
debian-binary
2.0

control.tar.xz
control.tar

./control

Package: python3-pikepdf
Source: pikepdf
Version: 1.0.5+dfsg-3~deb10u1
Architecture: mipsel
Maintainer: Debian Python Modules Team <python-modules-team@lists.alioth.debian.org>
Installed-Size: 1007
Depends: python3 (<< 3.8), python3 (>= 3.7~), python3-defusedxml, python3-lxml, python3:any, libc6 (>= 2.4), libgcc1 (>= 1:3.0), libqpdf21 (>> 8.4~), libstdc++6 (>= 5.2)
Provides: python3.7-pikepdf
Section: python
Priority: optional
Homepage: https://github.com/pikepdf/pikepdf
Description: Python library to read and write PDFs with QPDF
 pikepdf is a Python library to read and write PDFs with QPDF.
 Features include:
 .
 * Editing, manipulation and transformation of existing PDFs
 * Based on the mature, proven QPDF C++ library
 * Works with encrypted PDFs
 * Supports all PDF compression filters
 * Can create "fast web view" (linearized) PDFs
 * Creates standards compliant PDFs that pass validation in other tools
 * Automatically repairs damaged PDFs, just like QPDF
 * Implements more of the PDF specification than existing Python PDF tools
 * IPython notebook and Jupyter integration
Python-Version: 3.7

./md5sums

97b154ec1903f5f107960971424c6e26 usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/PKG-INFO
68b329da9893e34099c7d8ad5cb9c940 usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/dependency_links.txt
68b329da9893e34099c7d8ad5cb9c940 usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/not-zip-safe
6a760f0cb40a450f2a73d18d983af143 usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/requires.txt
ab9bf3ab99c4b75a366d1861b012fb24 usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/top_level.txt
0a16a918bc7c4c042019ddceb3c99457 usr/lib/python3/dist-packages/pikepdf/__init__.py
6c66d8db6d44d8793549104400199005 usr/lib/python3/dist-packages/pikepdf/_cpphelpers.py
87a317515ff8a6bdf79d21dd5152ecc0 usr/lib/python3/dist-packages/pikepdf/_methods.py
db52b7b555608a511b7052d6c5aa04a5 usr/lib/python3/dist-packages/pikepdf/_qpdf.cpython-37m-mipsel-linux-gnu.so
47ddc97b5511de7becb08354b92b325a usr/lib/python3/dist-packages/pikepdf/models/__init__.py
7b9c4f8bc833b7c09d178c26b468a9aa usr/lib/python3/dist-packages/pikepdf/models/image.py
f0b90b5a9340d879f8129b0c5ccf1801 usr/lib/python3/dist-packages/pikepdf/models/matrix.py
7bc7e88159f5fd77897feb1dee9fdb87 usr/lib/python3/dist-packages/pikepdf/models/metadata.py
35a0216305e3c93ecd5a576e71a6c59c usr/lib/python3/dist-packages/pikepdf/objects.py
3393e8132ccec2ced946bcc760d4f056 usr/share/doc/python3-pikepdf/changelog.Debian.gz
a89b75378bf3bc1c8994a6dcab3e171c usr/share/doc/python3-pikepdf/changelog.gz
a9eb06f236a4461370cf6554927a6cbc usr/share/doc/python3-pikepdf/copyright
63e4ba913aaf62e11d24103c1227c2bc usr/share/doc/python3-pikepdf/examples/find_links.py

./postinst

#!/bin/sh
set -e

Automatically added by dh_python3:
if which py3compile >/dev/null 2>&1; then
	py3compile -p python3-pikepdf
fi
if which pypy3compile >/dev/null 2>&1; then
	pypy3compile -p python3-pikepdf || true
fi

End automatically added section

./prerm

#!/bin/sh
set -e

Automatically added by dh_python3:
if which py3clean >/dev/null 2>&1; then
	py3clean -p python3-pikepdf
else
	dpkg -L python3-pikepdf | perl -ne 's,/([^/]*)\.py$,/__pycache__/\1.*, or next; unlink $_ or die $! foreach glob($_)'
	find /usr/lib/python3/dist-packages/ -type d -name __pycache__ -empty -print0 | xargs --null --no-run-if-empty rmdir
fi

End automatically added section

data.tar.xz
data.tar

./usr/lib/python3/dist-packages/pikepdf/__init__.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

from pkg_resources import (
 get_distribution as _get_distribution,
 DistributionNotFound
)

try:
 from . import _qpdf
except ImportError:
 raise ImportError("pikepdf's extension library failed to import")

from ._qpdf import (
 PdfError, Pdf, PasswordError, ObjectStreamMode, StreamDecodeLevel
)
from .objects import (
 Object, ObjectType, Name, String, Array, Dictionary, Stream, Operator
)
from .models import (
 PdfImage, PdfInlineImage, UnsupportedImageTypeError, PdfMatrix,
 parse_content_stream
)

from . import _methods

try:
 __version__ = _get_distribution(__name__).version
except DistributionNotFound:
 __version__ = "Not installed"

__libqpdf_version__ = _qpdf.qpdf_version()

def open(*args, **kwargs): # pylint: disable=redefined-builtin
 "Alias for :func:`pikepdf.Pdf.open`."
 return Pdf.open(*args, **kwargs)

./usr/lib/python3/dist-packages/pikepdf/_cpphelpers.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

"""
Support functions called by the C++ library binding layer. Not intended to be
called from Python, and subject to change at any time.
"""

import os
import sys

Provide os.fspath equivalent for Python <3.6
if sys.version_info[0:2] <= (3, 5): # pragma: no cover
 def fspath(path):
 '''https://www.python.org/dev/peps/pep-0519/#os'''
 import pathlib
 if isinstance(path, (str, bytes)):
 return path

 # Work from the object's type to match method resolution of other magic
 # methods.
 path_type = type(path)
 try:
 path = path_type.__fspath__(path)
 except AttributeError:
 # Added for Python 3.5 support.
 if isinstance(path, pathlib.Path):
 return str(path)
 elif hasattr(path_type, '__fspath__'):
 raise
 else:
 if isinstance(path, (str, bytes)):
 return path
 else:
 raise TypeError("expected __fspath__() to return str or bytes, "
 "not " + type(path).__name__)

 raise TypeError(
 "expected str, bytes, pathlib.Path or os.PathLike object, not "
 + path_type.__name__)

else:
 fspath = os.fspath

./usr/lib/python3/dist-packages/pikepdf/_methods.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

"""
In several cases the implementation of some higher levels features might as
well be in Python. Fortunately we can attach Python methods to C++ class
bindings after the fact.

We can also move the implementation to C++ if desired.
"""

from tempfile import NamedTemporaryFile
from subprocess import run, PIPE
from io import BytesIO

from collections.abc import KeysView

import inspect

from . import Pdf, Dictionary, Array, Name, Stream, Object
from ._qpdf import _ObjectMapping
from .models import PdfMetadata

pylint: disable=no-member,unsupported-membership-test,unsubscriptable-object

def extends(cls_cpp):
 """Attach methods of a Python support class to an existing class

 This monkeypatches all methods defined in the support class onto an
 existing class. Example:

 .. code-block:: python

 @extends(ClassDefinedInCpp)
 class SupportClass:
 def foo(self):
 pass

 The method 'foo' will be monkeypatched on ClassDefinedInCpp. SupportClass
 has no meaning on its own and should not be used, but gets returned from
 this function so IDE code inspection doesn't get too confused.

 We don't subclass because it's much more convenient to monkeypatch Python
 methods onto the existing Python binding of the C++ class. For one thing,
 this allows the implementation to be moved from Python to C++ or vice
 versa. It saves having to implement an intermediate subclass and then
 ensures that the superclass never 'leaks' to pikepdf users.

 Any existing methods may be used, regardless of whether they defined
 elsewhere in the support class or in the target class.
 """

 def real_class_extend(cls, cls_cpp=cls_cpp):
 for name, fn in inspect.getmembers(cls, inspect.isfunction):
 fn.__qualname__ = fn.__qualname__.replace(
 cls.__name__, cls_cpp.__name__)
 setattr(cls_cpp, name, fn)
 for name, fn in inspect.getmembers(cls, inspect.isdatadescriptor):
 setattr(cls_cpp, name, fn)
 def block_init(self):
 raise NotImplementedError(self.__class__.__name__ + '.__init__')
 cls.__init__ = block_init
 return cls
 return real_class_extend

def _single_page_pdf(page):
 """Construct a single page PDF from the provided page in memory"""
 pdf = Pdf.new()
 pdf.pages.append(page)
 bio = BytesIO()
 pdf.save(bio)
 bio.seek(0)
 return bio.read()

def _mudraw(buffer, fmt):
 """Use mupdf draw to rasterize the PDF in the memory buffer"""
 with NamedTemporaryFile(suffix='.pdf') as tmp_in:
 tmp_in.write(buffer)
 tmp_in.seek(0)
 tmp_in.flush()

 proc = run(
 ['mudraw', '-F', fmt, '-o', '-', tmp_in.name],
 stdout=PIPE, stderr=PIPE
)
 if proc.stderr:
 raise RuntimeError(proc.stderr.decode())
 return proc.stdout

@extends(Object)
class Extend_Object:

 def _repr_mimebundle_(self, **kwargs):
 """Present options to IPython for rich display of this object

 See https://ipython.readthedocs.io/en/stable/config/integrating.html#rich-display
 """

 include = kwargs['include']
 exclude = kwargs['exclude']
 include = set() if include else include
 exclude = set() if exclude is None else exclude

 data = {}
 if '/Type' not in self:
 return data

 if self.Type == '/Page':
 bundle = {'application/pdf', 'image/png'}
 if include:
 bundle = bundle & include
 bundle = bundle - exclude
 pagedata = _single_page_pdf(self)
 if 'application/pdf' in bundle:
 data['application/pdf'] = pagedata
 if 'image/png' in bundle:
 try:
 data['image/png'] = _mudraw(pagedata, 'png')
 except (FileNotFoundError, RuntimeError):
 pass
 return data

@extends(Pdf)
class Extend_Pdf:

 def _repr_mimebundle_(self, **kwargs):
 """
 Present options to IPython for rich display of this object

 See https://ipython.readthedocs.io/en/stable/config/integrating.html#rich-display
 """

 bio = BytesIO()
 self.save(bio)
 bio.seek(0)

 data = {'application/pdf': bio.read()}
 return data

 def open_metadata(
 self,
 set_pikepdf_as_editor=True,
 update_docinfo=True
):
 """
 Open the PDF's XMP metadata for editing

 Recommend for use in a ``with`` block. Changes are committed to the
 PDF when the block exits.

 Example:
 >>> with pdf.open_metadata() as meta:
 meta['dc:title'] = 'Set the Dublic Core Title'
 meta['dc:description'] = 'Put the Abstract here'

 Args:
 set_pikepdf_as_editor (bool): Update the metadata to show that this
 version of pikepdf is the most software to modify the metadata.
 Recommended, except for testing.

 update_docinfo (bool): Update the deprecated PDF DocumentInfo block
 to be consistent with XMP.

 Returns:
 pikepdf.models.PdfMetadata
 """
 return PdfMetadata(
 self,
 pikepdf_mark=set_pikepdf_as_editor,
 sync_docinfo=update_docinfo
)

 def _attach(self, *, basename, filebytes, mime=None, desc=''):
 """
 Attach a file to this PDF

 Args:
 basename (str): The basename (filename withouth path) to name the
 file. Not necessarily the name of the file on disk. Will be s
 hown to the user by the PDF viewer. filebytes (bytes): The file
 contents.

 mime (str or None): A MIME type for the filebytes. If omitted, we try
 to guess based on the standard library's
 :func:`mimetypes.guess_type`. If this cannot be determined, the
 generic value `application/octet-stream` is used. This value is
 used by PDF viewers to decide how to present the information to
 the user.

 desc (str): A extended description of the file contents. PDF viewers
 also display this information to the user. In Acrobat DC this is
 hidden in a context menu.

 The PDF will also be modified to request the PDF viewer to display the
 list of attachments when opened, as opposed to other viewing modes. Some
 PDF viewers will not make it obvious to the user that attachments are
 present unless this is done. This behavior may be overridden by changing
 ``pdf.Root.PageMode`` to some other valid value.

 """

 if '/Names' not in self.Root:
 self.Root.Names = self.make_indirect(Dictionary())
 if '/EmbeddedFiles' not in self.Root:
 self.Root.Names.EmbeddedFiles = self.make_indirect(Dictionary())
 if '/Names' not in self.Root.Names.EmbeddedFiles:
 self.Root.Names.EmbeddedFiles.Names = Array()

 if '/' in basename or '\\' in basename:
 raise ValueError("basename should be a basename (no / or \\)")

 if not mime:
 from mimetypes import guess_type
 mime, _encoding = guess_type(basename)
 if not mime:
 mime = 'application/octet-stream'

 filestream = Stream(self, filebytes)
 filestream.Subtype = Name('/' + mime)

 filespec = Dictionary({
 '/Type': Name.Filespec,
 '/F': basename,
 '/UF': basename,
 '/Desc': desc,
 '/EF': Dictionary({
 '/F': filestream
 })
 })

 # names = self.Root.Names.EmbeddedFiles.Names.as_list()
 # names.append(filename) # Key
 # names.append(self.make_indirect(filespec))
 self.Root.Names.EmbeddedFiles.Names = Array([
 basename, # key
 self.make_indirect(filespec)
])

 if '/PageMode' not in self.Root:
 self.Root.PageMode = Name.UseAttachments

@extends(_ObjectMapping)
class Extend_ObjectMapping:
 def __contains__(self, key):
 try:
 self[key]
 except KeyError:
 return False
 else:
 return True

 def get(self, key, default=None):
 try:
 return self[key]
 except KeyError:
 return default

 def keys(self):
 return KeysView(self)

 def values(self):
 return (v for _k, v in self.items())

./usr/lib/python3/dist-packages/pikepdf/_qpdf.cpython-37m-mipsel-linux-gnu.so

./usr/lib/python3/dist-packages/pikepdf/models/__init__.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

from .. import Object, ObjectType, PdfError

from .matrix import PdfMatrix
from .image import PdfImage, PdfInlineImage, UnsupportedImageTypeError
from .metadata import PdfMetadata

def parse_content_stream(page_or_stream, operators=''):
 """
 Parse a PDF content stream into a sequence of instructions.

 A PDF content stream is list of instructions that describe where to render
 the text and graphics in a PDF. This is the starting point for analyzing
 PDFs.

 If the input is a page and page.Contents is an array, then the content
 stream is automatically treated as one coalesced stream.

 Each instruction contains at least one operator and zero or more operands.

 Args:
 page_or_stream (pikepdf.Object): A page object, or the content
 stream attached to another object such as a Form XObject.
 operators (str): A space-separated string of operators to whitelist.
 For example 'q Q cm Do' will return only operators
 that pertain to drawing images. Use 'BI ID EI' for inline images.
 All other operators and associated tokens are ignored. If blank,
 all tokens are accepted.

 Returns:
 list: List of ``(operands, command)`` tuples where ``command`` is an
 operator (str) and ``operands`` is a tuple of str; the PDF drawing
 command and the command's operands, respectively.

 Example:

 >>> pdf = pikepdf.Pdf.open(input_pdf)
 >>> page = pdf.pages[0]
 >>> for operands, command in parse_content_stream(page):
 >>> print(command)

 """

 if not isinstance(page_or_stream, Object):
 raise TypeError("stream must a PDF object")

 if page_or_stream._type_code != ObjectType.stream \
 and page_or_stream.get('/Type') != '/Page':
 raise TypeError("parse_content_stream called on page or stream object")

 try:
 if page_or_stream.get('/Type') == '/Page':
 page = page_or_stream
 instructions = page._parse_page_contents_grouped(operators)
 else:
 stream = page_or_stream
 instructions = Object._parse_stream_grouped(stream, operators)
 except PdfError as e:
 # This is the error message for qpdf >= 7.0. It was different in 6.x
 # but we no longer support 6.x
 if 'ignoring non-stream while parsing' in str(e):
 raise TypeError("parse_content_stream called on non-stream Object")
 raise e from e

 return instructions

class _Page:
 def __init__(self, obj):
 self.obj = obj

 def __getattr__(self, item):
 return getattr(self.obj, item)

 def __setattr__(self, item, value):
 if item == 'obj':
 object.__setattr__(self, item, value)
 elif hasattr(self.obj, item):
 setattr(self.obj, item, value)
 else:
 raise AttributeError(item)

 def __repr__(self):
 return repr(self.obj).replace(
 'pikepdf.Dictionary', 'pikepdf.Page', 1)

 @property
 def mediabox(self):
 return self.obj.MediaBox

 def has_text(self):
 """Check if this page print text

 Search the content stream for any of the four text showing operators.
 We ignore text positioning operators because some editors might
 generate maintain these even if text is deleted etc.

