often unnecessary to construct pikepdf.Object
objects when working with pikepdf. Python types are transparently converted to
the appropriate pikepdf object when passed to pikepdf APIs – when possible.
However, pikepdf sends pikepdf.Object types back to Python on return calls,
in most cases, because pikepdf needs to keep track of objects that came from
PDFs originally.

Object lifecycle and memory management

As mentioned above, a pikepdf.Object may reference data that is lazily
loaded from its source pikepdf.Pdf. Closing the Pdf with
pikepdf.Pdf.close() will invalidate some objects, depending on whether
or not the data was loaded, and other implementation details that may change.
Generally speaking, a pikepdf.Pdf should be held open until it is no
longer needed, and objects that were derived from it may or may not be usable
after it is closed.

Simple objects (booleans, integers, decimals, None) are copied directly
to Python as pure Python objects.

For PDF stream objects, use pikepdf.Object.read_bytes() to obtain a
copy of the object as pure bytes data, if this information is required after
closing a PDF.

When objects are copied from one pikepdf.Pdf to another, the
underlying data is copied immediately into the target. As such it is possible
to merge hundreds of Pdf into one, keeping only a single source at a time and the
target file open.

Indirect objects

PDF has two ways to represented a PDF dictionary that contains another dictionary:
it can contain the inner dictionary, or provide a reference to another object.
In the PDF file itself, most objects have an object number that is for referencing.

pikepdf hides the details about whether an object is directly or indirectly
referenced, since in many situations it does not matter and manually testing each
object to see if it needs to be dereferenced before accessing it is tedious.
However, you may need to create indirect references. Sometimes, the PDF 1.7 Reference Manual
specifically requires that a value be an indirect object.

You can use pikepdf.Object.is_indirect to check if an object is actually
an indirect reference. If you require an indirect object, use
pikepdf.Pdf.make_indirect() to attach the dictionary to a Pdf and return
an indirect copy of it. Direct objects are not attached to any particular Pdf
and can be copied from one to another, just like scalars. Indirect objects
must be attached.

Stream objects are always indirect objects, and must always be attached to a
PDF.

Object helpers

pikepdf also provides pikepdf.ObjectHelper and various subclasses of
this class. Usually these are wrappers around a pikepdf.Dictionary with
special rules applicable to that type of dictionary. pikepdf.Page is
an example of an object helper. The underlying object can be accessed with
pikepdf.ObjectHelper.obj.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/outlines.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines				Creating outlines

				Editing outlines

				Destinations

				Outline structure

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Outlines

				
 View page source

Outlines

Outlines (sometimes also called bookmarks) are shown in a the PDF viewer
aside of the page, allowing for navigation within the document.

Creating outlines

Outlines can be created from scratch, e.g. when assembling a set of PDF files
into a single document.

The following example adds outline entries referring to the 1st, 3rd and 9th page
of an existing PDF.

In [1]: from pikepdf import Pdf, OutlineItem

In [2]: pdf = Pdf.open('document.pdf')

In [3]: with pdf.open_outline() as outline:
 ...: outline.root.extend([
 ...: # Page counts are zero-based
 ...: OutlineItem('Section One', 0),
 ...: OutlineItem('Section Two', 2),
 ...: OutlineItem('Section Three', 8)
 ...:])
 ...:

In [4]: pdf.save('document_with_outline.pdf')

Another example, for automatically adding an entry for each file in a merged document:

In [5]: from glob import glob

In [6]: pdf = Pdf.new()

In [7]: page_count = 0

In [8]: with pdf.open_outline() as outline:
 ...: for file in glob('*.pdf'):
 ...: src = Pdf.open(file)
 ...: oi = OutlineItem(file, page_count)
 ...: outline.root.append(oi)
 ...: page_count += len(src.pages)
 ...: pdf.pages.extend(src.pages)
 ...:

In [9]: pdf.save('merged.pdf')

Editing outlines

Existing outlines can be edited. Entries can be moved and renamed without affecting
the targets they refer to.

Destinations

Destinations tell the PDF viewer where to go when navigating through outline items.
The simplest case is a reference to a page, together with the page location, e.g.
Fit (default). However, named destinations can also be assigned.

The PDF specification allows for either use of a destination (Dest attribute) or
an action (A attribute), but not both on the same element. OutlineItem elements
handle this as follows:

				When creating new outline entries passing in a page number or reference name,
the Dest attribute is used.

				When editing an existing entry with an assigned action, it is left as-is, unless a
destination is set. The latter is preferred if both are present.

