
debian-binary
2.0

control.tar.xz
control.tar

./control

Package: python3-pikepdf
Source: pikepdf (8.7.1+dfsg-2)
Version: 8.7.1+dfsg-2+b1
Architecture: riscv64
Maintainer: Debian Python Team <team+python@tracker.debian.org>
Installed-Size: 3065
Depends: python3-pkg-resources, python3 (<< 3.13), python3 (>= 3.11~), python3-deprecated, python3-lxml, python3-packaging, python3-pil, python3:any, libc6 (>= 2.32), libgcc-s1 (>= 3.4), libqpdf29 (>> 11.6~), libstdc++6 (>= 13.1)
Section: python
Priority: optional
Homepage: https://github.com/pikepdf/pikepdf
Description: Python library to read and write PDFs with QPDF
 pikepdf is a Python library to read and write PDFs with QPDF.
 Features include:
 .
 * Editing, manipulation and transformation of existing PDFs
 * Based on the mature, proven QPDF C++ library
 * Works with encrypted PDFs
 * Supports all PDF compression filters
 * Can create "fast web view" (linearized) PDFs
 * Creates standards compliant PDFs that pass validation in other tools
 * Automatically repairs damaged PDFs, just like QPDF
 * Implements more of the PDF specification than existing Python PDF tools
 * IPython notebook and Jupyter integration

./md5sums

c72246579c4437c07cebb86fbcbc6d90 usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/INSTALLER
0681024a6014610bd32b73e482ad12db usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/METADATA
e43c4f8f4550da1c92ee226509d8b7f7 usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/WHEEL
ab9bf3ab99c4b75a366d1861b012fb24 usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/top_level.txt
e6c160581c86931b8054530f8c137ed5 usr/lib/python3/dist-packages/pikepdf/__init__.py
8205e8e473813b29010d337b4c6011ce usr/lib/python3/dist-packages/pikepdf/_augments.py
f1165903758ae9d9b69af9bb3c07d173 usr/lib/python3/dist-packages/pikepdf/_core.cpython-311-riscv64-linux-gnu.so
946bc5ffcf3fc43689576f06400109a1 usr/lib/python3/dist-packages/pikepdf/_core.cpython-312-riscv64-linux-gnu.so
bf2a71de4ba20c8aaf5e8399156ee797 usr/lib/python3/dist-packages/pikepdf/_core.pyi
5b80a475c9c7404ad36065cbfce3f925 usr/lib/python3/dist-packages/pikepdf/_cpphelpers.py
e14e662101344d0da03fa4114f3a2965 usr/lib/python3/dist-packages/pikepdf/_exceptions.py
2029279902abadd91ba327a652603f6b usr/lib/python3/dist-packages/pikepdf/_io.py
284f409e7068335b3d9db11d2d878d06 usr/lib/python3/dist-packages/pikepdf/_methods.py
9fb1c3118de83642ba826c143e8b11fd usr/lib/python3/dist-packages/pikepdf/_qpdf.py
6a291a87c9407a87904a2875f1b83582 usr/lib/python3/dist-packages/pikepdf/_xml.py
eee13720c55cc7212f15f5a628cc5d7c usr/lib/python3/dist-packages/pikepdf/codec.py
5a8cad9aa8beba4070ecd21bec917f12 usr/lib/python3/dist-packages/pikepdf/jbig2.py
d8b0bd243a10d48a865217c87a8c5ba1 usr/lib/python3/dist-packages/pikepdf/models/__init__.py
689741e2c6d6e4e488e761be617ecd07 usr/lib/python3/dist-packages/pikepdf/models/_content_stream.py
d47ab9eafd9b4ef7ef6c8b4dfd91094f usr/lib/python3/dist-packages/pikepdf/models/_transcoding.py
78cc906ff2b90ac54dd2434842f2b9de usr/lib/python3/dist-packages/pikepdf/models/encryption.py
dc125a48ce11308a9045574593722a2b usr/lib/python3/dist-packages/pikepdf/models/image.py
13e1f91710b3bbbe1f0ede02e75fa746 usr/lib/python3/dist-packages/pikepdf/models/matrix.py
592b49e9ff6b569ffefbb3345271b2bc usr/lib/python3/dist-packages/pikepdf/models/metadata.py
3dcc11b9d0024d638a6a5d51266e2491 usr/lib/python3/dist-packages/pikepdf/models/outlines.py
aa48ae5da87737c814c13a9bb4d3cdf4 usr/lib/python3/dist-packages/pikepdf/objects.py
00dad5aa1b89b92e500f4ba5039d0085 usr/lib/python3/dist-packages/pikepdf/py.typed
9f45b64b236490c2d2fbc68af681ef4f usr/lib/python3/dist-packages/pikepdf/settings.py
d091d18d5cd99dc707606c5531903516 usr/share/doc/python3-pikepdf/changelog.Debian.gz
2fbf122dbc10c45d21da1f9b1fd762f3 usr/share/doc/python3-pikepdf/changelog.Debian.riscv64.gz
56bc2c28f30dc20ca076b70eb07c85d9 usr/share/doc/python3-pikepdf/copyright
2c27594933deb0f3ae127a1aefb02911 usr/share/doc/python3-pikepdf/examples/find_links.py