 This cannot detect raster text (text in a bitmap), text rendered as
 curves. It also cannot determine if the text is visible to the user.

 :return: True if there is text
 """
 text_showing_operators = """TJ " ' Tj"""
 text_showing_insts = parse_content_stream(
 self.obj, text_showing_operators)
 if len(text_showing_insts) > 0:
 return True
 return False

./usr/lib/python3/dist-packages/pikepdf/models/image.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

from io import BytesIO
from itertools import zip_longest
from abc import ABC, abstractmethod
import struct

from decimal import Decimal

from .. import (
 Object, Array, PdfError, Name, Dictionary, Stream
)

class DependencyError(Exception):
 pass

class UnsupportedImageTypeError(Exception):
 pass

def array_str(value):
 if isinstance(value, (list, Array)):
 return [str(item) for item in value]
 if isinstance(value, Name):
 return [str(value)]
 raise NotImplementedError(value)

def array_str_colorspace(value):
 if isinstance(value, (list, Array)):
 items = [item for item in value]
 if len(items) == 4 and items[0] == '/Indexed':
 result = [str(items[n]) for n in range(3)]
 result.append(bytes(items[3]))
 return result
 return array_str(items)
 return array_str(value)

def dict_or_array_dict(value):
 if isinstance(value, list):
 return value
 if isinstance(value, Dictionary):
 return [value.as_dict()]
 if isinstance(value, Array):
 return [v.as_list() for v in value]
 raise NotImplementedError(value)

def metadata_from_obj(obj, name, type_, default):
 val = getattr(obj, name, default)
 try:
 return type_(val)
 except TypeError:
 if val is None:
 return None
 raise NotImplementedError('Metadata access for ' + name)

class PdfImageBase(ABC):

 SIMPLE_COLORSPACES = ('/DeviceRGB', '/DeviceGray', '/CalRGB', '/CalGray')

 @abstractmethod
 def _metadata(self, name, type_, default):
 pass

 @property
 def width(self):
 """Width of the image data in pixels"""
 return self._metadata('Width', int, None)

 @property
 def height(self):
 """Height of the image data in pixels"""
 return self._metadata('Height', int, None)

 @property
 def image_mask(self):
 """``True`` if this is an image mask"""
 return self._metadata('ImageMask', bool, False)

 @property
 def _bpc(self):
 """Bits per component for this image (low-level)"""
 return self._metadata('BitsPerComponent', int, None)

 @property
 def _colorspaces(self):
 """Colorspace (low-level)"""
 return self._metadata('ColorSpace', array_str_colorspace, [])

 @property
 def filters(self):
 """List of names of the filters that we applied to encode this image"""
 return self._metadata('Filter', array_str, [])

 @property
 def decode_parms(self):
 """List of the /DecodeParms, arguments to filters"""
 return self._metadata('DecodeParms', dict_or_array_dict, [])

 @property
 def colorspace(self):
 """PDF name of the colorspace that best describes this image"""
 if self.image_mask:
 return None # Undefined for image masks
 if self._colorspaces:
 if self._colorspaces[0] in self.SIMPLE_COLORSPACES:
 return self._colorspaces[0]
 if self._colorspaces[0] == '/DeviceCMYK':
 return self._colorspaces[0]
 if self._colorspaces[0] == '/Indexed' \
 and self._colorspaces[1] in self.SIMPLE_COLORSPACES:
 return self._colorspaces[1]
 if self._colorspaces[0] == '/ICCBased':
 icc = self._colorspaces[1]
 return icc.stream_dict.get('/Alternate', '')
 raise NotImplementedError(
 "not sure how to get colorspace: " + repr(self._colorspaces))

 @property
 def bits_per_component(self):
 """Bits per component of this image"""
 if self._bpc is None:
 return 1 if self.image_mask else 8
 return self._bpc

 @property
 @abstractmethod
 def is_inline(self):
 pass

 @property
 def indexed(self):
 """``True`` if the image has a defined color palette"""
 return '/Indexed' in self._colorspaces

 @property
 def size(self):
 """Size of image as (width, height)"""
 return self.width, self.height

 @property
 def mode(self):
 """``PIL.Image.mode`` equivalent for this image"""
 m = ''
 if self.indexed:
 m = 'P'
 elif self.bits_per_component == 1:
 m = '1'
 elif self.bits_per_component == 8:
 if self.colorspace == '/DeviceRGB':
 m = 'RGB'
 elif self.colorspace == '/DeviceGray':
 m = 'L'
 elif self.colorspace == '/DeviceCMYK':
 m = 'CMYK'
 if m == '':
 raise NotImplementedError("Not sure how to handle PDF image of this type")
 return m

 @property
 def filter_decodeparms(self):
 """PDF has a lot of optional data structures concerning /Filter and
 /DecodeParms. /Filter can be absent or a name or an array, /DecodeParms
 can be absent or a dictionary (if /Filter is a name) or an array (if
 /Filter is an array). When both are arrays the lengths match.

 Normalize this into:
 [(/FilterName, {/DecodeParmName: Value, ...}), ...]

 The order of /Filter matters as indicates the encoding/decoding sequence.

 """
 return list(zip_longest(self.filters, self.decode_parms, fillvalue={}))

 @property
 def palette(self):
 """Retrieves the color palette for this image

 :returns: (base_colorspace: str, palette: bytes)
 :rtype: tuple
 """

 if not self.indexed:
 return None
 _idx, base, hival, lookup = None, None, None, None
 try:
 _idx, base, hival, lookup = self._colorspaces
 except ValueError as e:
 raise ValueError('Not sure how to interpret this palette') from e
 base = str(base)
 hival = int(hival)
 lookup = bytes(lookup)
 if not base in self.SIMPLE_COLORSPACES:
 raise NotImplementedError("not sure how to interpret this palette")
 if base == '/DeviceRGB':
 base = 'RGB'
 elif base == '/DeviceGray':
 base = 'L'
 return base, lookup

 @abstractmethod
 def as_pil_image(self):
 pass

class PdfImage(PdfImageBase):
 """Support class to provide a consistent API for manipulating PDF images

 The data structure for images inside PDFs is irregular and flexible,
 making it difficult to work with without introducing errors for less
 typical cases. This class addresses these difficulties by providing a
 regular, Pythonic API similar in spirit (and convertible to) the Python
 Pillow imaging library.
 """

 def __new__(cls, obj):
 instance = super().__new__(cls)
 instance.__init__(obj)
 if '/JPXDecode' in instance.filters:
 instance = super().__new__(PdfJpxImage)
 instance.__init__(obj)
 return instance

 def __init__(self, obj):
 """Construct a PDF image from a Image XObject inside a PDF

 ``pim = PdfImage(page.Resources.XObject['/ImageNN'])``

 Args:
 obj (pikepdf.Object): an Image XObject

 """
 if isinstance(obj, Stream) and \
 obj.stream_dict.get("/Subtype") != "/Image":
 raise TypeError("can't construct PdfImage from non-image")
 self.obj = obj

 @classmethod
 def _from_pil_image(cls, *, pdf, page, name, image): # pragma: no cover
 """Insert a PIL image into a PDF (rudimentary)

 :param pdf: the PDF to attach the image to
 :type pdf: pikepdf.Pdf
 :param page: the page to attach the image to
 :param name: the name to set the image
 :param image: image
 :type image: PIL.Image.Image
 """

 data = image.tobytes()

 imstream = Stream(pdf, data)
 imstream.Type = Name('/XObject')
 imstream.Subtype = Name('/Image')
 if image.mode == 'RGB':
 imstream.ColorSpace = Name('/DeviceRGB')
 elif image.mode in ('1', 'L'):
 imstream.ColorSpace = Name('/DeviceGray')
 imstream.BitsPerComponent = 1 if image.mode == '1' else 8
 imstream.Width = image.width
 imstream.Height = image.height

 page.Resources.XObject[name] = imstream

 return cls(imstream)

 def _metadata(self, name, type_, default):
 return metadata_from_obj(self.obj, name, type_, default)

 @property
 def is_inline(self):
 """``False`` for image XObject"""
 return False

 def _extract_direct(self, *, stream):
 """Attempt to extract the image directly to a usable image file

 If there is no way to extract the image without decompressing or
 transcoding then raise an exception. The type and format of image
 generated will vary.

 Args:
 stream: Writable stream to write data to
 """

 def normal_dct_rgb():
 # Normal DCTDecode RGB images have the default value of
 # /ColorTransform 1 and are actually in YUV. Such a file can be
 # saved as a standard JPEG. RGB JPEGs without YUV conversion can't
 # be saved as JPEGs, and are probably bugs. Some software in the
 # wild actually produces RGB JPEGs in PDFs (probably a bug).
 return (self.mode == 'RGB' and
 self.filter_decodeparms[0][1].get('/ColorTransform', 1))

 def normal_dct_cmyk():
 # Normal DCTDecode CMYKs have /ColorTransform 0 and can be saved.
 # There is a YUVK colorspace but CMYK JPEGs don't generally use it
 return (self.mode == 'CMYK' and
 self.filter_decodeparms[0][1].get('/ColorTransform', 0))

 if self.filters == ['/CCITTFaxDecode']:
 data = self.obj.read_raw_bytes()
 stream.write(self._generate_ccitt_header(data))
 stream.write(data)
 return '.tif'
 elif self.filters == ['/DCTDecode'] and (
 self.mode == 'L' or normal_dct_rgb() or normal_dct_cmyk):
 buffer = self.obj.get_raw_stream_buffer()
 stream.write(buffer)
 return '.jpg'

 raise UnsupportedImageTypeError()

 def _extract_transcoded(self):
 from PIL import Image
 im = None
 if self.mode == 'RGB' and self.bits_per_component == 8:
 # No point in accessing the buffer here, size qpdf decodes to 3-byte
 # RGB and Pillow needs RGBX for raw access
 data = self.read_bytes()
 im = Image.frombytes('RGB', self.size, data)
 elif self.mode in ('L', 'P') and self.bits_per_component == 8:
 buffer = self.get_stream_buffer()
 stride = 0 # tell Pillow to calculate stride from line width
 ystep = 1 # image is top to bottom in memory
 im = Image.frombuffer('L', self.size, buffer, "raw", 'L', stride,
 ystep)
 if self.mode == 'P':
 base_mode, palette = self.palette
 if base_mode in ('RGB', 'L'):
 im.putpalette(palette, rawmode=base_mode)
 else:
 raise NotImplementedError('palette with ' + base_mode)
 elif self.mode == '1' and self.bits_per_component == 1:
 data = self.read_bytes()
 im = Image.frombytes('1', self.size, data)

 elif self.mode == 'P' and self.bits_per_component == 1:
 data = self.read_bytes()
 im = Image.frombytes('1', self.size, data)

 base_mode, palette = self.palette
 if not (palette == b'\x00\x00\x00\xff\xff\xff'
 or palette == b'\x00\xff'):
 raise NotImplementedError(
 'monochrome image with nontrivial palette')

 return im

 def extract_to(self, *, stream):
 """Attempt to extract the image directly to a usable image file

 If possible, the compressed data is extracted and inserted into
 a compressed image file format without transcoding the compressed
 content. If this is not possible, the data will be decompressed
 and extracted to an appropriate format.

 Because it is not known until attempted what image format will be
 extracted, users should not assume what format they are getting back.
 When saving the image to a file, use a temporary filename, and then
 rename the file to its final name based on the returned file extension.

 Args:
 stream: Writable stream to write data to

 Returns:
 str: The file format extension
 """

 try:
 return self._extract_direct(stream=stream)
 except UnsupportedImageTypeError:
 pass

 im = self._extract_transcoded()
 if im:
 im.save(stream, format='png')
 return '.png'

 raise UnsupportedImageTypeError(repr(self))

 def read_bytes(self):
 """Decompress this image and return it as unencoded bytes"""
 return self.obj.read_bytes()

 def get_stream_buffer(self):
 """Access this image with the buffer protocol"""
 return self.obj.get_stream_buffer()

 def as_pil_image(self):
 """Extract the image as a Pillow Image, using decompression as necessary

 Returns:
 PIL.Image.Image
 """
 from PIL import Image

 try:
 bio = BytesIO()
 self._extract_direct(stream=bio)
 bio.seek(0)
 return Image.open(bio)
 except UnsupportedImageTypeError:
 pass

 im = self._extract_transcoded()
 if not im:
 raise UnsupportedImageTypeError(repr(self))

 return im

 def _generate_ccitt_header(self, data):
 """Construct a CCITT G3 or G4 header from the PDF metadata"""
 # https://stackoverflow.com/questions/2641770/
 # https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

 if not self.decode_parms:
 raise ValueError("/CCITTFaxDecode without /DecodeParms")

 if self.decode_parms[0].get("/K", 1) < 0:
 ccitt_group = 4 # Pure two-dimensional encoding (Group 4)
 else:
 ccitt_group = 3
 black_is_one = self.decode_parms[0].get("/BlackIs1", False)
 white_is_zero = 1 if black_is_one else 0

 img_size = len(data)
 tiff_header_struct = '<' + '2s' + 'H' + 'L' + 'H' + 'HHLL' * 8 + 'L'
 tiff_header = struct.pack(
 tiff_header_struct,
 b'II', # Byte order indication: Little endian
 42, # Version number (always 42)
 8, # Offset to first IFD
 8, # Number of tags in IFD
 256, 4, 1, self.width, # ImageWidth, LONG, 1, width
 257, 4, 1, self.height, # ImageLength, LONG, 1, length
 258, 3, 1, 1, # BitsPerSample, SHORT, 1, 1
 259, 3, 1, ccitt_group, # Compression, SHORT, 1, 4 = CCITT Group 4 fax encoding
 262, 3, 1, int(white_is_zero), # Thresholding, SHORT, 1, 0 = WhiteIsZero
 273, 4, 1, struct.calcsize(tiff_header_struct), # StripOffsets, LONG, 1, length of header
 278, 4, 1, self.height,
 279, 4, 1, img_size, # StripByteCounts, LONG, 1, size of image
 0 # last IFD
)
 return tiff_header

 def show(self):
 """Show the image however PIL wants to"""
 self.as_pil_image().show()

 def __repr__(self):
 return '<pikepdf.PdfImage image mode={} size={}x{} at {}>'.format(
 self.mode, self.width, self.height, hex(id(self)))

 def _repr_png_(self):
 """Display hook for IPython/Jupyter"""
 b = BytesIO()
 im = self.as_pil_image()
 im.save(b, 'PNG')
 return b.getvalue()

class PdfJpxImage(PdfImage):

 def __init__(self, obj):
 super().__init__(obj)
 self.pil = self.as_pil_image()

 def _extract_direct(self, *, stream):
 buffer = self.obj.get_raw_stream_buffer()
 stream.write(buffer)
 return '.jp2'

 @property
 def _colorspaces(self):
 # (PDF 1.7 Table 89) If ColorSpace is present, any colour space
 # specifications in the JPEG2000 data shall be ignored.
 super_colorspaces = super()._colorspaces
 if super_colorspaces:
 return super_colorspaces
 if self.pil.mode == 'L':
 return ['/DeviceGray']
 elif self.pil.mode == 'RGB':
 return ['/DeviceRGB']
 raise NotImplementedError('Complex JP2 colorspace')

 @property
 def _bpc(self):
 # (PDF 1.7 Table 89) If the image stream uses the JPXDecode filter, this
 # entry is optional and shall be ignored if present. The bit depth is
 # determined by the conforming reader in the process of decoding the
 # JPEG2000 image.
 return 8

 @property
 def indexed(self):
 # Nothing in the spec precludes an Indexed JPXDecode image, except for
 # the fact that doing so is madness. Let's assume it no one is that
 # insane.
 return False

 def __repr__(self):
 return '<pikepdf.PdfJpxImage JPEG2000 image mode={} size={}x{} at {}>'.format(
 self.mode, self.width, self.height, hex(id(self)))

class PdfInlineImage(PdfImageBase):
 """Support class for PDF inline images"""