Creating a more detailed destination with page location:

In [10]: oi = OutlineItem('First', 0, 'FitB', top=1000)

The above will call make_page_destination when saving to a Pdf document,
roughly equivalent to the following:

In [11]: oi.destination = make_page_destination(pdf, 0, 'FitB', top=1000)

Outline structure

For nesting outlines, add items to the children list of another OutlineItem.

In [12]: with pdf.open_outline() as outline:
 : main_item = OutlineItem('Main', 0)
 : outline.root.append(main_item)
 : main_item.children.append(OutlineItem('A', 1))
 :

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/overlays.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Overlays, underlays, watermarks, n-up

				
 View page source

Overlays, underlays, watermarks, n-up

You can use pikepdf to overlay pages or other content on top of other pages.

This might be used to do watermarks (typically an underlay, drawn before everything
else), n-up (compositing multiple individual pages on a large page, such as converting
slides from a presentation to 4-up for reading and printing).

If you are looking to merge pages from different PDFs, see Merge (concatenate) PDF from several PDFs.

In this example we use pikepdf.Page.add_overlay() to draw a thumbnail of
of the second page onto the first page.

In [1]: from pikepdf import Pdf, Page, Rectangle

In [2]: pdf = Pdf.open(...)

In [3]: destination_page = Page(pdf.pages[0])

In [4]: thumbnail = Page(pdf.pages[1])

In [5]: destination_page.add_overlay(thumbnail, Rectangle(0, 0, 300, 300))

In [6]: pdf.save("page1_with_page2_thumbnail.pdf")

The pikepdf.Rectangle specifies the position on the target page into which
the other page can be drawn. The object will be drawn centered in a way that
fills as much space as possible while preserving aspect ratio.

Use pikepdf.Page.add_underlay() instead if you want content drawn underneath.
It is possible content drawn this way will be overdrawn by other objects.

Use pikepdf.Page.trimbox to get a page’s dimensions.

add_overlay will copy content across Pdf objects as needed, and can copy
other pages or other Form XObjects.

add_overlay also preserves aspect ratio.
Use pikepdf.Page.as_form_xobject() and
pikepdf.Page.calc_form_xobject_placement() if you want more precise control
over placement.

Composition works using Form XObjects, which is how PDF captures of a group of
related objects for drawing. Some very basic PDF software may not support them,
or may fail to detect images contained within.

When perform n-up composition, it will work better to create your composition
within the existing document, rather than in a new document. Transforming the
existing document will ensure that metadata, annotations and hyperlinks are
preserved. For example, to convert 16 slides to 4×4-up pages for printing,
add four pages onto the end of the file, draw the slides onto the target pages,
and then delete the slides.

By default, add_overlay encapsulates the existing content stream in a way
that ensures the transformation matrix is first reset, since this behavior
aligns with user expectations. This adds a q/Q pair to (push/pop graphics
stack) to existing content streams. To disable this (usually desired) behavior
use push_stack=False.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/page.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages				Page boxes

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Working with pages

				
 View page source

Working with pages

This section details with how to view and edit the contents of a page.

pikepdf is not an ideal tool for producing new PDFs from scratch – and there are
many good tools for that, as mentioned elsewhere. pikepdf is better at inspecting,
editing and transforming existing PDFs.

Pages in PDFs are wrappers around dictionary objects.

In [1]: from pikepdf import Pdf, Page

In [2]: example = Pdf.open('../tests/resources/congress.pdf')

In [3]: page1 = example.pages[0]

In [4]: page1
Out[4]:
<pikepdf.Page({
 "/Contents": pikepdf.Stream(owner=<...>, data=b'q\n200.0000 0 0 304.0'..., {
 "/Length": 50
 }),
 "/MediaBox": [0, 0, 200, 304],
 "/Parent": <reference to /Pages>,
 "/Resources": {
 "/XObject": {
 "/Im0": pikepdf.Stream(owner=<...>, data=<...>, {
 "/BitsPerComponent": 8,
 "/ColorSpace": "/DeviceRGB",
 "/Filter": ["/DCTDecode"],
 "/Height": 1520,
 "/Length": 192956,
 "/Subtype": "/Image",
 "/Type": "/XObject",
 "/Width": 1000
 })
 }
 },
 "/Type": "/Page"
})>

The page’s /Contents key contains instructions for drawing the page content.
This is a content stream, which is a stream object
that follows special rules.