 # Inline images can contain abbreviations that we write automatically
 ABBREVS = {
 b'/W': b'/Width',
 b'/H': b'/Height',
 b'/BPC': b'/BitsPerComponent',
 b'/IM': b'/ImageMask',
 b'/CS': b'/ColorSpace',
 b'/F': b'/Filter',
 b'/DP': b'/DecodeParms',
 b'/G': b'/DeviceGray',
 b'/RGB': b'/DeviceRGB',
 b'/CMYK': b'/DeviceCMYK',
 b'/I': b'/Indexed',
 b'/AHx': b'/ASCIIHexDecode',
 b'/A85': b'/ASCII85Decode',
 b'/LZW': b'/LZWDecode',
 b'/RL': b'/RunLengthDecode',
 b'/CCF': b'/CCITTFaxDecode',
 b'/DCT': b'/DCTDecode'
 }

 def __init__(self, *, image_data, image_object: tuple):
 """
 Args:
 image_data: data stream for image, extracted from content stream
 image_object: the metadata for image, also from content stream
 """

 # Convert the sequence of pikepdf.Object from the content stream into
 # a dictionary object by unparsing it (to bytes), eliminating inline
 # image abbreviations, and constructing a bytes string equivalent to
 # what an image XObject would look like. Then retrieve data from there

 self._data = image_data
 self._image_object = image_object

 reparse = b' '.join(self._unparse_obj(obj) for obj in image_object)
 try:
 reparsed_obj = Object.parse(b'<< ' + reparse + b' >>')
 except PdfError as e:
 raise PdfError(
 "parsing inline " + reparse.decode('unicode_escape')) from e
 self.obj = reparsed_obj
 self.pil = None

 @classmethod
 def _unparse_obj(cls, obj):
 if isinstance(obj, Object):
 if isinstance(obj, Name):
 name = obj.unparse(resolved=True)
 assert isinstance(name, bytes)
 return cls.ABBREVS.get(name, name)
 else:
 return obj.unparse(resolved=True)
 elif isinstance(obj, bool):
 return b'true' if obj else b'false' # Lower case for PDF spec
 elif isinstance(obj, (int, Decimal, float)):
 return str(obj).encode('ascii')
 else:
 raise NotImplementedError(repr(obj))

 def _metadata(self, name, type_, default):
 return metadata_from_obj(self.obj, name, type_, default)

 def unparse(self):
 tokens = []
 tokens.append(b'BI')
 metadata = []
 for metadata_obj in self._image_object:
 unparsed = self._unparse_obj(metadata_obj)
 assert isinstance(unparsed, bytes)
 metadata.append(unparsed)
 tokens.append(b' '.join(metadata))
 tokens.append(b'ID')
 tokens.append(self._data._inline_image_raw_bytes())
 tokens.append(b'EI')
 return b'\n'.join(tokens)

 @property
 def is_inline(self):
 return True

 def __repr__(self):
 mode = '?'
 try:
 mode = self.mode
 except Exception:
 pass
 return '<pikepdf.PdfInlineImage image mode={} size={}x{} at {}>'.format(
 mode, self.width, self.height, hex(id(self)))

 def as_pil_image(self):
 from PIL import Image

 if self.pil:
 return self.pil

 raise NotImplementedError('not yet')

 def extract_to(self, *, stream): # pylint: disable=unused-argument
 raise UnsupportedImageTypeError("inline images don't support extract")

 def read_bytes(self):
 raise NotImplementedError("qpdf returns compressed")
 #return self._data._inline_image_bytes()

 def get_stream_buffer(self):
 raise NotImplementedError("qpdf returns compressed")
 #return memoryview(self._data.inline_image_bytes())

./usr/lib/python3/dist-packages/pikepdf/models/matrix.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

from math import cos, sin, pi

class PdfMatrix:
 """
 Support class for PDF content stream matrices

 PDF content stream matrices are 3x3 matrices summarized by a shorthand
 ``(a, b, c, d, e, f)`` which correspond to the first two column vectors.
 The final column vector is always ``(0, 0, 1)`` since this is using
 `homogenous coordinates <https://en.wikipedia.org/wiki/Homogeneous_coordinates>`_.

 PDF uses row vectors. That is, ``vr @ A'`` gives the effect of transforming
 a row vector ``vr=(x, y, 1)`` by the matrix ``A'``. Most textbook
 treatments use ``A @ vc`` where the column vector ``vc=(x, y, 1)'``.

 (``@`` is the Python matrix multiplication operator added in Python 3.5.)

 Addition and other operations are not implemented because they're not that
 meaningful in a PDF context (they can be defined and are mathematically
 meaningful in general).

 PdfMatrix objects are immutable. All transformations on them produce a new
 matrix.

 """

 def __init__(self, *args):
 if not args:
 self.values = ((1, 0, 0), (0, 1, 0), (0, 0, 1))
 elif len(args) == 6:
 a, b, c, d, e, f = map(float, args)
 self.values = ((a, b, 0),
 (c, d, 0),
 (e, f, 1))
 elif isinstance(args[0], PdfMatrix):
 self.values = args[0].values
 elif len(args[0]) == 6:
 a, b, c, d, e, f = map(float, args[0])
 self.values = ((a, b, 0),
 (c, d, 0),
 (e, f, 1))
 elif len(args[0]) == 3 and len(args[0]) == 3:
 self.values = (tuple(args[0][0]),
 tuple(args[0][1]),
 tuple(args[0][2]))
 else:
 raise ValueError('arguments')

 @staticmethod
 def identity():
 """Constructs and returns an identity matrix"""
 return PdfMatrix()

 def __matmul__(self, other):
 """Multiply this matrix by another matrix

 Can be used to concatenate transformations.

 """
 a = self.values
 b = other.values
 return PdfMatrix(
 [[sum([float(i) * float(j)
 for i, j in zip(row, col)]
) for col in zip(*b)]
 for row in a]
)

 def scaled(self, x, y):
 """Concatenates a scaling matrix on this matrix"""
 return self @ PdfMatrix((x, 0, 0, y, 0, 0))

 def rotated(self, angle_degrees_ccw):
 """Concatenates a rotation matrix on this matrix"""
 angle = angle_degrees_ccw / 180.0 * pi
 c, s = cos(angle), sin(angle)
 return self @ PdfMatrix((c, s, -s, c, 0, 0))

 def translated(self, x, y):
 """Translates this matrix"""
 return self @ PdfMatrix((1, 0, 0, 1, x, y))

 @property
 def shorthand(self):
 """Return the 6-tuple (a,b,c,d,e,f) that describes this matrix"""
 return (self.a, self.b, self.c, self.d, self.e, self.f)

 @property
 def a(self):
 return self.values[0][0]

 @property
 def b(self):
 return self.values[0][1]

 @property
 def c(self):
 return self.values[1][0]

 @property
 def d(self):
 return self.values[1][1]

 @property
 def e(self):
 return self.values[2][0]

 @property
 def f(self):
 return self.values[2][1]

 def encode(self):
 """Encode this matrix in binary suitable for including in a PDF"""
 return '{:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f}'.format(
 self.a, self.b, self.c, self.d, self.e, self.f
).encode()

 def __repr__(self):
 return 'pikepdf.Matrix(' + repr(self.values) + ')'

./usr/lib/python3/dist-packages/pikepdf/models/metadata.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2018, James R. Barlow (https://github.com/jbarlow83/)

from collections import namedtuple
from collections.abc import MutableMapping
from datetime import datetime
from functools import wraps
from io import BytesIO
from pkg_resources import (
 get_distribution as _get_distribution,
 DistributionNotFound
)
from warnings import warn
import re
import sys

from lxml import etree
from lxml.etree import QName, XMLSyntaxError
from defusedxml.lxml import parse

from .. import Stream, Name, String, PdfError

XMP_NS_DC = "http://purl.org/dc/elements/1.1/"
XMP_NS_PDF = "http://ns.adobe.com/pdf/1.3/"
XMP_NS_PDFA_ID = "http://www.aiim.org/pdfa/ns/id/"
XMP_NS_PDFX_ID = "http://www.npes.org/pdfx/ns/id/"
XMP_NS_PHOTOSHOP = "http://ns.adobe.com/photoshop/1.0/"
XMP_NS_PRISM2 = "http://prismstandard.org/namespaces/basic/2.0/"
XMP_NS_PRISM3 = "http://prismstandard.org/namespaces/basic/3.0/"
XMP_NS_RDF = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
XMP_NS_XMP = "http://ns.adobe.com/xap/1.0/"
XMP_NS_XMP_MM = "http://ns.adobe.com/xap/1.0/mm/"
XMP_NS_XMP_RIGHTS = "http://ns.adobe.com/xap/1.0/rights/"

DEFAULT_NAMESPACES = [
 ('adobe:ns:meta/', 'x'),
 (XMP_NS_DC, 'dc'),
 (XMP_NS_PDF, 'pdf'),
 (XMP_NS_PDFA_ID, 'pdfaid'),
 (XMP_NS_PDFX_ID, 'pdfxid'),
 (XMP_NS_PHOTOSHOP, 'photoshop'),
 (XMP_NS_PRISM2, 'prism2'),
 (XMP_NS_PRISM3, 'prism3'),
 (XMP_NS_RDF, 'rdf'),
 (XMP_NS_XMP, 'xmp'),
 (XMP_NS_XMP_MM, 'xmpMM'),
 (XMP_NS_XMP_RIGHTS, 'xmpRights'),
]

for _uri, _prefix in DEFAULT_NAMESPACES:
 etree.register_namespace(_prefix, _uri)

This one should not be registered
XMP_NS_XML = "http://www.w3.org/XML/1998/namespace"

XPACKET_BEGIN = b"""<?xpacket begin="\xef\xbb\xbf" id="W5M0MpCehiHzreSzNTczkc9d"?>\n"""

XMP_EMPTY = b"""<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="pikepdf">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 </rdf:RDF>
</x:xmpmeta>
"""

XPACKET_END = b"""\n<?xpacket end="w"?>\n"""

XmpContainer = namedtuple('XmpContainer', ['rdf_type', 'py_type', 'insert_fn'])

class AltList(list):
 pass

XMP_CONTAINERS = [
 XmpContainer('Alt', AltList, AltList.append),
 XmpContainer('Bag', set, set.add),
 XmpContainer('Seq', list, list.append),
]

LANG_ALTS = frozenset([
 str(QName(XMP_NS_DC, 'title')),
 str(QName(XMP_NS_DC, 'description')),
 str(QName(XMP_NS_DC, 'rights')),
 str(QName(XMP_NS_XMP_RIGHTS, 'UsageTerms')),
])

These are the illegal characters in XML 1.0. (XML 1.1 is a bit more permissive,
but we'll be strict to ensure wider compatibility.)
re_xml_illegal_chars = re.compile(
 r"(?u)[^\x09\x0A\x0D\x20-\uD7FF\uE000-\uFFFD\u10000-\u10FFFF]"
)
re_xml_illegal_bytes = re.compile(
 br"[^\x09\x0A\x0D\x20-\xFF]|�"
)

Repeat this to avoid circular from top package's pikepdf.__version__
try:
 pikepdf_version = _get_distribution(__name__).version
except DistributionNotFound:
 pikepdf_version = ""

def encode_pdf_date(d: datetime) -> str:
 """Encode Python datetime object as PDF date string

 From Adobe pdfmark manual:
 (D:YYYYMMDDHHmmSSOHH'mm')
 D: is an optional prefix. YYYY is the year. All fields after the year are
 optional. MM is the month (01-12), DD is the day (01-31), HH is the
 hour (00-23), mm are the minutes (00-59), and SS are the seconds
 (00-59). The remainder of the string defines the relation of local
 time to GMT. O is either + for a positive difference (local time is
 later than GMT) or - (minus) for a negative difference. HH' is the
 absolute value of the offset from GMT in hours, and mm' is the
 absolute value of the offset in minutes. If no GMT information is
 specified, the relation between the specified time and GMT is
 considered unknown. Regardless of whether or not GMT
 information is specified, the remainder of the string should specify
 the local time.
 """

 # The formatting of %Y is not consistent as described in
 # https://bugs.python.org/issue13305 and underspecification in libc.
 # So explicitly format the year with leading zeros
 s = "{:04d}".format(d.year)
 s += d.strftime(r'%m%d%H%M%S')
 tz = d.strftime('%z')
 if tz:
 sign, tz_hours, tz_mins = tz[0], tz[1:3], tz[3:5]
 s += "{}{}'{}'".format(sign, tz_hours, tz_mins)
 return s

def decode_pdf_date(s: str) -> datetime:
 """Decode a pdfmark date to a Python datetime object

 A pdfmark date is a string in a paritcular format. See the pdfmark
 Reference for the specification.
 """
 if isinstance(s, String):
 s = str(s)
 if s.startswith('D:'):
 s = s[2:]

 # Literal Z00'00', is incorrect but found in the wild,
 # probably made by OS X Quartz -- standardize
 if s.endswith("Z00'00'"):
 s = s.replace("Z00'00'", '+0000')
 elif s.endswith('Z'):
 s = s.replace('Z', '+0000')
 s = s.replace("'", "") # Remove apos from PDF time strings
 try:
 return datetime.strptime(s, r'%Y%m%d%H%M%S%z')
 except ValueError:
 return datetime.strptime(s, r'%Y%m%d%H%M%S')

class AuthorConverter:
 @staticmethod
 def xmp_from_docinfo(docinfo_val):
 return [docinfo_val]

 @staticmethod
 def docinfo_from_xmp(xmp_val):
 if isinstance(xmp_val, str):
 return xmp_val
 else:
 return '; '.join(xmp_val)

if sys.version_info < (3, 7):
 def fromisoformat(datestr):
 # strptime %z can't parse a timezone with punctuation
 if re.search(r'[+-]\d{2}[-:]\d{2}$', datestr):
 datestr = datestr[:-3] + datestr[-2:]
 try:
 return datetime.strptime(datestr, "%Y-%m-%dT%H:%M:%S%z")
 except ValueError:
 return datetime.strptime(datestr, "%Y-%m-%dT%H:%M:%S")
else:
 fromisoformat = datetime.fromisoformat

class DateConverter:
 @staticmethod
 def xmp_from_docinfo(docinfo_val):
 if docinfo_val == '':
 return ''
 return decode_pdf_date(docinfo_val).isoformat()

 @staticmethod
 def docinfo_from_xmp(xmp_val):
 if xmp_val.endswith('Z'):
 xmp_val = xmp_val[:-1] + '+00:00'
 dateobj = fromisoformat(xmp_val)
 return encode_pdf_date(dateobj)

def ensure_loaded(fn):
 @wraps(fn)
 def wrapper(self, *args, **kwargs):
 if not self._xmp:
 self._load()
 return fn(self, *args, **kwargs)
 return wrapper

class PdfMetadata(MutableMapping):
 """Read and edit the metadata associated with a PDF

 The PDF specification contain two types of metadata, the newer XMP
 (Extensible Metadata Platform, XML-based) and older DocumentInformation
 dictionary. The PDF 2.0 specification removes the DocumentInformation
 dictionary.

 This primarily works with XMP metadata, but includes methods to generate
 XMP from DocumentInformation and will also coordinate updates to
 DocumentInformation so that the two are kept consistent.

 XMP metadata fields may be accessed using the full XML namespace URI or
 the short name. For example ``metadata['dc:description']``
 and ``metadata['{http://purl.org/dc/elements/1.1/}description']``
 both refer to the same field. Several common XML namespaces are registered
 automatically.

 See the XMP specification for details of allowable fields.

 To update metadata, use a with block.

 .. code-block:: python

 with pdf.open_metadata() as records:
 records['dc:title'] = 'New Title'

 See Also:
 :meth:`pikepdf.Pdf.open_metadata`
 """

 DOCINFO_MAPPING = [
 (XMP_NS_DC, 'creator', Name.Author, AuthorConverter),
 (XMP_NS_DC, 'description', Name.Subject, None),
 (XMP_NS_DC, 'title', Name.Title, None),
 (XMP_NS_PDF, 'Keywords', Name.Keywords, None),
 (XMP_NS_PDF, 'Producer', Name.Producer, None),
 (XMP_NS_XMP, 'CreateDate', Name.CreationDate, DateConverter),
 (XMP_NS_XMP, 'CreatorTool', Name.Creator, None),
 (XMP_NS_XMP, 'ModifyDate', Name.ModDate, DateConverter),
]

 NS = {prefix: uri for uri, prefix in DEFAULT_NAMESPACES}
 REVERSE_NS = {uri: prefix for uri, prefix in DEFAULT_NAMESPACES}

 def __init__(self, pdf, pikepdf_mark=True, sync_docinfo=True):
 self._pdf = pdf
 self._xmp = None
 self.mark = pikepdf_mark
 self.sync_docinfo = sync_docinfo
 self._updating = False

 def load_from_docinfo(self, docinfo, delete_missing=False, raise_failure=False):
 """Populate the XMP metadata object with DocumentInfo

 Arguments:
 docinfo: a DocumentInfo, e.g pdf.docinfo
 delete_missing: if the entry is not DocumentInfo, delete the equivalent
 from XMP
 raise_failure: if True, raise any failure to convert docinfo;
 otherwise warn and continue

 A few entries in the deprecated DocumentInfo dictionary are considered
 approximately equivalent to certain XMP records. This method copies
 those entries into the XMP metadata.
 """
 for uri, shortkey, docinfo_name, converter in self.DOCINFO_MAPPING:
 qname = QName(uri, shortkey)
 # docinfo might be a dict or pikepdf.Dictionary, so lookup keys
 # by str(Name)
 val = docinfo.get(str(docinfo_name))
 if val is None:
 if delete_missing and qname in self:
 del self[qname]
 continue
 try:
 val = str(val)
 if converter:
 val = converter.xmp_from_docinfo(val)
 if not val:
 continue
 self[qname] = val
 except (ValueError, AttributeError) as e:
 msg = "The metadata field {} could not be copied to XMP".format(docinfo_name)
 if raise_failure:
 raise ValueError(msg) from e
 else:
 warn(msg)

 def _load(self):
 try:
 data = self._pdf.Root.Metadata.read_bytes()
 except AttributeError:
 data = XMP_EMPTY
 self._load_from(data)

 def _load_from(self, data):
 try:
 self._xmp = parse(BytesIO(data))
 except XMLSyntaxError:
 data = re_xml_illegal_bytes.sub(b'', data)
 try:
 self._xmp = parse(BytesIO(data))
 except XMLSyntaxError as e:
 raise PdfError() from e
 pis = self._xmp.xpath('/processing-instruction()')
 for pi in pis:
 etree.strip_tags(self._xmp, pi.tag)

 @ensure_loaded
 def __enter__(self):
 self._updating = True
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 try:
 if exc_type is not None:
 return
 self._apply_changes()
 finally:
 self._updating = False

 def _update_docinfo(self):
 """Update the PDF's DocumentInfo dictionary to match XMP metadata

 The standard mapping is described here:
 https://www.pdfa.org/pdfa-metadata-xmp-rdf-dublin-core/
 """
 self._pdf.docinfo # Touch object to ensure it exists
 for uri, element, docinfo_name, converter in self.DOCINFO_MAPPING:
 qname = QName(uri, element)
 try:
 value = self[qname]
 except KeyError:
 if docinfo_name in self._pdf.docinfo:
 del self._pdf.docinfo[docinfo_name]
 continue
 if converter:
 try:
 value = converter.docinfo_from_xmp(value)
 except ValueError:
 warn("The DocumentInfo field {} could not be updated from XMP".format(docinfo_name))
 value = None
 if value is None:
 if docinfo_name in self._pdf.docinfo:
 del self._pdf.docinfo[docinfo_name]
 continue
 value = re_xml_illegal_chars.sub('', value)
 try:
 # Try to save pure ASCII
 self._pdf.docinfo[docinfo_name] = value.encode('ascii')
 except UnicodeEncodeError:
 # qpdf will serialize this as a UTF-16 with BOM string
 self._pdf.docinfo[docinfo_name] = value

 def _get_xml_bytes(self, xpacket=True):
 data = BytesIO()
 if xpacket:
 data.write(XPACKET_BEGIN)
 self._xmp.write(data, encoding='utf-8', pretty_print=True)
 if xpacket:
 data.write(XPACKET_END)
 data.seek(0)
 xml_bytes = data.read()
 return xml_bytes

 def _apply_changes(self):
 """Serialize our changes back to the PDF in memory

 Depending how we are initialized, leave our metadata mark and producer.
 """
 if self.mark:
 self[QName(XMP_NS_XMP, 'MetadataDate')] = datetime.now().isoformat()
 self[QName(XMP_NS_PDF, 'Producer')] = 'pikepdf ' + pikepdf_version
 xml = self._get_xml_bytes()
 self._pdf.Root.Metadata = Stream(self._pdf, xml)
 self._pdf.Root.Metadata[Name.Type] = Name.Metadata
 self._pdf.Root.Metadata[Name.Subtype] = Name.XML
 if self.sync_docinfo:
 self._update_docinfo()

 def _qname(self, name):
 """Convert name to an XML QName

 e.g. pdf:Producer -> {http://ns.adobe.com/pdf/1.3/}Producer
 """
 if isinstance(name, QName):
 return name
 if not isinstance(name, str):
 raise TypeError("{} must be str".format(name))
 if name == '':
 return name
 if name.startswith('{'):
 return name
 prefix, tag = name.split(':', maxsplit=1)
 uri = self.NS[prefix]
 return QName(uri, tag)

 def _prefix_from_uri(self, uriname):
 """Given a fully qualified XML name, find a prefix

 e.g. {http://ns.adobe.com/pdf/1.3/}Producer -> pdf:Producer
 """
 uripart, tag = uriname.split('}', maxsplit=1)
 uri = uripart.replace('{', '')
 return self.REVERSE_NS[uri] + ':' + tag

 def _get_subelements(self, node):
 """Gather the sub-elements attached to a node

 Gather rdf:Bag and and rdf:Seq into set and list respectively. For
 alternate languages values, take the first language only for
 simplicity.
 """
 items = node.find('rdf:Alt', self.NS)
 if items is not None:
 try:
 return items[0].text
 except IndexError:
 return ''

 for xmlcontainer, container, insertfn in XMP_CONTAINERS:
 items = node.find('rdf:{}'.format(xmlcontainer), self.NS)
 if items is None:
 continue
 result = container()
 for item in items:
 insertfn(result, item.text)
 return result
 return ''

 def _get_rdf_root(self):
 rdf = self._xmp.find('.//rdf:RDF', self.NS)
 if rdf is None:
 rdf = self._xmp.getroot()
 if not rdf.tag == '{http://www.w3.org/1999/02/22-rdf-syntax-ns#}RDF':
 raise ValueError("Metadata seems to be XML but not XMP")
 return rdf

 def _get_elements(self, name=''):
 """Get elements from XMP

 Core routine to find elements matching name within the XMP and yield
 them.

 For XMP spec 7.9.2.2, rdf:Description with property attributes,
 we yield the node which will have the desired as one of its attributes.
 qname is returned so that the node.attrib can be used to locate the
 source.

 For XMP spec 7.5, simple valued XMP properties, we yield the node,
 None, and the value. For structure or array valued properties we gather
 the elements. We ignore qualifiers.

 Args:
 name (str): a prefixed name or QName to look for within the
 data section of the XMP; looks for all data keys if omitted

 Yields:
 tuple: (node, qname_attrib, value, parent_node)

 """
 qname = self._qname(name)
 rdf = self._get_rdf_root()
 for rdfdesc in rdf.findall('rdf:Description[@rdf:about=""]', self.NS):
 if qname and qname in rdfdesc.keys():
 yield (rdfdesc, qname, rdfdesc.get(qname), rdf)
 elif not qname:
 for k, v in rdfdesc.items():
 if v:
 yield (rdfdesc, k, v, rdf)
 xpath = qname if name else '*'
 for node in rdfdesc.findall(xpath, self.NS):
 if node.text and node.text.strip():
 yield (node, None, node.text, rdfdesc)
 continue
 values = self._get_subelements(node)
 yield (node, None, values, rdfdesc)

 def _get_element_values(self, name=''):
 yield from (v[2] for v in self._get_elements(name))

 @ensure_loaded
 def __contains__(self, key):
 try:
 return any(self._get_element_values(key))
 except KeyError:
 return False

 @ensure_loaded
 def __getitem__(self, key):
 try:
 return next(self._get_element_values(key))
 except StopIteration:
 raise KeyError(key)

 @ensure_loaded
 def __iter__(self):
 for node, attrib, _val, _parents in self._get_elements():
 if attrib:
 yield attrib
 else:
 yield node.tag

 @ensure_loaded
 def __len__(self):
 return len(list(iter(self)))

 @ensure_loaded
 def __setitem__(self, key, val):
 if not self._updating:
 raise RuntimeError("Metadata not opened for editing, use with block")

 def clean(s):
 return re_xml_illegal_chars.sub('', s)

 def add_array(node, items):
 rdf_type = next(
 c.rdf_type for c in XMP_CONTAINERS if isinstance(items, c.py_type)
)
 seq = etree.SubElement(node, QName(XMP_NS_RDF, rdf_type))
 if rdf_type == 'Alt':
 attrib = {QName(XMP_NS_XML, 'lang'): 'x-default'}
 else:
 attrib = None
 for item in items:
 el = etree.SubElement(seq, QName(XMP_NS_RDF, 'li'), attrib=attrib)
 el.text = clean(item)

 try:
 # Locate existing node to replace
 node, attrib, _oldval, _parent = next(self._get_elements(key))
 if attrib:
 if not isinstance(val, str):
 raise TypeError(val)
 node.set(attrib, clean(val))
 elif isinstance(val, (list, set)):
 for child in node.findall('*'):
 node.remove(child)
 add_array(node, val)
 elif isinstance(val, str):
 for child in node.findall('*'):
 node.remove(child)
 if str(self._qname(key)) in LANG_ALTS:
 add_array(node, AltList([clean(val)]))
 else:
 node.text = clean(val)
 else:
 raise TypeError(val)
 except StopIteration:
 # Insert a new node
 rdf = self._get_rdf_root()
 if str(self._qname(key)) in LANG_ALTS:
 val = AltList([clean(val)])
 if isinstance(val, (list, set)):
 rdfdesc = etree.SubElement(
 rdf, QName(XMP_NS_RDF, 'Description'),
 attrib={
 QName(XMP_NS_RDF, 'about'): '',
 },
)
 node = etree.SubElement(rdfdesc, self._qname(key))
 add_array(node, val)
 elif isinstance(val, str):
 rdfdesc = etree.SubElement(
 rdf, QName(XMP_NS_RDF, 'Description'),
 attrib={
 QName(XMP_NS_RDF, 'about'): '',
 self._qname(key): clean(val)
 },
)
 else:
 raise TypeError(val)

 @ensure_loaded
 def __delitem__(self, key):
 if not self._updating:
 raise RuntimeError("Metadata not opened for editing, use with block")
 try:
 node, attrib, _oldval, parent = next(self._get_elements(key))
 if attrib: # Inline
 del node.attrib[attrib]
 if len(node.attrib) == 1 and len(node) == 0 and QName(XMP_NS_RDF, 'about') in node.attrib:
 # The only thing left on this node is rdf:about="", so remove it
 parent.remove(node)
 else:
 parent.remove(node)
 except StopIteration:
 raise KeyError(key)

 @property
 @ensure_loaded
 def pdfa_status(self):
 """Returns the PDF/A conformance level claimed by this PDF, or False

 A PDF may claim to PDF/A compliant without this being true. Use an
 independent verifier such as veraPDF to test if a PDF is truly
 conformant.

 Returns:
 str: The conformance level of the PDF/A, or an empty string if the
 PDF does not claim PDF/A conformance. Possible valid values
 are: 1A, 1B, 2A, 2B, 2U, 3A, 3B, 3U.
 """
 key_part = QName(XMP_NS_PDFA_ID, 'part')
 key_conformance = QName(XMP_NS_PDFA_ID, 'conformance')
 try:
 return self[key_part] + self[key_conformance]
 except KeyError:
 return ''

 @property
 @ensure_loaded
 def pdfx_status(self):
 """Returns the PDF/X conformance level claimed by this PDF, or False

 A PDF may claim to PDF/X compliant without this being true. Use an
 independent verifier such as veraPDF to test if a PDF is truly
 conformant.

 Returns:
 str: The conformance level of the PDF/X, or an empty string if the
 PDF does not claim PDF/X conformance.
 """
 pdfx_version = QName(XMP_NS_PDFX_ID, 'GTS_PDFXVersion')
 try:
 return self[pdfx_version]
 except KeyError:
 return ''

 @ensure_loaded
 def __str__(self):
 return self._get_xml_bytes(xpacket=False).decode('utf-8')

./usr/lib/python3/dist-packages/pikepdf/objects.py

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
Copyright (C) 2017, James R. Barlow (https://github.com/jbarlow83/)

"""Provide classes to stand in for PDF objects

The purpose of these is to provide nice-looking classes to allow explicit
construction of PDF objects and more pythonic idioms and facilitate discovery
by documentation generators.

It's also a place to narrow the scope of input types to those more easily
converted to C++.

In reality all of these return objects of class pikepdf.Object or rather
QPDFObjectHandle which is a generic type.

"""

from . import _qpdf
from ._qpdf import Object, ObjectType

pylint: disable=unused-import
from ._qpdf import Operator

class _ObjectMeta(type):
 """Supports instance checking"""

 def __instancecheck__(cls, instance):
 if type(instance) != Object:
 return False
 return cls.object_type == instance._type_code

class _NameObjectMeta(_ObjectMeta):
 """Supports usage pikepdf.Name.Whatever -> Name('/Whatever')"""

 def __getattr__(self, attr):
 return Name('/' + attr)

 def __setattr__(self, name, value):
 raise TypeError("Attributes may not be set on pikepdf.Name")

 def __getitem__(self, item):
 if item.startswith('/'):
 item = item[1:]
 raise TypeError(
 (
 "pikepdf.Name is not subscriptable. You probably meant:\n"
 " pikepdf.Name.{}\n"
 "or\n"
 " pikepdf.Name('/{}')\n"
).format(item, item)
)

class Name(metaclass=_NameObjectMeta):
 """Constructs a PDF Name object

 Names can be constructed with two notations:

 1. ``Name.Resources``

 2. ``Name('/Resources')``

 The two are semantically equivalent. The former is preferred for names
 that are normally expected to be in a PDF. The latter is preferred for
 dynamic names and attributes.
 """
 object_type = ObjectType.name

 def __new__(cls, name):
 # QPDF_Name::unparse ensures that names are always saved in a UTF-8
 # compatible way, so we only need to guard the input.
 if isinstance(name, bytes):
 raise TypeError("Name should be str")
 return _qpdf._new_name(name)

class String(metaclass=_ObjectMeta):
 """Constructs a PDF String object"""
 object_type = ObjectType.string

 def __new__(cls, s):
 """
 Args:
 s (str or bytes): The string to use. String will be encoded for
 PDF, bytes will be constructed without encoding.

 Returns:
 pikepdf.Object
 """
 if isinstance(s, bytes):
 return _qpdf._new_string(s)
 return _qpdf._new_string_utf8(s)

class Array(metaclass=_ObjectMeta):
 """Constructs a PDF Array object"""
 object_type = ObjectType.array

 def __new__(cls, a=None):
 """
 Args:
 a (iterable): A list of objects. All objects must be either
 `pikepdf.Object` or convertible to `pikepdf.Object`.

 Returns:
 pikepdf.Object
 """

 if isinstance(a, (str, bytes)):
 raise TypeError('Strings cannot be converted to arrays of chars')
 if a is None:
 a = []
 return _qpdf._new_array(a)

class Dictionary(metaclass=_ObjectMeta):
 """Constructs a PDF Dictionary object"""
 object_type = ObjectType.dictionary

 def __new__(cls, d=None, **kwargs):
 """
 Constructs a PDF Dictionary from either a Python ``dict`` or keyword
 arguments.

 These two examples are equivalent:

 .. code-block:: python

 pikepdf.Dictionary({'/NameOne': 1, '/NameTwo': 'Two'})

 pikepdf.Dictionary(NameOne=1, NameTwo='Two')

 In either case, the keys must be strings, and the strings
 correspond to the desired Names in the PDF Dictionary. The values
 must all be convertible to `pikepdf.Object`.