Also attached to this page is a /Resources dictionary, which contains a
single XObject image. The image is compressed with the /DCTDecode filter,
meaning it is encoded with the DCT, so it is
a JPEG. pikepdf has special APIs for working with images.

The /MediaBox describes the bounding box of the page in PDF pt units
(1/72” or 0.35 mm).

You can access the page dictionary data structure directly, but it’s fairly
complicated. There are a number of rules, optional values and implied values.
To do so, you would access the page1.obj property, which returns the
underlying dictionary object that holds the page data.

Note

In pikepdf 2.x, the raw dictionary object was returned, and it was
necessary to manually wrap it with the support model:
page = Page(pdf.pages[0]). This is no longer necessary, but also
harmless.

Page boxes

In [5]: page1.trimbox
Out[5]: pikepdf.Array([0, 0, 200, 304])

Page will resolve implicit information. For example, page.trimbox
will return an appropriate trim box for this page, which in this case is
equal to the media box. This happens even if the page does not define
a trim box.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/pagelayout.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Default appearance in PDF viewers

				
 View page source

Default appearance in PDF viewers

Using pikepdf you can control the initial page layout and page mode, that is,
how a PDF will appear by default when loaded in a PDF viewer.

These settings are changed written to the PDF’s root object. Note that the PDF
viewer may ignore them and user preferences may override, etc.

from pikepdf import Pdf, Dictionary, Name
with Pdf.open('input.pdf') as pdf:
 pdf.root.PageLayout = Name.SinglePage
 pdf.root.PageMode = Name.FullScreen
 pdf.save('output.pdf')

For reference, the tables below provide summarize the available options.

PageLayout definitions				Value

				Meaning

				Name.SinglePage

				Display one page at a time (default)

				Name.OneColumn

				Display the pages in one column

				Name.TwoColumnLeft

				Display the pages in two columns, with odd-numbered pages on the left

				Name.TwoColumnRight

				Display the pages in two columns, with odd-numbered pages on the right

				Name.TwoPageLeft

				Display the pages two at a time, with odd-numbered pages on the left

				Name.TwoPageRight

				Display the pages two at a time, with odd-numbered pages on the right

PageMode definitions				Value

				Meaning

				Name.UseNone

				Neither document outline nor thumbnail images visible (default)

				Name.UseOutlines

				Document outline visible

				Name.UseThumbs

				Thumbnail images visible

				Name.FullScreen

				Full-screen mode, with no menu bar, window controls, or any other window visible

				Name.UseOC

				Optional content group panel visible

				Name.UseAttachments

				Attachments panel visible

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/pages.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly				Split a PDF into single page PDFs

				Merge (concatenate) PDF from several PDFs

				Reversing the order of pages

				Copying pages from other PDFs				Emplacing pages

				Copying pages within a PDF

				Using counting numbers

				Accessing page labels

				Pages information from Root

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				PDF split, merge, and document assembly

				
 View page source

PDF split, merge, and document assembly

This section discusses working with PDF pages: splitting, merging, copying,
deleting. We’re treating pages as a unit, rather than working with the content of
individual pages.

Let’s continue with fourpages.pdf from the Tutorial.

In [1]: from pikepdf import Pdf

In [2]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

Note

In some parts of the documentation we skip closing Pdf objects for brevity.
In production code, you should open them in a with block or explicitly
close them.

Split a PDF into single page PDFs

All we need are new PDFs to hold the destination pages.

In [3]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

In [4]: for n, page in enumerate(pdf.pages):
 ...: dst = Pdf.new()
 ...: dst.pages.append(page)
 ...: dst.save(f'{n:02d}.pdf')
 ...:

Note

This example will transfer data associated with each page, so
that every page stands on its own. It will not transfer some metadata
associated with the PDF as a whole, such as the list of bookmarks.

Merge (concatenate) PDF from several PDFs

In this example, we create an empty Pdf which will be the container for all
the others.

If you are looking to combine multiple PDF pages into a single page, see
Overlays, underlays, watermarks, n-up.