 Returns:
 pikepdf.Object
 """
 if kwargs and d is not None:
 raise ValueError('Unsupported parameters')
 if kwargs:
 # Add leading slash
 # Allows Dictionary(MediaBox=(0,0,1,1), Type=Name('/Page')...
 return _qpdf._new_dictionary(
 {('/' + k) : v for k, v in kwargs.items()})
 if not d:
 d = {}
 return _qpdf._new_dictionary(d)

class Stream(metaclass=_ObjectMeta):
 """Constructs a PDF Stream object"""
 object_type = ObjectType.stream

 def __new__(cls, owner, obj):
 """
 Args:
 owner (pikepdf.Pdf): The Pdf to which this stream shall be attached.
 obj (bytes or list): If ``bytes``, the data bytes for the stream.
 If ``list``, a list of ``(operands, operator)`` tuples such
 as returned by :func:`pikepdf.parse_content_stream`.

 Returns:
 pikepdf.Object
 """
 return _qpdf._new_stream(owner, obj)

./usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/PKG-INFO

Metadata-Version: 2.1
Name: pikepdf
Version: 1.0.5+dfsg
Summary: Read and write PDFs with Python, powered by qpdf
Home-page: https://github.com/pikepdf/pikepdf
Author: James R. Barlow
Author-email: jim@purplerock.ca
License: UNKNOWN
Project-URL: Documentation, https://pikepdf.readthedocs.io/
Project-URL: Source, https://github.com/pikepdf/pikepdf
Project-URL: Tracker, https://github.com/pikepdf/pikepdf/issues
Description: pikepdf
 =======

 pikepdf is a Python library for reading and writing PDF files.

 [![Travis CI build status (Linux and macOS)](https://img.shields.io/travis/pikepdf/pikepdf/master.svg?label=Linux%2fmacOS%20build)](https://travis-ci.org/pikepdf/pikepdf) [![AppVeyor CI build status (Windows)](https://img.shields.io/appveyor/ci/jbarlow83/pikepdf/master.svg?label=Windows%20build)](https://ci.appveyor.com/project/jbarlow83/pikepdf) [![PyPI](https://img.shields.io/pypi/v/pikepdf.svg)](https://pypi.org/project/pikepdf/)

 pikepdf is based on [QPDF](https://github.com/qpdf/qpdf), a powerful PDF manipulation and repair library.

 Python + QPDF = "py" + "qpdf" = "pyqpdf", which looks like a dyslexia test. Say it out loud, and it sounds like "pikepdf".

        ```python
        # Elegant, Pythonic API
        pdf = pikepdf.open('input.pdf')
        num_pages = len(pdf.pages)
        del pdf.pages[-1]
        pdf.save('output.pdf')
        ```

 To install:

 Python 3.5, 3.6 and 3.7 are fully supported.

        ```bash
        pip install pikepdf
        ```

 For users who want to build from source, see [installation](https://pikepdf.readthedocs.io/en/latest/index.html).

 pikepdf is [documented](https://pikepdf.readthedocs.io/en/latest/index.html) and actively maintained. Commercial support is available.

 Features

 This library is similar to PyPDF2 and pdfrw - it provides low level access to PDF features and allows editing and content transformation of existing PDFs. Some knowledge of the PDF specification may be helpful. It does not have the capability to render a PDF to image.

 Python 2.7 and earlier versions of Python 3 are not currently supported but support is probably not difficult to achieve. Pull requests are welcome.

 | **Feature** | **pikepdf** | **PyPDF2** | **pdfrw** |
 |---|-------------------------------------|---|---|
 | Editing, manipulation and transformation of existing PDFs | ✔ | ✔ | ✔ |
 | Based on an existing, mature PDF library | QPDF | ✘ | ✘ |
 | Implementation | C++ and Python | Python | Python |
 | PDF versions supported | 1.1 to 1.7 | 1.3? | 1.7 |
 | Python versions supported | 3.5-3.7 | 2.6-3.6 | 2.6-3.6 |
 | Supports password protected (encrypted) PDFs | ✔ (except public key) | Only obsolete RC4 | ✘ |
 | Save and load PDF compressed object streams (PDF 1.5) | ✔ | ✘ | ✘ |
 | Creates linearized ("fast web view") PDFs | ✔ | ✘ | ✘ |
 | Actively maintained | ![pikepdf commit activity][pikepdf-commits] | ![PyPDF2 commit activity][pypdf2-commits] | ![pdfrw commit activity][pdfrw-commits] |
 | Test suite coverage | ~86% | very low | unknown |
 | Creates PDFs that pass PDF validation tests | ✔ | ✘ | ? |
 | Modifies PDF/A without breaking PDF/A compliance | ✔ | ✘ | ? |
 | Automatically repairs PDFs with internal errors | ✔ | ✘ | ✘ |
 | PDF XMP metadata editing | ✔ | read-only | ✘
 | Documentation | ✔ | ✘ | ✔ |
 | Integrates with Jupyter and IPython notebooks for rapid development | ✔ | ✘ | ✘ |

 [pikepdf-commits]: https://img.shields.io/github/commit-activity/y/pikepdf/pikepdf.svg

 [pypdf2-commits]: https://img.shields.io/github/commit-activity/y/mstamy2/PyPDF2.svg

 [pdfrw-commits]: https://img.shields.io/github/commit-activity/y/pmaupin/pdfrw.svg

 License

 pikepdf is provided under the [Mozilla Public License 2.0](https://www.mozilla.org/en-US/MPL/2.0/) license (MPL) that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license.

 [Informally](https://www.mozilla.org/en-US/MPL/2.0/FAQ/), MPL 2.0 is a not a "viral" license. It may be combined with other work, including commercial software. However, you must disclose your modifications *to pikepdf* in source code form. In other works, fork this repository on GitHub or elsewhere and commit your contributions there, and you've satisfied your obligations. MPL 2.0 is compatible with the GPL and LGPL - see the [guidelines](https://www.mozilla.org/en-US/MPL/2.0/combining-mpl-and-gpl/) for notes on use in GPL.

 The `tests/resources/copyright` file describes licensing terms for the test suite and the provenance of test resources.

Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: C++
Classifier: Topic :: Multimedia :: Graphics
Classifier: Topic :: Software Development :: Libraries
Requires-Python: >=3.5
Description-Content-Type: text/markdown
Provides-Extra: docs

./usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/dependency_links.txt

./usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/not-zip-safe

./usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/requires.txt

[docs]
defusedxml
ipython
matplotlib
pybind11
setuptools_scm
sphinx-rtd-theme
sphinx>=1.4

./usr/lib/python3/dist-packages/pikepdf-1.0.5+dfsg.egg-info/top_level.txt

pikepdf

./usr/share/doc/python3-pikepdf/changelog.Debian.gz

./usr/share/doc/python3-pikepdf/changelog.Debian

pikepdf (1.0.5+dfsg-3~deb10u1) buster; urgency=medium

 * Upload to buster-proposed-updates. See #930597.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 16 Jun 2019 19:00:54 +0100

pikepdf (1.0.5+dfsg-3) unstable; urgency=medium

 * Cherry pick upstream commit 4d22fe4 as
 Fix-issue-25-year-missing-leading-zero-on-some-platforms.patch
 (Closes: #928042).

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 28 Apr 2019 18:23:41 -0700

pikepdf (1.0.5+dfsg-2) unstable; urgency=medium

 * Team upload.
 * Fix handling of XMP metadata with no <x:xmpmeta> wrapper.
 - Cherry-pick upstream fix as fix_xmp_metadata_without_xmpmeta_wrapper.patch

 -- Felix Geyer <fgeyer@debian.org> Wed, 27 Feb 2019 23:33:07 +0100

pikepdf (1.0.5+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Refresh patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 26 Jan 2019 12:54:11 -0700

pikepdf (1.0.4+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Add Files-Excluded to d/copyright.
 See https://github.com/pikepdf/pikepdf/issues/21
 - Add disable-test_docinfo_problems.patch
 * Install examples/find_links.py

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 10 Jan 2019 08:44:33 -0700

pikepdf (0.10.1-2) unstable; urgency=medium

 * Upload to unstable.
 Upstream considers the API to be stable.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 01 Jan 2019 09:19:08 +0000

pikepdf (0.10.1-1) experimental; urgency=medium

 * New upstream release.
 - Add python3-defusedxml, python3-lxml build-deps
 - Add python3-attr autopkgtest dep

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 31 Dec 2018 23:25:17 +0000

pikepdf (0.3.7-1) experimental; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 11 Nov 2018 14:29:02 -0700

pikepdf (0.3.5-1) experimental; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 20 Oct 2018 13:06:33 -0700

pikepdf (0.3.4-1) experimental; urgency=medium

 * New upstream release.
 * Add build-dep on python3-setuptools-scm-git-archive.
 * Update d/copyright for new files.
 * Drop 0001-Restore-Exhibit-B-text-clarify-license-comments-in-r.patch
 Included in this upstream release.
 * Add drop-setuptools_scm_git_archive-from-setup.py.patch.
 * Refresh drop-installation-from-docs-contents.patch.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 10 Oct 2018 08:28:28 -0700

pikepdf (0.3.0-1) experimental; urgency=medium

 * Initial upload, to experimental (Closes: #903625).
 API not yet finalised.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 30 Aug 2018 16:21:39 -0700

./usr/share/doc/python3-pikepdf/changelog.gz

./usr/share/doc/python3-pikepdf/changelog

.. _changelog:

Changelog
#########

pikepdf releases use the `semantic versioning <http://semver.org>`_ policy.

The pikepdf API (as provided by ``import pikepdf``) is quite stable and is in production use.

Note that the C++ extension module ``pikepdf._qpdf`` is a private interface within pikepdf that applications should not use directly.

v1.0.5
======

* Fixed an issue where an invalid date in XMP metadata would cause an exception when updating DocumentInfo. For now, we warn that some DocumentInfo is not convertible. (In the future, we should also check if the XMP date is valid, because it probably is not.)

* Rebuilt the binary wheels with libqpdf 8.3.0. libqpdf 8.2.1 is still supported.

v1.0.4
======

* Updates to tests/resources (provenance of one test file, replaced another test file with a synthetic one)

v1.0.3
======

* Fixed regression on negative indexing of pages.

v1.0.2
======

* Fixed an issue where invalid values such as out of range years (e.g. 0) in DocumentInfo would raise exceptions when using DocumentInfo to populate XMP metadata with ``.load_from_docinfo``.

v1.0.1
======

* Fixed an exception with handling metadata that contains the invalid XML entity ``�`` (an escaped NUL)

v1.0.0
======

* Changed version to 1.0.

v0.10.2
=======

Fixes

* Fixed segfault when overwriting the pikepdf file that is currently open on Linux.

* Fixed removal of an attribute metadata value when values were present on the same node.

v0.10.1
=======

Fixes

* Avoid canonical XML since it is apparently too strict for XMP.

v0.10.0
=======

Fixes

* Fixed several issues related to generating XMP metadata that passed veraPDF validation.

* Fixed a random test suite failure for very large negative integers.

* The lxml library is now required.

v0.9.2
======

Fixes

* Added all of the commonly used XML namespaces to XMP metadata handling, so we are less likely to name something 'ns1', etc.

* Skip a test that fails on Windows.

* Fixed build errors in documentation.

v0.9.1
======

Fixes

* Fix ``Object.write()`` accepting positional arguments it wouldn't use

* Fix handling of XMP data with timezones (or missing timezone information) in a few cases

* Fix generation of XMP with invalid XML characters if the invalid characters were inside a non-scalar object

v0.9.0
======

Updates

* New API to access and edit PDF metadata and make consistent edits to the new and old style of PDF metadata.

* 32-bit binary wheels are now available for Windows

* PDFs can now be saved in QPDF's "qdf" mode

* The Python package defusedxml is now required

* The Python package python-xmp-toolkit and its dependency libexempi are suggested for testing, but not required

Fixes

* Fixed handling of filenames that contain multibyte characters on non-UTF-8 systems

Breaking

* The ``Pdf.metadata`` property was removed, and replaced with the new metadata API

* ``Pdf.attach()`` has been removed, because the interface as implemented had no way to deal with existing attachments.

v0.3.7
======

* Add API for inline images to unparse themselves

v0.3.6
======

* Performance of reading files from memory improved to avoid unnecessary copies.

* It is finally possible to use ``for key in pdfobj`` to iterate contents of PDF Dictionary, Stream and Array objects. Generally these objects behave more like Python containers should now.

* Package API declared beta.

v0.3.5
======

Breaking

* ``Pdf.save(...stream_data_mode=...)`` has been dropped in favor of the newer ``compress_streams=`` and ``stream_decode_level`` parameters.

Fixes

* A use-after-free memory error that caused occasional segfaults and "QPDFFakeName" errors when opening from stream objects has been resolved.

v0.3.4
======

Updates

* pybind11 vendoring has ended now that v2.2.4 has been released

v0.3.3
======

Breaking

* libqpdf 8.2.1 is now required

Updates

* Improved support for working with JPEG2000 images in PDFs
* Added progress callback for saving files, ``Pdf.save(..., progress=)``
* Updated pybind11 subtree

Fixes

* ``del obj.AttributeName`` was not implemented. The attribute interface is now consistent
* Deleting named attributes now defers to the attribute dictionary for Stream objects, as get/set do
* Fixed handling of JPEG2000 images where metadata must be retrieved from the file

v0.3.2
======

Updates

* Added support for direct image extraction of CMYK and grayscale JPEGs, where previously only RGB (internally YUV) was supported
* ``Array()`` now creates an empty array properly
* The syntax ``Name.Foo in Dictionary()``, e.g. ``Name.XObject in page.Resources``, now works

v0.3.1
======

Breaking

* ``pikepdf.open`` now validates its keyword arguments properly, potentially breaking code that passed invalid arguments
* libqpdf 8.1.0 is now required - libqpdf 8.1.0 API is now used for creating Unicode strings
* If a non-existent file is opened with ``pikepdf.open``, a ``FileNotFoundError`` is raised instead of a generic error
* We are now *temporarily* vendoring a copy of pybind11 since its master branch contains unreleased and important fixes for Python 3.7.

Updates

* The syntax ``Name.Thing`` (e.g. ``Name.DecodeParms``) is now supported as equivalent to ``Name('/Thing')`` and is the recommended way to refer names within a PDF
* New API ``Pdf.remove_unneeded_resources()`` which removes objects from each page's resource dictionary that are not used in the page. This can be used to create smaller files.

Fixes

* Fixed an error parsing inline images that have masks
* Fixed several instances of catching C++ exceptions by value instead of by reference

v0.3.0
======

Breaking

* Modified ``Object.write`` method signature to require ``filter`` and ``decode_parms`` as keyword arguments
* Implement automatic type conversion from the PDF Null type to ``None``
* Removed ``Object.unparse_resolved`` in favor of ``Object.unparse(resolved=True)``
* libqpdf 8.0.2 is now required at minimum

Updates

* Improved IPython/Jupyter interface to directly export temporary PDFs
* Updated to qpdf 8.1.0 in wheels
* Added Python 3.7 support for Windows
* Added a number of missing options from QPDF to ``Pdf.open`` and ``Pdf.save``
* Added ability to delete a slice of pages
* Began using Jupyter notebooks for documentation

v0.2.2
======

* Added Python 3.7 support to build and test (not yet available for Windows, due to lack of availability on Appveyor)
* Removed setter API from ``PdfImage`` because it never worked anyway
* Improved handling of ``PdfImage`` with trivial palettes

v0.2.1
======

* ``Object.check_owner`` renamed to ``Object.is_owned_by``
* ``Object.objgen`` and ``Object.get_object_id`` are now public functions
* Major internal reorganization with ``pikepdf.models`` becoming the submodule that holds support code to ease access to PDF objects as opposed to wrapping QPDF.

v0.2.0
======

* Implemented automatic type conversion for ``int``, ``bool`` and ``Decimal``, eliminating the ``pikepdf.{Integer,Boolean,Real}`` types. Removed a lot of associated numerical code.

Everything before v0.2.0 can be considered too old to document.

./usr/share/doc/python3-pikepdf/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: pikepdf
Source: https://github.com/pikepdf/pikepdf
Files-Excluded: tests/resources/enron1_gs.pdf

Files: *
Copyright: (C) 2017 James R. Barlow
License: MPL-2.0
Comment:
 The file licenses/license.wheel.txt is relevant only when a binary
 artifact is produced from the combination of the source code of
 pikepdf and the source code of qpdf. Nothing in pikepdf is Apache
 licensed.
 .
 pikepdf is licensed under the (unmodified) MPL-2.0. This was always
 upstream's intention; the removal of the text of Exhibit B from the
 copy of the MPL included in the source package was a
 misunderstanding. An upstream commit more recent than the currently
 packaged upstream version restores the usual text of the MPL-2.0;
 that commit is backported into the Debian delta queue, file
 debian/patches/0001-Restore-Exhibit-B-text-clarify-license-comments-in-r.patch
 .
 Also see https://github.com/pikepdf/pikepdf/issues/8

Files: debian/*
Copyright: (C) 2018 Sean Whitton <spwhitton@spwhitton.name>
License: MPL-2.0

Files: docs/images/pike.jpg tests/resources/pike-jp2.pdf
Copyright: Public domain
License: public-domain
 From the U.S. Fish and Wildlife Service National Image Library.
 .
 See: https://en.wikipedia.org/wiki/File:Esox_lucius1.jpg
Comment: Maximum resolution version is in debian/missing-sources/.

Files: tests/*.py
Copyright: (C) 2017 James R. Barlow
License: CC0-1.0

Files: tests/resources/*
Copyright: (C) 2017 James R. Barlow
License: CC-BY-4.0

Files: test/resources/congress.pdf docs/images/congress_im0.jpg tests/resources/congress-gray.pdf
Copyright: Public domain
License: public-domain
 From US Congressional Records.
Comment: Converted from JPEG to PDF.

Files: tests/resources/graph*.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.
Comment:
 For -encrypted.pdf, user password is "user" and owner password is "owner".

Files: tests/resources/veraPDF*.pdf
Copyright: (C) 2015 veraPDF Consortium
License: CC-BY-4.0
Comment:
 Obtained from: https://github.com/veraPDF/veraPDF-corpus

Files: tests/resources/sandwich.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0
Comment:
 Created using ocrmypdf --pdf-renderer sandwich, to test Tesseract PDF
 text encoding.
 .
 Originally obtained from: https://commons.wikimedia.org/wiki/File:LinnSequencer_hardware_MIDI_sequencer_brochure_page_2_300dpi.jpg
 .
 A copy of that JPEG is included in debian/missing-sources/.

Files: docs/images/pike-cartoon.png
Copyright: (C) 2017 creozavr
License: CC0-1.0
Comment:
 Obtained from: https://pixabay.com/en/pike-fish-predator-shchuchin-2612354/

Files: docs/images/pikemen.jpg
Copyright: (C) 2009 Rama
License: CeCILL-2.0 or CC-BY-SA-2.0-FR
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Pike_square_img_3653.jpg

License: MPL-2.0
 This Source Code Form is subject to the terms of the Mozilla Public
 License, v. 2.0.
 .
 On Debian systems the full text of the MPL-2.0 can be found in
 /usr/share/common-licenses/MPL-2.0.

License: CC0-1.0
 To the extent possible under law, the author(s) have dedicated all copyright
 and related and neighboring rights to this software to the public domain
 worldwide. This software is distributed without any warranty.
 .
 On Debian systems the full text of the CC0-1.0 license can be found
 in /usr/share/common-licenses/CC0-1.0

License: CC-BY-4.0
 Creative Commons Attribution 4.0 International Public License
 .
 By exercising the Licensed Rights (defined below), You accept and agree
 to be bound by the terms and conditions of this Creative Commons
 Attribution 4.0 International Public License ("Public License"). To the
 extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of
 these terms and conditions, and the Licensor grants You such rights in
 consideration of benefits the Licensor receives from making the
 Licensed Material available under these terms and conditions.
 .
 Section 1 -- Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.
 .
 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.
 .
 c. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 .
 d. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.
 .
 e. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.
 .
 f. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.
 .
 g. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.
 .
 h. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.
 .
 i. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.
 .
 j. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.
 .
 k. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.
 .
 Section 2 -- Scope.
 .
 a. License grant.
 .
 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:
 .
 a. reproduce and Share the Licensed Material, in whole or
 in part; and
 .
 b. produce, reproduce, and Share Adapted Material.
 .
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.
 .
 3. Term. The term of this Public License is specified in Section
 6(a).
 .
 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.
 .
 5. Downstream recipients.
 .
 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.
 .
 b. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.
 .
 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).
 .
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 .
 2. Patent and trademark rights are not licensed under this
 Public License.
 .
 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.
 .
 Section 3 -- License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the
 following conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified
 form), You must:
 .
 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:
 .
 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);
 .
 ii. a copyright notice;
 .
 iii. a notice that refers to this Public License;
 .
 iv. a notice that refers to the disclaimer of
 warranties;
 .
 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;
 .
 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and
 .
 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.
 .
 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.
 .
 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.
 .
 4. If You Share Adapted Material You produce, the Adapter's
 License You apply must not prevent recipients of the Adapted
 Material from complying with this Public License.
 .
 Section 4 -- Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that
 apply to Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;
 .
 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material; and
 .
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not
 replace Your obligations under this Public License where the Licensed
 Rights include other Copyright and Similar Rights.
 .
 Section 5 -- Disclaimer of Warranties and Limitation of Liability.
 .
 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
 .
 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
 .
 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.
 .
 Section 6 -- Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.
 .
 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or
 .
 2. upon express reinstatement by the Licensor.
 .
 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.
 .
 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.
 .
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.
 .
 Section 7 -- Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.
 .
 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.
 .
 Section 8 -- Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.
 .
 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.
 .
 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.
 .
 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: CeCILL-2.0
 CeCILL FREE SOFTWARE LICENSE AGREEMENT
 .
 Notice
 .
 This Agreement is a Free Software license agreement that is the result
 of discussions between its authors in order to ensure compliance with
 the two main principles guiding its drafting:
 .
 firstly, compliance with the principles governing the distribution
 of Free Software: access to source code, broad rights granted to
 users, secondly, the election of a governing law, French law, with
 which it is conformant, both as regards the law of torts and
 intellectual property law, and the protection that it offers to
 both authors and holders of the economic rights over software.
 .
 The authors of the CeCILL license are:
 .
 Commissariat Ã l'Energie Atomique - CEA, a public scientific,
 technical and industrial research establishment, having its principal
 place of business at 25 rue Leblanc, immeuble Le Ponant D, 75015
 Paris, France.
 .
 Centre National de la Recherche Scientifique - CNRS, a public
 scientific and technological establishment, having its principal place
 of business at 3 rue Michel-Ange, 75794 Paris cedex 16, France.
 .
 Institut National de Recherche en Informatique et en Automatique -
 INRIA, a public scientific and technological establishment, having its
 principal place of business at Domaine de Voluceau, Rocquencourt, BP
 105, 78153 Le Chesnay cedex, France.
 .
 Preamble
 .
 The purpose of this Free Software license agreement is to grant users
 the right to modify and redistribute the software governed by this
 license within the framework of an open source distribution model.
 .
 The exercising of these rights is conditional upon certain obligations
 for users so as to preserve this status for all subsequent
 redistributions.
 .
 In consideration of access to the source code and the rights to copy,
 modify and redistribute granted by the license, users are provided
 only with a limited warranty and the software's author, the holder of
 the economic rights, and the successive licensors only have limited
 liability.
 .
 In this respect, the risks associated with loading, using, modifying
 and/or developing or reproducing the software by the user are brought
 to the user's attention, given its Free Software status, which may
 make it complicated to use, with the result that its use is reserved
 for developers and experienced professionals having in-depth computer
 knowledge. Users are therefore encouraged to load and test the
 suitability of the software as regards their requirements in
 conditions enabling the security of their systems and/or data to be
 ensured and, more generally, to use and operate it in the same
 conditions of security. This Agreement may be freely reproduced and
 published, provided it is not altered, and that no provisions are
 either added or removed herefrom.
 .
 This Agreement may apply to any or all software for which the holder
 of the economic rights decides to submit the use thereof to its
 provisions.
 .
 Article 1 - DEFINITIONS
 .
 For the purpose of this Agreement, when the following expressions
 commence with a capital letter, they shall have the following meaning:
 .
 Agreement: means this license agreement, and its possible subsequent
 versions and annexes.
 .
 Software: means the software in its Object Code and/or Source Code
 form and, where applicable, its documentation, "as is" when the
 Licensee accepts the Agreement.
 .
 Initial Software: means the Software in its Source Code and possibly
 its Object Code form and, where applicable, its documentation, "as is"
 when it is first distributed under the terms and conditions of the
 Agreement.
 .
 Modified Software: means the Software modified by at least one
 Contribution.
 .
 Source Code: means all the Software's instructions and program lines
 to which access is required so as to modify the Software.
 .
 Object Code: means the binary files originating from the compilation
 of the Source Code.
 .
 Holder: means the holder(s) of the economic rights over the Initial
 Software.
 .
 Licensee: means the Software user(s) having accepted the Agreement.
 .
 Contributor: means a Licensee having made at least one Contribution.
 .
 Licensor: means the Holder, or any other individual or legal entity,
 who distributes the Software under the Agreement.
 .
 Contribution: means any or all modifications, corrections,
 translations, adaptations and/or new functions integrated into the
 Software by any or all Contributors, as well as any or all Internal
 Modules.
 .
 Module: means a set of sources files including their documentation
 that enables supplementary functions or services in addition to those
 offered by the Software.
 .
 External Module: means any or all Modules, not derived from the
 Software, so that this Module and the Software run in separate address
 spaces, with one calling the other when they are run.
 .
 Internal Module: means any or all Module, connected to the Software so
 that they both execute in the same address space.
 .
 GNU GPL: means the GNU General Public License version 2 or any
 subsequent version, as published by the Free Software Foundation Inc.
 .
 Parties: mean both the Licensee and the Licensor.
 .
 These expressions may be used both in singular and plural form.
 .
 Article 2 - PURPOSE
 .
 The purpose of the Agreement is the grant by the Licensor to the
 Licensee of a non-exclusive, transferable and worldwide license for
 the Software as set forth in Article 5 hereinafter for the whole term
 of the protection granted by the rights over said Software.
 .
 Article 3 - ACCEPTANCE
 .
 3.1 The Licensee shall be deemed as having accepted the terms and
 conditions of this Agreement upon the occurrence of the first of the
 following events:
 .
 (i) loading the Software by any or all means, notably, by
 downloading from a remote server, or by loading from a physical
 medium; (ii) the first time the Licensee exercises any of the
 rights granted hereunder.
 .
 3.2 One copy of the Agreement, containing a notice relating to the
 characteristics of the Software, to the limited warranty, and to the
 fact that its use is restricted to experienced users has been provided
 to the Licensee prior to its acceptance as set forth in Article 3.1
 hereinabove, and the Licensee hereby acknowledges that it has read and
 understood it.
 .
 Article 4 - EFFECTIVE DATE AND TERM
 .
 4.1 EFFECTIVE DATE
 .
 The Agreement shall become effective on the date when it is accepted
 by the Licensee as set forth in Article 3.1.
 .
 4.2 TERM
 .
 The Agreement shall remain in force for the entire legal term of
 protection of the economic rights over the Software.
 .
 Article 5 - SCOPE OF RIGHTS GRANTED
 .
 The Licensor hereby grants to the Licensee, who accepts, the following
 rights over the Software for any or all use, and for the term of the
 Agreement, on the basis of the terms and conditions set forth
 hereinafter.
 .
 Besides, if the Licensor owns or comes to own one or more patents
 protecting all or part of the functions of the Software or of its
 components, the Licensor undertakes not to enforce the rights granted
 by these patents against successive Licensees using, exploiting or
 modifying the Software. If these patents are transferred, the Licensor
 undertakes to have the transferees subscribe to the obligations set
 forth in this paragraph.
 .
 5.1 RIGHT OF USE
 .
 The Licensee is authorized to use the Software, without any limitation
 as to its fields of application, with it being hereinafter specified
 that this comprises:
 .
 permanent or temporary reproduction of all or part of the Software
 by any or all means and in any or all form.
 .
 loading, displaying, running, or storing the Software on any or
 all medium.
 .
 entitlement to observe, study or test its operation so as to
 determine the ideas and principles behind any or all constituent
 elements of said Software. This shall apply when the Licensee
 carries out any or all loading, displaying, running, transmission
 or storage operation as regards the Software, that it is entitled
 to carry out hereunder.
 .
 5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS
 .
 The right to make Contributions includes the right to translate,
 adapt, arrange, or make any or all modifications to the Software, and
 the right to reproduce the resulting software.
 .
 The Licensee is authorized to make any or all Contributions to the
 Software provided that it includes an explicit notice that it is the
 author of said Contribution and indicates the date of the creation
 thereof.
 .
 5.3 RIGHT OF DISTRIBUTION
 .
 In particular, the right of distribution includes the right to
 publish, transmit and communicate the Software to the general public
 on any or all medium, and by any or all means, and the right to
 market, either in consideration of a fee, or free of charge, one or
 more copies of the Software by any means.
 .
 The Licensee is further authorized to distribute copies of the
 modified or unmodified Software to third parties according to the
 terms and conditions set forth hereinafter.
 .
 5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION
 .
 The Licensee is authorized to distribute true copies of the Software
 in Source Code or Object Code form, provided that said distribution
 complies with all the provisions of the Agreement and is accompanied
 by:
 .
 a copy of the Agreement,
 .
 a notice relating to the limitation of both the Licensor's
 warranty and liability as set forth in Articles 8 and 9,
 .
 and that, in the event that only the Object Code of the Software is
 redistributed, the Licensee allows future Licensees unhindered access
 to the full Source Code of the Software by indicating how to access
 it, it being understood that the additional cost of acquiring the
 Source Code shall not exceed the cost of transferring the data.
 .
 5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE
 .
 When the Licensee makes a Contribution to the Software, the terms and
 conditions for the distribution of the resulting Modified Software
 become subject to all the provisions of this Agreement.
 .
 The Licensee is authorized to distribute the Modified Software, in
 source code or object code form, provided that said distribution
 complies with all the provisions of the Agreement and is accompanied
 by:
 .
 a copy of the Agreement,
 .
 a notice relating to the limitation of both the Licensor's
 warranty and liability as set forth in Articles 8 and 9,
 .
 and that, in the event that only the object code of the Modified
 Software is redistributed, the Licensee allows future Licensees
 unhindered access to the full source code of the Modified Software by
 indicating how to access it, it being understood that the additional
 cost of acquiring the source code shall not exceed the cost of
 transferring the data.
 .
 5.3.3 DISTRIBUTION OF EXTERNAL MODULES
 .
 When the Licensee has developed an External Module, the terms and
 conditions of this Agreement do not apply to said External Module,
 that may be distributed under a separate license agreement.
 .
 5.3.4 COMPATIBILITY WITH THE GNU GPL
 .
 The Licensee can include a code that is subject to the provisions of
 one of the versions of the GNU GPL in the Modified or unmodified
 Software, and distribute that entire code under the terms of the same
 version of the GNU GPL.
 .
 The Licensee can include the Modified or unmodified Software in a code
 that is subject to the provisions of one of the versions of the GNU
 GPL, and distribute that entire code under the terms of the same
 version of the GNU GPL.
 .
 Article 6 - INTELLECTUAL PROPERTY
 .
 6.1 OVER THE INITIAL SOFTWARE
 .
 The Holder owns the economic rights over the Initial Software. Any or
 all use of the Initial Software is subject to compliance with the
 terms and conditions under which the Holder has elected to distribute
 its work and no one shall be entitled to modify the terms and
 conditions for the distribution of said Initial Software.
 .
 The Holder undertakes that the Initial Software will remain ruled at
 least by this Agreement, for the duration set forth in Article 4.2.
 .
 6.2 OVER THE CONTRIBUTIONS
 .
 The Licensee who develops a Contribution is the owner of the
 intellectual property rights over this Contribution as defined by
 applicable law.
 .
 6.3 OVER THE EXTERNAL MODULES
 .
 The Licensee who develops an External Module is the owner of the
 intellectual property rights over this External Module as defined by
 applicable law and is free to choose the type of agreement that shall
 govern its distribution.
 .
 6.4 JOINT PROVISIONS
 .
 The Licensee expressly undertakes:
 .
 not to remove, or modify, in any manner, the intellectual property
 notices attached to the Software;
 .
 to reproduce said notices, in an identical manner, in the copies
 of the Software modified or not.
 .
 The Licensee undertakes not to directly or indirectly infringe the
 intellectual property rights of the Holder and/or Contributors on the
 Software and to take, where applicable, vis-Ã -vis its staff, any and
 all measures required to ensure respect of said intellectual property
 rights of the Holder and/or Contributors.
 .
 Article 7 - RELATED SERVICES
 .
 7.1 Under no circumstances shall the Agreement oblige the Licensor to
 provide technical assistance or maintenance services for the Software.
 .
 However, the Licensor is entitled to offer this type of services. The
 terms and conditions of such technical assistance, and/or such
 maintenance, shall be set forth in a separate instrument. Only the
 Licensor offering said maintenance and/or technical assistance
 services shall incur liability therefor.
 .
 7.2 Similarly, any Licensor is entitled to offer to its licensees,
 under its sole responsibility, a warranty, that shall only be binding
 upon itself, for the redistribution of the Software and/or the
 Modified Software, under terms and conditions that it is free to
 decide. Said warranty, and the financial terms and conditions of its
 application, shall be subject of a separate instrument executed
 between the Licensor and the Licensee.
 .
 Article 8 - LIABILITY
 .
 8.1 Subject to the provisions of Article 8.2, the Licensee shall be
 entitled to claim compensation for any direct loss it may have
 suffered from the Software as a result of a fault on the part of the
 relevant Licensor, subject to providing evidence thereof.
 .
 8.2 The Licensor's liability is limited to the commitments made under
 this Agreement and shall not be incurred as a result of in particular:
 (i) loss due the Licensee's total or partial failure to fulfill its
 obligations, (ii) direct or consequential loss that is suffered by the
 Licensee due to the use or performance of the Software, and (iii) more
 generally, any consequential loss. In particular the Parties expressly
 agree that any or all pecuniary or business loss (i.e. loss of data,
 loss of profits, operating loss, loss of customers or orders,
 opportunity cost, any disturbance to business activities) or any or
 all legal proceedings instituted against the Licensee by a third
 party, shall constitute consequential loss and shall not provide
 entitlement to any or all compensation from the Licensor.
 .
 Article 9 - WARRANTY
 .
 9.1 The Licensee acknowledges that the scientific and technical
 state-of-the-art when the Software was distributed did not enable all
 possible uses to be tested and verified, nor for the presence of
 possible defects to be detected. In this respect, the Licensee's
 attention has been drawn to the risks associated with loading, using,
 modifying and/or developing and reproducing the Software which are
 reserved for experienced users.
 .
 The Licensee shall be responsible for verifying, by any or all means,
 the suitability of the product for its requirements, its good working
 order, and for ensuring that it shall not cause damage to either
 persons or properties.
 .
 9.2 The Licensor hereby represents, in good faith, that it is entitled
 to grant all the rights over the Software (including in particular the
 rights set forth in Article 5).
 .
 9.3 The Licensee acknowledges that the Software is supplied "as is" by
 the Licensor without any other express or tacit warranty, other than
 that provided for in Article 9.2 and, in particular, without any
 warranty as to its commercial value, its secured, safe, innovative or
 relevant nature.
 .
 Specifically, the Licensor does not warrant that the Software is free
 from any error, that it will operate without interruption, that it
 will be compatible with the Licensee's own equipment and software
 configuration, nor that it will meet the Licensee's requirements.
 .
 9.4 The Licensor does not either expressly or tacitly warrant that the
 Software does not infringe any third party intellectual property right
 relating to a patent, software or any other property right. Therefore,
 the Licensor disclaims any and all liability towards the Licensee
 arising out of any or all proceedings for infringement that may be
 instituted in respect of the use, modification and redistribution of
 the Software. Nevertheless, should such proceedings be instituted
 against the Licensee, the Licensor shall provide it with technical and
 legal assistance for its defense. Such technical and legal assistance
 shall be decided on a case-by-case basis between the relevant Licensor
 and the Licensee pursuant to a memorandum of understanding. The
 Licensor disclaims any and all liability as regards the Licensee's use
 of the name of the Software. No warranty is given as regards the
 existence of prior rights over the name of the Software or as regards
 the existence of a trademark.
 .
 Article 10 - TERMINATION
 .
 10.1 In the event of a breach by the Licensee of its obligations
 hereunder, the Licensor may automatically terminate this Agreement
 thirty (30) days after notice has been sent to the Licensee and has
 remained ineffective.
 .
 10.2 A Licensee whose Agreement is terminated shall no longer be
 authorized to use, modify or distribute the Software. However, any
 licenses that it may have granted prior to termination of the
 Agreement shall remain valid subject to their having been granted in
 compliance with the terms and conditions hereof.
 .
 Article 11 - MISCELLANEOUS
 .
 11.1 EXCUSABLE EVENTS
 .
 Neither Party shall be liable for any or all delay, or failure to
 perform the Agreement, that may be attributable to an event of force
 majeure, an act of God or an outside cause, such as defective
 functioning or interruptions of the electricity or telecommunications
 networks, network paralysis following a virus attack, intervention by
 government authorities, natural disasters, water damage, earthquakes,
 fire, explosions, strikes and labor unrest, war, etc.
 .
 11.2 Any failure by either Party, on one or more occasions, to invoke
 one or more of the provisions hereof, shall under no circumstances be
 interpreted as being a waiver by the interested Party of its right to
 invoke said provision(s) subsequently.
 .
 11.3 The Agreement cancels and replaces any or all previous
 agreements, whether written or oral, between the Parties and having
 the same purpose, and constitutes the entirety of the agreement
 between said Parties concerning said purpose. No supplement or
 modification to the terms and conditions hereof shall be effective as
 between the Parties unless it is made in writing and signed by their
 duly authorized representatives.
 .
 11.4 In the event that one or more of the provisions hereof were to
 conflict with a current or future applicable act or legislative text,
 said act or legislative text shall prevail, and the Parties shall make
 the necessary amendments so as to comply with said act or legislative
 text. All other provisions shall remain effective. Similarly,
 invalidity of a provision of the Agreement, for any reason whatsoever,
 shall not cause the Agreement as a whole to be invalid.
 .
 11.5 LANGUAGE
 .
 The Agreement is drafted in both French and English and both versions
 are deemed authentic.
 .
 Article 12 - NEW VERSIONS OF THE AGREEMENT
 .
 12.1 Any person is authorized to duplicate and distribute copies of
 this Agreement.
 .
 12.2 So as to ensure coherence, the wording of this Agreement is
 protected and may only be modified by the authors of the License, who
 reserve the right to periodically publish updates or new versions of
 the Agreement, each with a separate number. These subsequent versions
 may address new issues encountered by Free Software.
 .
 12.3 Any Software distributed under a given version of the Agreement
 may only be subsequently distributed under the same version of the
 Agreement or a subsequent version, subject to the provisions of
 Article 5.3.4.
 .
 Article 13 - GOVERNING LAW AND JURISDICTION
 .
 13.1 The Agreement is governed by French law. The Parties agree to
 endeavor to seek an amicable solution to any disagreements or disputes
 that may arise during the performance of the Agreement.
 .
 13.2 Failing an amicable solution within two (2) months as from their
 occurrence, and unless emergency proceedings are necessary, the
 disagreements or disputes shall be referred to the Paris Courts having
 jurisdiction, by the more diligent Party.
 .
 CeCILL stands for Ce(a) C(nrs) I(nria) L(ogiciel) L(ibre)
 .
 Version 2.0 dated 2006-09-05.