In [5]: from glob import glob

In [6]: pdf = Pdf.new()

In [7]: for file in glob('*.pdf'):
 ...: src = Pdf.open(file)
 ...: pdf.pages.extend(src.pages)
 ...:

In [8]: pdf.save('merged.pdf')

This code sample is enough to merge most PDFs, but there are some things it
does not do that a more sophisticated function might do. One could call
pikepdf.Pdf.remove_unreferenced_resources() to remove unreferenced objects
from the pages’ /Resources dictionaries. It may also be necessary to chose the
most recent version of all source PDFs. Here is a more sophisticated example:

In [9]: from glob import glob

In [10]: pdf = Pdf.new()

In [11]: version = pdf.pdf_version

In [12]: for file in glob('*.pdf'):
 : src = Pdf.open(file)
 : version = max(version, src.pdf_version)
 : pdf.pages.extend(src.pages)
 :

In [13]: pdf.remove_unreferenced_resources()

In [14]: pdf.save('merged.pdf', min_version=version)

This improved example would still leave metadata blank. It’s up to you
to decide how to combine metadata from multiple PDFs.

Reversing the order of pages

Suppose the file was scanned backwards. We can easily reverse it in
place - maybe it was scanned backwards, a common problem with automatic
document scanners.

In [15]: pdf.pages.reverse()

In [16]: pdf
Out[16]: <pikepdf.Pdf description='../tests/resources/fourpages.pdf'>

Pretty nice, isn’t it? But the pages in this file already were in correct
order, so let’s put them back.

In [17]: pdf.pages.reverse()

Copying pages from other PDFs

Now, let’s add some content from another file. Because pdf.pages behaves
like a list, we can use pages.extend() on another file’s pages.

In [18]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

In [19]: appendix = Pdf.open('../tests/resources/sandwich.pdf')

In [20]: pdf.pages.extend(appendix.pages)

We can use pages.insert() to insert into one of more pages into a specific
position, bumping everything else ahead.

Copying pages between Pdf objects will create a shallow copy of the source
page within the target Pdf, rather than the typical Python behavior of
creating a reference. Therefore modifying pdf.pages[-1] will not affect
appendix.pages[0]. (Normally, assigning objects between Python lists creates
a reference, so that the two objects are identical, list[0] is list[1].)

In [21]: graph = Pdf.open('../tests/resources/graph.pdf')

In [22]: pdf.pages.insert(1, graph.pages[0])

In [23]: len(pdf.pages)
Out[23]: 6

We can also replace specific pages with assignment (or slicing).

In [24]: congress = Pdf.open('../tests/resources/congress.pdf')

In [25]: pdf.pages[2].objgen
Out[25]: (4, 0)

In [26]: pdf.pages[2] = congress.pages[0]

In [27]: pdf.pages[2].objgen
Out[27]: (33, 0)

The method above will break any indirect references (such as table of contents
entries and hyperlinks) within pdf to pdf.pages[2]. Perhaps that is the
behavior you want, if the replacement means those references are no longer
valid. This is shown by the change in pikepdf.Object.objgen.

Emplacing pages

Perhaps the PDF you are working with has a table of contents or internal hyperlinks,
meaning that there are indirect references to a specific page object. If you
want change the content of a page object while preserving references to it,
use pikepdf.Object.emplace(), which will delete all of the content of
the target and replace it with the content of the source, thus preserving
indirect references to the page. (Think of this as demolishing the interior
of a house, but keeping it at the same address.)

In [28]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

In [29]: congress = Pdf.open('../tests/resources/congress.pdf')

In [30]: pdf.pages[2].objgen
Out[30]: (5, 0)

In [31]: pdf.pages.append(congress.pages[0]) # Transfer page to new pdf

In [32]: pdf.pages[2].emplace(pdf.pages[-1])

In [33]: del pdf.pages[-1] # Remove donor page

In [34]: pdf.pages[2].objgen
Out[34]: (5, 0)

Copying pages within a PDF

As you may have guessed, we can assign pages to copy them within a Pdf:

In [35]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

In [36]: pdf.pages[3] = pdf.pages[0] # The last shall be made first

As above, copying a page creates a shallow copy rather than a Python object
reference.

Also as above pikepdf.Object.emplace() can be used to create a copy that
preserves the functionality of indirect references within the PDF.

Using counting numbers

Because PDF pages are usually numbered in counting numbers (1, 2, 3…),
pikepdf provides a convenience accessor .p() that uses counting
numbers:

In [37]: pdf.pages.p(1) # The first page in the document

In [38]: pdf.pages[0] # Also the first page in the document

In [39]: pdf.pages.remove(p=1) # Remove first page in the document

To avoid confusion, the .p() accessor does not accept Python slices,
and .p(0) raises an exception. It is also not possible to delete using it.

PDFs may define their own numbering scheme or different numberings for
different sections, such as using Roman numerals for an introductory section.
.pages does not look up this information.