License: CC-BY-SA-2.0-FR
 This file is licensed under the Creative Commons Attribution-Share
 Alike 2.0 France license.
 .
 You are free to:
 .
 â�¢ Share â�� copy and redistribute the material in any medium or format
 â�¢ Adapt â�� remix, transform, and build upon the material for any
 purpose, even commercially.
 .
 Under the following terms:
 .
 â�¢ Attribution â�� You must give appropriate credit, provide a link to
 the license, and indicate if changes were made. You may do so in
 any reasonable manner, but not in any way that suggests the
 licensor endorses you or your use.
 â�¢ ShareAlike â�� If you remix, transform, or build upon the material,
 you must distribute your contributions under the same license as
 the original.
 â�¢ No additional restrictions â�� You may not apply legal terms or
 technological measures that legally restrict others from doing
 anything the license permits.
 .
 ---- Full license text follows ----
 .
 [Creative Commons Legal Code]
 .
 PaternitÃ© - Partage Des Conditions Initiales A l'Identique 2.0
 .
 Creative Commons n'est pas un cabinet d'avocats et ne fournit pas de
 services de conseil juridique. La distribution de la prÃ©sente version
 de ce contrat ne crÃ©e aucune relation juridique entre les parties au
 contrat prÃ©sentÃ© ci-aprÃ¨s et Creative Commons. Creative Commons
 fournit cette offre de contrat-type en l'Ã©tat, Ã seule fin
 d'information. Creative Commons ne saurait Ãªtre tenu responsable des
 Ã©ventuels prÃ©judices rÃ©sultant du contenu ou de l'utilisation de ce
 contrat.
 .
 Contrat
 .
 L'Oeuvre (telle que dÃ©finie ci-dessous) est mise Ã disposition selon
 les termes du prÃ©sent contrat appelÃ© Contrat Public Creative Commons
 (dÃ©nommÃ© ici Â« CPCC Â» ou Â« Contrat Â»). L'Oeuvre est protÃ©gÃ©e par le
 droit de la propriÃ©tÃ© littÃ©raire et artistique (droit d'auteur, droits
 voisins, droits des producteurs de bases de donnÃ©es) ou toute autre
 loi applicable. Toute utilisation de l'Oeuvre autrement
 qu'explicitement autorisÃ©e selon ce Contrat ou le droit applicable est
 interdite.
 .
 L'exercice sur l'Oeuvre de tout droit proposÃ© par le prÃ©sent contrat
 vaut acceptation de celui-ci. Selon les termes et les obligations du
 prÃ©sent contrat, la partie Offrante propose Ã la partie Acceptante
 l'exercice de certains droits prÃ©sentÃ©s ci-aprÃ¨s, et l'Acceptant en
 approuve les termes et conditions d'utilisation.
 .
 1. DÃ©finitions
 .
 Â« Oeuvre Â» : oeuvre de l'esprit protÃ©geable par le droit de la
 propriÃ©tÃ© littÃ©raire et artistique ou toute loi applicable et qui
 est mise Ã disposition selon les termes du prÃ©sent Contrat. Â«
 Oeuvre dite Collective Â» : une oeuvre dans laquelle l'oeuvre, dans
 sa forme intÃ©grale et non modifiÃ©e, est assemblÃ©e en un ensemble
 collectif avec d'autres contributions qui constituent en
 elles-mÃªmes des oeuvres sÃ©parÃ©es et indÃ©pendantes. Constituent
 notamment des Oeuvres dites Collectives les publications
 pÃ©riodiques, les anthologies ou les encyclopÃ©dies. Aux termes de
 la prÃ©sente autorisation, une oeuvre qui constitue une Oeuvre dite
 Collective ne sera pas considÃ©rÃ©e comme une Oeuvre dite DÃ©rivÃ©e
 (telle que dÃ©finie ci-aprÃ¨s). Â« Oeuvre dite DÃ©rivÃ©e Â» : une
 oeuvre crÃ©Ã©e soit Ã partir de l'Oeuvre seule, soit Ã partir de
 l'Oeuvre et d'autres oeuvres prÃ©existantes. Constituent notamment
 des Oeuvres dites DÃ©rivÃ©es les traductions, les arrangements
 musicaux, les adaptations thÃ©Ã¢trales, littÃ©raires ou
 cinÃ©matographiques, les enregistrements sonores, les reproductions
 par un art ou un procÃ©dÃ© quelconque, les rÃ©sumÃ©s, ou toute autre
 forme sous laquelle l'Oeuvre puisse Ãªtre remaniÃ©e, modifiÃ©e,
 transformÃ©e ou adaptÃ©e, Ã l'exception d'une oeuvre qui constitue
 une Oeuvre dite Collective. Une Oeuvre dite Collective ne sera pas
 considÃ©rÃ©e comme une Oeuvre dite DÃ©rivÃ©e aux termes du prÃ©sent
 Contrat. Dans le cas oÃ¹ l'Oeuvre serait une composition musicale
 ou un enregistrement sonore, la synchronisation de l'oeuvre avec
 une image animÃ©e sera considÃ©rÃ©e comme une Oeuvre dite DÃ©rivÃ©e
 pour les propos de ce Contrat. Â« Auteur original Â» : la ou les
 personnes physiques qui ont crÃ©Ã© l'Oeuvre. Â« Offrant Â» : la ou
 les personne(s) physique(s) ou morale(s) qui proposent la mise Ã
 disposition de l'Oeuvre selon les termes du prÃ©sent Contrat. Â«
 Acceptant Â» : la personne physique ou morale qui accepte le
 prÃ©sent contrat et exerce des droits sans en avoir violÃ© les
 termes au prÃ©alable ou qui a reÃ§u l'autorisation expresse de
 l'Offrant d'exercer des droits dans le cadre du prÃ©sent contrat
 malgrÃ© une prÃ©cÃ©dente violation de ce contrat. Â« Options du
 Contrat Â» : les attributs gÃ©nÃ©riques du Contrat tels qu'ils ont
 Ã©tÃ© choisis par l'Offrant et indiquÃ©s dans le titre de ce Contrat
 : PaternitÃ© - Pas d'Utilisation Commerciale - Partage Des
 Conditions Initiales A l'Identique.
 .
 2. Exceptions aux droits exclusifs. Aucune disposition de ce contrat
 n'a pour intention de rÃ©duire, limiter ou restreindre les prÃ©rogatives
 issues des exceptions aux droits, de l'Ã©puisement des droits ou
 d'autres limitations aux droits exclusifs des ayants droit selon le
 droit de la propriÃ©tÃ© littÃ©raire et artistique ou les autres lois
 applicables.
 .
 3. Autorisation. Soumis aux termes et conditions dÃ©finis dans cette
 autorisation, et ceci pendant toute la durÃ©e de protection de l'Oeuvre
 par le droit de la propriÃ©tÃ© littÃ©raire et artistique ou le droit
 applicable, l'Offrant accorde Ã l'Acceptant l'autorisation mondiale
 d'exercer Ã titre gratuit et non exclusif les droits suivants :
 .
 reproduire l'Oeuvre, incorporer l'Oeuvre dans une ou plusieurs
 Oeuvres dites Collectives et reproduire l'Oeuvre telle
 qu'incorporÃ©e dans lesdites Oeuvres dites Collectives; crÃ©er et
 reproduire des Oeuvres dites DÃ©rivÃ©es; distribuer des exemplaires
 ou enregistrements, prÃ©senter, reprÃ©senter ou communiquer l'Oeuvre
 au public par tout procÃ©dÃ© technique, y compris incorporÃ©e dans
 des Oeuvres Collectives; distribuer des exemplaires ou
 phonogrammes, prÃ©senter, reprÃ©senter ou communiquer au public des
 Oeuvres dites DÃ©rivÃ©es par tout procÃ©dÃ© technique; lorsque
 l'Oeuvre est une base de donnÃ©es, extraire et rÃ©utiliser des
 parties substantielles de l'Oeuvre.
 .
 Les droits mentionnÃ©s ci-dessus peuvent Ãªtre exercÃ©s sur tous les
 supports, mÃ©dias, procÃ©dÃ©s techniques et formats. Les droits ci-dessus
 incluent le droit d'effectuer les modifications nÃ©cessaires
 techniquement Ã l'exercice des droits dans d'autres formats et
 procÃ©dÃ©s techniques. L'exercice de tous les droits qui ne sont pas
 expressÃ©ment autorisÃ©s par l'Offrant ou dont il n'aurait pas la
 gestion demeure rÃ©servÃ©, notamment les mÃ©canismes de gestion
 collective obligatoire applicables dÃ©crits Ã l'article 4(d).
 .
 4. Restrictions. L'autorisation accordÃ©e par l'article 3 est
 expressÃ©ment assujettie et limitÃ©e par le respect des restrictions
 suivantes :
 .
 L'Acceptant peut reproduire, distribuer, reprÃ©senter ou
 communiquer au public l'Oeuvre y compris par voie numÃ©rique
 uniquement selon les termes de ce Contrat. L'Acceptant doit
 inclure une copie ou l'adresse Internet (Identifiant Uniforme de
 Ressource) du prÃ©sent Contrat Ã toute reproduction ou
 enregistrement de l'Oeuvre que l'Acceptant distribue, reprÃ©sente
 ou communique au public y compris par voie numÃ©rique. L'Acceptant
 ne peut pas offrir ou imposer de conditions d'utilisation de
 l'Oeuvre qui altÃ¨rent ou restreignent les termes du prÃ©sent
 Contrat ou l'exercice des droits qui y sont accordÃ©s au
 bÃ©nÃ©ficiaire. L'Acceptant ne peut pas cÃ©der de droits sur
 l'Oeuvre. L'Acceptant doit conserver intactes toutes les
 informations qui renvoient Ã ce Contrat et Ã l'exonÃ©ration de
 responsabilitÃ©. L'Acceptant ne peut pas reproduire, distribuer,
 reprÃ©senter ou communiquer au public l'Oeuvre, y compris par voie
 numÃ©rique, en utilisant une mesure technique de contrÃ´le d'accÃ¨s
 ou de contrÃ´le d'utilisation qui serait contradictoire avec les
 termes de cet Accord contractuel. Les mentions ci-dessus
 s'appliquent Ã l'Oeuvre telle qu'incorporÃ©e dans une Oeuvre dite
 Collective, mais, en dehors de l'Oeuvre en elle-mÃªme, ne
 soumettent pas l'Oeuvre dite Collective, aux termes du prÃ©sent
 Contrat. Si l'Acceptant crÃ©e une Oeuvre dite Collective, Ã la
 demande de tout Offrant, il devra, dans la mesure du possible,
 retirer de l'Oeuvre dite Collective toute rÃ©fÃ©rence au dit
 Offrant, comme demandÃ©. Si l'Acceptant crÃ©e une Oeuvre dite
 Collective, Ã la demande de tout Auteur, il devra, dans la mesure
 du possible, retirer de l'Oeuvre dite Collective toute rÃ©fÃ©rence
 au dit Auteur, comme demandÃ©. Si l'Acceptant crÃ©e une Oeuvre dite
 DÃ©rivÃ©e, Ã la demande de tout Offrant, il devra, dans la mesure du
 possible, retirer de l'Oeuvre dite DÃ©rivÃ©e toute rÃ©fÃ©rence au dit
 Offrant, comme demandÃ©. Si l'Acceptant crÃ©e une Oeuvre dite
 DÃ©rivÃ©e, Ã la demande de tout Auteur, il devra, dans la mesure du
 possible, retirer de l'Oeuvre dite DÃ©rivÃ©e toute rÃ©fÃ©rence au dit
 Auteur, comme demandÃ©. L'Acceptant peut reproduire, distribuer,
 reprÃ©senter ou communiquer au public une Oeuvre dite DÃ©rivÃ©e y
 compris par voie numÃ©rique uniquement sous les termes de ce
 Contrat, ou d'une version ultÃ©rieure de ce Contrat comprenant les
 mÃªmes Options du Contrat que le prÃ©sent Contrat, ou un Contrat
 Creative Commons iCommons comprenant les mÃªmes Options du Contrat
 que le prÃ©sent Contrat (par exemple PaternitÃ© - Pas d'Utilisation
 Commerciale - Partage Des Conditions Initiales A l'Identique 2.0
 Japon). L'Acceptant doit inclure une copie ou l'adresse Internet
 (Identifiant Uniforme de Ressource) du prÃ©sent Contrat, ou d'un
 autre Contrat tel que dÃ©crit Ã la phrase prÃ©cÃ©dente, Ã toute
 reproduction ou enregistrement de l'Oeuvre dite DÃ©rivÃ©e que
 l'Acceptant distribue, reprÃ©sente ou communique au public y
 compris par voie numÃ©rique. L'Acceptant ne peut pas offrir ou
 imposer de conditions d'utilisation sur l'Oeuvre dite DÃ©rivÃ©e qui
 altÃ¨rent ou restreignent les termes du prÃ©sent Contrat ou
 l'exercice des droits qui y sont accordÃ©s au bÃ©nÃ©ficiaire, et doit
 conserver intactes toutes les informations qui renvoient Ã ce
 Contrat et Ã l'avertissement sur les garanties. L'Acceptant ne
 peut pas reproduire, distribuer, reprÃ©senter ou communiquer au
 public y compris par voie numÃ©rique l'Oeuvre dite DÃ©rivÃ©e en
 utilisant une mesure technique de contrÃ´le d'accÃ¨s ou de contrÃ´le
 d'utilisation qui serait contradictoire avec les termes de cet
 Accord contractuel. Les mentions ci-dessus s'appliquent Ã l'Oeuvre
 dite DÃ©rivÃ©e telle qu'incorporÃ©e dans une Oeuvre dite Collective,
 mais, en dehors de l'Oeuvre dite DÃ©rivÃ©e en elle-mÃªme, ne
 soumettent pas l'Oeuvre Collective, aux termes du prÃ©sent Contrat.
 Si l'Acceptant reproduit, distribue, reprÃ©sente ou communique au
 public, y compris par voie numÃ©rique, l'Oeuvre ou toute Oeuvre
 dite DÃ©rivÃ©e ou toute Oeuvre dite Collective, il doit conserver
 intactes toutes les informations sur le rÃ©gime des droits et en
 attribuer la paternitÃ© Ã l'Auteur Original, de maniÃ¨re raisonnable
 au regard au mÃ©dium ou au moyen utilisÃ©. Il doit communiquer le
 nom de l'Auteur Original ou son Ã©ventuel pseudonyme s'il est
 indiquÃ© ; le titre de l'Oeuvre Originale s'il est indiquÃ© ; dans
 la mesure du possible, l'adresse Internet ou Identifiant Uniforme
 de Ressource (URI), s'il existe, spÃ©cifiÃ© par l'Offrant comme
 associÃ© Ã l'Oeuvre, Ã moins que cette adresse ne renvoie pas aux
 informations lÃ©gales (paternitÃ© et conditions d'utilisation de
 l'Oeuvre). Dans le cas d'une Oeuvre dite DÃ©rivÃ©e, il doit indiquer
 les Ã©lÃ©ments identifiant l'utilisation l'Oeuvre dans l'Oeuvre dite
 DÃ©rivÃ©e par exemple Â« Traduction anglaise de l'Oeuvre par l'Auteur
 Original Â» ou Â« ScÃ©nario basÃ© sur l'Oeuvre par l'Auteur Original
 Â». Ces obligations d'attribution de paternitÃ© doivent Ãªtre
 exÃ©cutÃ©es de maniÃ¨re raisonnable. Cependant, dans le cas d'une
 Oeuvre dite DÃ©rivÃ©e ou d'une Oeuvre dite Collective, ces
 informations doivent, au minimum, apparaÃ®tre Ã la place et de
 maniÃ¨re aussi visible que celles Ã laquelle apparaissent les
 informations de mÃªme nature. Dans le cas oÃ¹ une utilisation de
 l'Oeuvre serait soumise Ã un rÃ©gime lÃ©gal de gestion collective
 obligatoire, l'Offrant se rÃ©serve le droit exclusif de collecter
 ces redevances par l'intermÃ©diaire de la sociÃ©tÃ© de perception et
 de rÃ©partition des droits compÃ©tente. Sont notamment concernÃ©s la
 radiodiffusion et la communication dans un lieu public de
 phonogrammes publiÃ©s Ã des fins de commerce, certains cas de
 retransmission par cÃ¢ble et satellite, la copie privÃ©e d'Oeuvres
 fixÃ©es sur phonogrammes ou vidÃ©ogrammes, la reproduction par
 reprographie.
 .
 5. Garantie et exonÃ©ration de responsabilitÃ©
 .
 En mettant l'Oeuvre Ã la disposition du public selon les termes de
 ce Contrat, l'Offrant dÃ©clare de bonne foi qu'Ã sa
 connaissance et dans les limites d'une enquÃªte raisonnable :
 L'Offrant a obtenu tous les droits sur l'Oeuvre nÃ©cessaires
 pour pouvoir autoriser l'exercice des droits accordÃ©s par le
 prÃ©sent Contrat, et permettre la jouissance paisible et
 l'exercice licite de ces droits, ceci sans que l'Acceptant
 n'ait aucune obligation de verser de rÃ©munÃ©ration ou tout
 autre paiement ou droits, dans la limite des mÃ©canismes de
 gestion collective obligatoire applicables dÃ©crits Ã l'article
 4(e); L'Oeuvre n'est constitutive ni d'une violation des
 droits de tiers, notamment du droit de la propriÃ©tÃ© littÃ©raire
 et artistique, du droit des marques, du droit de
 l'information, du droit civil ou de tout autre droit, ni de
 diffamation, de violation de la vie privÃ©e ou de tout autre
 prÃ©judice dÃ©lictuel Ã l'Ã©gard de toute tierce partie. A
 l'exception des situations expressÃ©ment mentionnÃ©es dans le
 prÃ©sent Contrat ou dans un autre accord Ã©crit, ou exigÃ©es par
 la loi applicable, l'Oeuvre est mise Ã disposition en l'Ã©tat
 sans garantie d'aucune sorte, qu'elle soit expresse ou tacite,
 y compris Ã l'Ã©gard du contenu ou de l'exactitude de l'Oeuvre.
 .
 6. Limitation de responsabilitÃ©. A l'exception des garanties d'ordre
 public imposÃ©es par la loi applicable et des rÃ©parations imposÃ©es par
 le rÃ©gime de la responsabilitÃ© vis-Ã -vis d'un tiers en raison de la
 violation des garanties prÃ©vues par l'article 5 du prÃ©sent contrat,
 l'Offrant ne sera en aucun cas tenu responsable vis-Ã -vis de
 l'Acceptant, sur la base d'aucune thÃ©orie lÃ©gale ni en raison d'aucun
 prÃ©judice direct, indirect, matÃ©riel ou moral, rÃ©sultant de
 l'exÃ©cution du prÃ©sent Contrat ou de l'utilisation de l'Oeuvre, y
 compris dans l'hypothÃ¨se oÃ¹ l'Offrant avait connaissance de la
 possible existence d'un tel prÃ©judice.
 .
 7. RÃ©siliation
 .
 Tout manquement aux termes du contrat par l'Acceptant entraÃ®ne la
 rÃ©siliation automatique du Contrat et la fin des droits qui en
 dÃ©coulent. Cependant, le contrat conserve ses effets envers les
 personnes physiques ou morales qui ont reÃ§u de la part de
 l'Acceptant, en exÃ©cution du prÃ©sent contrat, la mise Ã
 disposition d'Oeuvres dites DÃ©rivÃ©es, ou d'Oeuvres dites
 Collectives, ceci tant qu'elles respectent pleinement leurs
 obligations. Les sections 1, 2, 5, 6 et 7 du contrat continuent Ã
 s'appliquer aprÃ¨s la rÃ©siliation de celui-ci. Dans les limites
 indiquÃ©es ci-dessus, le prÃ©sent Contrat s'applique pendant toute
 la durÃ©e de protection de l'Oeuvre selon le droit
 applicable. NÃ©anmoins, l'Offrant se rÃ©serve Ã tout moment le droit
 d'exploiter l'Oeuvre sous des conditions contractuelles
 diffÃ©rentes, ou d'en cesser la diffusion; cependant, le recours Ã
 cette option ne doit pas conduire Ã retirer les effets du prÃ©sent
 Contrat (ou de tout contrat qui a Ã©tÃ© ou doit Ãªtre accordÃ© selon
 les termes de ce Contrat), et ce Contrat continuera Ã s'appliquer
 dans tous ses effets jusqu'Ã ce que sa rÃ©siliation intervienne
 dans les conditions dÃ©crites ci-dessus.
 .
 8. Divers
 .
 A chaque reproduction ou communication au public par voie
 numÃ©rique de l'Oeuvre ou d'une Oeuvre dite Collective par
 l'Acceptant, l'Offrant propose au bÃ©nÃ©ficiaire une offre de mise Ã
 disposition de l'Oeuvre dans des termes et conditions identiques Ã
 ceux accordÃ©s Ã la partie Acceptante dans le prÃ©sent Contrat. A
 chaque reproduction ou communication au public par voie numÃ©rique
 d'une Oeuvre dite DÃ©rivÃ©e par l'Acceptant, l'Offrant propose au
 bÃ©nÃ©ficiaire une offre de mise Ã disposition du bÃ©nÃ©ficiaire de
 l'Oeuvre originale dans des termes et conditions identiques Ã ceux
 accordÃ©s Ã la partie Acceptante dans le prÃ©sent Contrat. La
 nullitÃ© ou l'inapplicabilitÃ© d'une quelconque disposition de ce
 Contrat au regard de la loi applicable n'affecte pas celle des
 autres dispositions qui resteront pleinement valides et
 applicables. Sans action additionnelle par les parties Ã cet
 accord, lesdites dispositions devront Ãªtre interprÃ©tÃ©es dans la
 mesure minimum nÃ©cessaire Ã leur validitÃ© et leur applicabilitÃ©.
 Aucune limite, renonciation ou modification des termes ou
 dispositions du prÃ©sent Contrat ne pourra Ãªtre acceptÃ©e sans le
 consentement Ã©crit et signÃ© de la partie compÃ©tente. Ce Contrat
 constitue le seul accord entre les parties Ã propos de l'Oeuvre
 mise ici Ã disposition. Il n'existe aucun Ã©lÃ©ment annexe, accord
 supplÃ©mentaire ou mandat portant sur cette Oeuvre en dehors des
 Ã©lÃ©ments mentionnÃ©s ici. L'Offrant ne sera tenu par aucune
 disposition supplÃ©mentaire qui pourrait apparaÃ®tre dans une
 quelconque communication en provenance de l'Acceptant. Ce Contrat
 ne peut Ãªtre modifiÃ© sans l'accord mutuel Ã©crit de l'Offrant et de
 l'Acceptant. Le droit applicable est le droit franÃ§ais.
 .
 Creative Commons n'est pas partie Ã ce Contrat et n'offre aucune forme
 de garantie relative Ã l'Oeuvre. Creative Commons dÃ©cline toute
 responsabilitÃ© Ã l'Ã©gard de l'Acceptant ou de toute autre partie, quel
 que soit le fondement lÃ©gal de cette responsabilitÃ© et quel que soit
 le prÃ©judice subi, direct, indirect, matÃ©riel ou moral, qui
 surviendrait en rapport avec le prÃ©sent Contrat. Cependant, si
 Creative Commons s'est expressÃ©ment identifiÃ© comme Offrant pour
 mettre une Oeuvre Ã disposition selon les termes de ce Contrat,
 Creative Commons jouira de tous les droits et obligations d'un
 Offrant.
 .
 A l'exception des fins limitÃ©es Ã informer le public que l'Oeuvre est
 mise Ã disposition sous CPCC, aucune des parties n'utilisera la marque
 Â« Creative Commons Â» ou toute autre indication ou logo affÃ©rent sans
 le consentement prÃ©alable Ã©crit de Creative Commons. Toute utilisation
 autorisÃ©e devra Ãªtre effectuÃ©e en conformitÃ© avec les lignes
 directrices de Creative Commons Ã jour au moment de l'utilisation,
 telles qu'elles sont disponibles sur son site Internet ou sur simple
 demande.
 .
 Creative Commons peut Ãªtre contactÃ© Ã https://creativecommons.org/.