Accessing page labels

If a PDF defines custom page labels, such as a typical report with preface material
beginning with Roman numerals (i, ii, iii…), body using Arabic numerals (1, 2, 3…),
and an appendix using some other convention (A-1, A-2, …), you can look up the
page label as follows:

In [40]: pdf.pages[1].label
Out[40]: 'i'

There is currently no API to help with modifying the pdf.Root.PageLabels data
structure, which contains the label definitions.

Pages information from Root

Warning

It’s possible to obtain page information through pikepdf.Pdf.Root
object but not recommended. (In PDF parlance, this is the /Root
object).

The internal consistency of the various /Page and /Pages is not
guaranteed when accessed in this manner, and in some PDFs the data structure
for these is fairly complex. Use the .pages interface instead.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/security.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security				Password security				Unicode in passwords

				PDF content restrictions

				Digital signatures and certificates

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				PDF security

				
 View page source

PDF security

Password security

Password security in PDFs is widely supported, including by pikepdf. Unfortunately,
its security has limitations and may offer more security theatre than real
security, depending on your needs.

Note the following limitations of password security in PDFs:

				anyone with the user password or the owner password can open the PDF, extract
its contents, and produce a visually identical PDF;

				if the user password is an empty string, everyone has the user password;

				setting a user password and leaving the owner password blank is useless;

				the only thing you can not do if you have the user password and not the owner
password is create a new PDF encrypted with the same owner password;

				pikepdf.Permissions restrictions depend entirely on the PDF viewer software
to enforce the restrictions – libraries like pikepdf can bypass those restrictions;

				cracking PDF passwords is easier than many other forms of cracking because
a motivated person has unlimited chances to guess the password on a static file.

While the AES encryption algorithm is strong, password-protected PDFs have
significant practical weaknesses.

In view of all of this, the most useful option is to set the owner password to a
strong password, and the user password to blank. This allows anyone to view the PDF
while allowing you to prove that you (or your software’s user) generated the PDF by
producing the strong owner password.

Unicode in passwords

For widest compatibility, passwords should be composed of only characters in the
ASCII character set, since the PDF 1.7 Reference Manual is unclear about how non-ASCII
passwords are supposed to be encoded. See the documentation on pikepdf.Pdf.save()
for more details. pikepdf encodes passwords as UTF-8.

PDF content restrictions

If you are developing a PDF application, you should enforce the restrictions in
pikepdf.Permissions, and not permit people who have only the user password
to access restricted content. If the PDF is opened with the owner password,
any content may be accessed without enforcing restrictions.
pikepdf.Pdf.user_password_matched and pikepdf.Pdf.owner_password_matched
can be used to check which password opened the PDF.

It is up to the application developer to implement the restrictions. pikepdf or
any PDF manipulation library can be used to bypass restrictions.

Digital signatures and certificates

PDFs signed with a digital signature can mitigate some of these security issues.
pikepdf does not support digital signatures at this time.

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/topics/streams.html

 pikepdf

 8.7

 Introduction

				Tutorial

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects				Reading stream objects

				Reading stream objects as a Python I/O streams

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Stream objects

				
 View page source

Stream objects

A pikepdf.Stream object works like a PDF dictionary with some encoded
bytes attached. The dictionary is metadata that describes how the stream is
encoded. PDF can, and regularly does, use a variety of encoding filters. A
stream can be encoded with one or more filters. Images are a type of stream
object.

This is not the same type of object as Python’s file-like I/O objects, which are
sometimes called streams.

Most of the interesting content in a PDF (images and content streams) are
inside stream objects.

Because the PDF specification unfortunately defines several terms that involve the
word stream, let’s attempt to clarify:

When it comes to taxonomy, software developers have it easy.

				stream object

				A PDF object that contains binary data and a metadata dictionary that describes
it, represented as pikepdf.Stream, a subclass of pikepdf.Object.
In HTML this is equivalent to a <object> tag with attributes and data.

				object stream

				A stream object (not a typo, an object stream really is a type of stream
object) in a PDF that contains a number of other objects in a
PDF, grouped together for better compression. In pikepdf there is an option
to save PDFs with this feature enabled to improve compression. Otherwise,
this is just a detail about how PDF files are encoded. When object streams
are present, pikepdf automatically decompresses them as necessary; no special
steps are needed to access a PDF that contains object streams.

				content stream

				A stream object that contains some instructions to draw graphics
and text on a page, or inside a Form XObject, and in some other situations.
In HTML this is equivalent to the HTML file itself. Content streams only draw
one page (or canvas, for a Form XObject). Each page needs its own content stream
to draw its contents.

				Form XObject

				A group of images, text and drawing commands that can be rendered elsewhere
in a PDF as a group. This is often used when a group of objects are needed
at different scales or on multiple pages. In HTML this is like an <svg>.
It is not a fillable PDF form (although a fillable PDF form could involve
Form XObjects).

				(Python) stream

				A stream is another name for a file object or file-like object, as described
in the Python io module.

Reading stream objects

Fortunately, pikepdf.Stream.read_bytes() will apply all filters
and decode the uncompressed bytes, or throw an error if this is not possible.
pikepdf.Stream.read_raw_bytes() provides access to the compressed bytes.

Three types of stream object are particularly noteworthy: content streams,
which describe the order of drawing operators; images; and XMP metadata.
pikepdf provides helper functions for working with these types of streams.

Reading stream objects as a Python I/O streams

You were warned about terminology.

To preserve our remaining sanity, you cannot access a
stream object as a file-like object directly.

To efficiently access a pikepdf.Stream as a Python file object, you may do:

pdf.pages[0].Contents.page_contents_coalesce()
filelike_object = BytesIO(pdf.pages[0].Contents.get_stream_buffer())

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc/python3-pikepdf/html/tutorial.html

 pikepdf

 8.7

 Introduction

				Tutorial				Opening and saving PDFs

				Creating PDFs

				Inspecting pages

				PDF dictionaries

				Page dictionaries

				repr() output

				Item and attribute notation

				Deleting pages

				Saving changes				Saving secure PDFs

				Running QPDF through Jobs

				Next steps

Release notes

				Release notes

Topics

				PDF split, merge, and document assembly

				Working with pages

				Object model

				Stream objects

				Working with content streams

				Working with images

				Overlays, underlays, watermarks, n-up

				Character encoding

				Metadata

				Outlines

				Name trees

				Attaching files to a PDF

				Default appearance in PDF viewers

				PDF security

API

				Main objects

				Support models

				Content streams

				Exceptions

				Settings

Reference

				Architecture

				Contributing guidelines

				Debugging

				Resources

 pikepdf

 				

				Tutorial

				
 View page source

Tutorial

This brief tutorial should give you an introduction and orientation to pikepdf’s
paradigm and syntax. From there, we refer to you various topics.

Opening and saving PDFs

In contrast to better known PDF libraries, pikepdf uses a single object to
represent a PDF, whether reading, writing or merging. We have cleverly named
this pikepdf.Pdf. In this documentation, a Pdf is a class that
allows manipulate the PDF, meaning the “file” (whether it exists in memory or on
a file system).

from pikepdf import Pdf

with Pdf.open('sample.pdf') as pdf:
 pdf.save('output.pdf')

You may of course use from pikepdf import Pdf as ... if the short class
name conflicts or from pikepdf import Pdf as PDF if you prefer uppercase.

pikepdf.open() is a shorthand for pikepdf.Pdf.open().

The PDF class API follows the example of the widely-used
Pillow image library. For clarity
there is no default constructor since the arguments used for creation and
opening are different. To make a new empty PDF, use Pdf.new() not Pdf().

Pdf.open() also accepts seekable streams as input, and pikepdf.Pdf.save() accepts
streams as output. pathlib.Path objects are fully supported wherever
pikepdf accepts a filename.

Creating PDFs

Using pikepdf.Pdf.new(), you can create a new PDF from scratch. pikepdf
is not primarily a PDF generation library - you may find other libraries easier
to use for that purpose. However, pikepdf does provide a few useful functions
for creating PDFs.

from pikepdf import Pdf

pdf = Pdf.new()
pdf.add_blank_page()
pdf.save('blank_page.pdf')

Inspecting pages

Manipulating pages is fundamental to PDFs. pikepdf presents the pages in a PDF
through the pikepdf.Pdf.pages property, which follows the list
protocol. As such page numbers begin at 0.

Let’s open a simple PDF that contains four pages.

In [1]: from pikepdf import Pdf

In [2]: pdf = Pdf.open('../tests/resources/fourpages.pdf')

How many pages?

In [3]: len(pdf.pages)
Out[3]: 4

pikepdf integrates with IPython and Jupyter’s rich object APIs so that you can
view PDFs, PDF pages, or images within PDF in a IPython window or Jupyter
notebook. This makes it easier to test visual changes.