./usr/share/doc/python3-pikepdf/examples/find_links.py

Copyright (c) 2019, James R. Barlow

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

"""Use pikepdf to find links in a PDF"""

import argparse
import pikepdf
from pikepdf import Name

parser = argparse.ArgumentParser(description="Find URIs in a PDF")
parser.add_argument('input_file')

def check_action(action):
 if action.Type != Name.Action:
 return
 if action.S == Name.URI:
 yield str(bytes(action.URI), encoding='ascii')

def check_object_aa(obj):
 if Name.AA in obj:
 for name, action in obj.AA.items():
 yield from check_action(action)

def check_page_annots(pdf, page):
 if Name.Annots not in page:
 return
 annots = page.Annots
 for annot in annots:
 if annot.Type != Name.Annot:
 continue
 if annot.Subtype == Name.Link:
 link_annot = annot
 if Name.A in link_annot:
 action = link_annot.A
 yield from check_action(action)
 yield from check_object_aa(annot)

def check_page(pdf, page):
 yield from check_object_aa(page)

def gather_links(pdf):
 for page in pdf.pages:
 yield from check_page(pdf, page)
 yield from check_page_annots(pdf, page)

def main():
 args = parser.parse_args()
 pdf = pikepdf.open(args.input_file)
 links = gather_links(pdf)
 for link in links:
 print(link)

if __name__ == "__main__":
 main()