In [4]: pdf
Out[4]: « In Jupyter you would see the PDF here »

In [5]: pdf.pages[0]
Out[5]: « In Jupyter you would see an image of the PDF page here »

You can also examine individual pages, which we’ll explore in the next
section. Suffice to say that you can access pages by indexing them and
slicing them.

In [6]: pdf.pages[0]
Out[6]: « In Jupyter you would see an image of the PDF page here »

Note

pikepdf.Pdf.open() can open almost all types of encrypted PDF! Just
provide the password= keyword argument.

For more details on document assembly, see
PDF split, merge and document assembly.

PDF dictionaries

In PDFs, the main data structure is the dictionary, a key-value data
structure much like a Python dict or attrdict. The major difference is
that the keys can only be names, and the values can only be PDF types, including
other dictionaries.

PDF dictionaries are represented as pikepdf.Dictionary objects, and names
are of type pikepdf.Name.

In [7]: from pikepdf import Pdf

In [8]: example = Pdf.open('../tests/resources/congress.pdf')

In [9]: example.Root # Show the document's root dictionary
Out[9]:
pikepdf.Dictionary(Type="/Catalog")({
 "/Pages": {
 "/Count": 1,
 "/Kids": [<Pdf.pages.from_objgen(4,0)>],
 "/Type": "/Pages"
 },
 "/Type": "/Catalog"
})

Page dictionaries

A page in a PDF is just a dictionary with certain required keys that is
referenced by the PDF’s “page tree”. (pikepdf manages the page tree for you,
and wraps page dictionaries to provide special functions
that help with managing pages.) A pikepdf.Page is a wrapper around a PDF
page dictionary that provides many useful functions for working on pages.

In [10]: from pikepdf import Pdf

In [11]: example = Pdf.open('../tests/resources/congress.pdf')

In [12]: page1 = example.pages[0]

In [13]: obj_page1 = page1.obj

In [14]: obj_page1
Out[14]:
<pikepdf.Dictionary(Type="/Page")({
 "/Contents": pikepdf.Stream(owner=<...>, data=b'q\n200.0000 0 0 304.0'..., {
 "/Length": 50
 }),
 "/MediaBox": [0, 0, 200, 304],
 "/Parent": <reference to /Pages>,
 "/Resources": {
 "/XObject": {
 "/Im0": pikepdf.Stream(owner=<...>, data=<...>, {
 "/BitsPerComponent": 8,
 "/ColorSpace": "/DeviceRGB",
 "/Filter": ["/DCTDecode"],
 "/Height": 1520,
 "/Length": 192956,
 "/Subtype": "/Image",
 "/Type": "/XObject",
 "/Width": 1000
 })
 }
 },
 "/Type": "/Page"
})>

repr() output

Let’s observe the page’s repr() output:

In [15]: repr(page1)
Out[15]: '<pikepdf.Page({\n "/Contents": pikepdf.Stream(owner=<...>, data=b\'q\\n200.0000 0 0 304.0\'..., {\n "/Length": 50\n }),\n "/MediaBox": [0, 0, 200, 304],\n "/Parent": <reference to /Pages>,\n "/Resources": {\n "/XObject": {\n "/Im0": pikepdf.Stream(owner=<...>, data=<...>, {\n "/BitsPerComponent": 8,\n "/ColorSpace": "/DeviceRGB",\n "/Filter": ["/DCTDecode"],\n "/Height": 1520,\n "/Length": 192956,\n "/Subtype": "/Image",\n "/Type": "/XObject",\n "/Width": 1000\n })\n }\n },\n "/Type": "/Page"\n})>'

The angle brackets in the output indicate that this object cannot be constructed
with a Python expression because it contains a reference. When angle brackets
are omitted from the repr() of a pikepdf object, then the object can be
replicated with a Python expression, such as eval(repr(x)) == x. Pages
typically have indirect references to themselves and other pages, so they
cannot be represented as an expression.

Item and attribute notation

Dictionary keys may be looked up using attributes (page1.Type) or
keys (page1['/Type']).

In [16]: page1.Type # preferred notation for standard PDF names
Out[16]: pikepdf.Name("/Page")

In [17]: page1['/Type'] # also works
Out[17]: pikepdf.Name("/Page")

By convention, pikepdf uses attribute notation for standard names (the names
that are normally part of a dictionary, according to the PDF 1.7 Reference Manual),
and item notation for names that may not always appear. For example, the images
belong to a page always appear at page.Resources.XObject but the names
of images are arbitrarily chosen by whatever software generates the PDF (/Im0,
in this case). (Whenever expressed as strings, names begin with /.)

In [18]: page1.Resources.XObject['/Im0']

Item notation here would be quite cumbersome:
['/Resources']['/XObject]['/Im0'] (not recommended).

Attribute notation is convenient, but not robust if elements are missing. For
elements that are not always present, you can use .get(), which behaves like
dict.get() in core Python. A library such as glom might help when working with complex
structured data that is not always present.

(For now, we’ll set aside what a page’s Resources.XObject
are for. See Working with pages for details.)

Deleting pages

Removing pages is easy too.

In [19]: del pdf.pages[1:3] # Remove pages 2-3 labeled "second page" and "third page"

In [20]: len(pdf.pages)
Out[20]: 2

Saving changes

Naturally, you can save your changes with pikepdf.Pdf.save().
filename can be a pathlib.Path, which we accept everywhere.

In [21]: pdf.save('output.pdf')

You may save a file multiple times, and you may continue modifying it after
saving. For example, you could create an unencrypted version of document, then
apply a watermark, and create an encrypted version.

Note

You may not overwrite the input file (or whatever Python object provides the
data) when saving or at any other time. pikepdf assumes it will have
exclusive access to the input file or input data you give it to, until
pdf.close() is called.

Saving secure PDFs

To save an encrypted (password protected) PDF, use a pikepdf.Encryption
object to specify the encryption settings. By default, pikepdf selects the
strongest security handler and algorithm (AES-256), but allows full access to
modify file contents. A pikepdf.Permissions object can be used to
specify restrictions.

In [22]: no_extracting = pikepdf.Permissions(extract=False)

In [23]: pdf.save('encrypted.pdf', encryption=pikepdf.Encryption(
 : user="user password", owner="owner password", allow=no_extracting
 :))
 :

Refer to our security documentation for more information on
user/owner passwords and PDF permissions.

Running QPDF through Jobs

pikepdf can access all of the features of the qpdf command line program, and
can even execute qpdf-like command lines.

In [24]: from pikepdf import Job

In [25]: Job(['pikepdf', '--check', '../tests/resources/fourpages.pdf'])

You can also specify jobs in QPDF Job JSON:

In [26]: job_json = {'inputFile': '../tests/resources/fourpages.pdf', 'check': ''}

In [27]: Job(job_json).run()

Next steps

Have a look at pikepdf topics that interest you, or jump to our detailed API
reference…

 Previous
 Next

 © Copyright 2023, James R. Barlow.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

./usr/share/doc-base/pikepdf-doc.pikepdf

Document: pikepdf
Title: pikepdf documentation
Author: James R. Barlow
Abstract: Instructions for using pikepdf
Section: Graphics

Format: HTML
Index: /usr/share/doc/python3-pikepdf/html/index.html
Files: /usr/share/doc/python3-pikepdf/html/*.html

./usr/share/doc/python3-pikepdf/html/_static/css/badge_only.css

./usr/share/doc/python3-pikepdf/html/_static/css/theme.css

./usr/share/doc/python3-pikepdf/html/_static/doctools.js

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-Bold.ttf

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-Bold.woff2

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-BoldItalic.ttf

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-BoldItalic.woff2

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-Italic.ttf

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-Italic.woff2

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-Regular.ttf

./usr/share/doc/python3-pikepdf/html/_static/fonts/Lato-Regular.woff2

./usr/share/doc/python3-pikepdf/html/_static/fonts/RobotoSlab-Bold.woff2

./usr/share/doc/python3-pikepdf/html/_static/fonts/RobotoSlab-Regular.woff2

./usr/share/doc/python3-pikepdf/html/_static/fonts/fontawesome-webfont.eot

./usr/share/doc/python3-pikepdf/html/_static/fonts/fontawesome-webfont.svg

./usr/share/doc/python3-pikepdf/html/_static/fonts/fontawesome-webfont.ttf

./usr/share/doc/python3-pikepdf/html/_static/fonts/fontawesome-webfont.woff

./usr/share/doc/python3-pikepdf/html/_static/fonts/fontawesome-webfont.woff2

./usr/share/doc/python3-pikepdf/html/_static/jquery.js

./usr/share/doc/python3-pikepdf/html/_static/js/theme.js

./usr/share/doc/python3-pikepdf/html/_static/language_data.js

./usr/share/doc/python3-pikepdf/html/_static/searchtools.js

./usr/share/doc/python3-pikepdf/html/_static/sphinx_highlight.js