./postinst

#!/bin/sh
set -e

Automatically added by dh_python3
if command -v py3compile >/dev/null 2>&1; then
	py3compile -p python3-pikepdf:riscv64
fi
if command -v pypy3compile >/dev/null 2>&1; then
	pypy3compile -p python3-pikepdf:riscv64 || true
fi

End automatically added section

./prerm

#!/bin/sh
set -e

Automatically added by dh_python3
if command -v py3clean >/dev/null 2>&1; then
	py3clean -p python3-pikepdf:riscv64
else
	dpkg -L python3-pikepdf:riscv64 | sed -En -e '/^(.*)\/(.+)\.py$/s,,rm "\1/__pycache__/\2".*,e'
	find /usr/lib/python3/dist-packages/ -type d -name __pycache__ -empty -print0 | xargs --null --no-run-if-empty rmdir
fi

End automatically added section

data.tar.xz
data.tar

./usr/lib/python3/dist-packages/pikepdf/__init__.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""A library for manipulating PDFs."""

isort:skip_file

from __future__ import annotations

__version__ = "8.7.1"

try:
 from . import _core
except ImportError as _e: # pragma: no cover
 _msg = "pikepdf's extension library failed to import"
 raise ImportError(_msg) from _e

from ._core import (
 AccessMode,
 Annotation,
 AttachedFileSpec,
 ContentStreamInlineImage,
 ContentStreamInstruction,
 DataDecodingError,
 DeletedObjectError,
 ForeignObjectError,
 Job,
 JobUsageError,
 Matrix,
 NameTree,
 NumberTree,
 ObjectHelper,
 ObjectStreamMode,
 Page,
 PasswordError,
 Pdf,
 PdfError,
 Rectangle,
 StreamDecodeLevel,
 Token,
 TokenFilter,
 TokenType,
)
from ._exceptions import DependencyError
from .objects import (
 Array,
 Dictionary,
 Name,
 Object,
 ObjectType,
 Operator,
 Stream,
 String,
)
from .models import (
 Encryption,
 Outline,
 OutlineItem,
 OutlineStructureError,
 PageLocation,
 PdfImage,
 PdfInlineImage,
 PdfMatrix,
 Permissions,
 UnsupportedImageTypeError,
 make_page_destination,
 parse_content_stream,
 unparse_content_stream,
)

Importing these will monkeypatch classes defined in C++ and register a new
pdfdoc codec
While _cpphelpers is intended to be called from our C++ code only, explicitly
importing helps introspection tools like PyInstaller figure out that the module
is necessary.
from . import _cpphelpers, _methods, codec # noqa: F401, F841
from . import settings

__libqpdf_version__: str = _core.qpdf_version()

Provide pikepdf.{open, new} -> pikepdf.Pdf.{open, new}
open = Pdf.open # pylint: disable=redefined-builtin
new = Pdf.new

Exclude .open, .new here from to make sure from pikepdf import * does not clobber
builtins.open()
Exclude codec, objects, jbig2 because we import the interesting bits from them
directly to here.
_exclude_from__all__ = {'open', 'new', 'codec', 'objects', 'jbig2'}

__all__ = [
 'AccessMode',
 'Annotation',
 'AttachedFileSpec',
 'ContentStreamInlineImage',
 'ContentStreamInstruction',
 'DataDecodingError',
 'DeletedObjectError',
 'DependencyError',
 'ForeignObjectError',
 'Job',
 'JobUsageError',
 'Matrix',
 'NameTree',
 'NumberTree',
 'ObjectHelper',
 'ObjectStreamMode',
 'Page',
 'PasswordError',
 'Pdf',
 'PdfError',
 'Rectangle',
 'StreamDecodeLevel',
 'Token',
 'TokenFilter',
 'TokenType',
 'Array',
 'Dictionary',
 'Name',
 'Object',
 'ObjectType',
 'Operator',
 'Stream',
 'String',
 'models',
 'Encryption',
 'Outline',
 'OutlineItem',
 'OutlineStructureError',
 'PageLocation',
 'PdfImage',
 'PdfInlineImage',
 'PdfMatrix',
 'Permissions',
 'UnsupportedImageTypeError',
 'make_page_destination',
 'parse_content_stream',
 'unparse_content_stream',
 'settings',
 '__libqpdf_version__',
 '__version__',
]

./usr/lib/python3/dist-packages/pikepdf/_augments.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""A peculiar method of monkeypatching C++ binding classes with Python methods."""

from __future__ import annotations

import inspect
import platform
from typing import Any, Callable, Protocol, TypeVar

class AugmentedCallable(Protocol):
 """Protocol for any method, with attached booleans."""

 _augment_override_cpp: bool
 _augment_if_no_cpp: bool

 def __call__(self, *args, **kwargs) -> Any:
 """Any function.""" # pragma: no cover

def augment_override_cpp(fn: AugmentedCallable) -> AugmentedCallable:
 """Replace the C++ implementation, if there is one."""
 fn._augment_override_cpp = True
 return fn

def augment_if_no_cpp(fn: AugmentedCallable) -> AugmentedCallable:
 """Provide a Python implementation if no C++ implementation exists."""
 fn._augment_if_no_cpp = True
 return fn

def _is_inherited_method(meth: Callable) -> bool:
 # Augmenting a C++ with a method that cls inherits from the Python
 # object is never what we want.
 return meth.__qualname__.startswith('object.')

def _is_augmentable(m: Any) -> bool:
 return (
 inspect.isfunction(m) and not _is_inherited_method(m)
) or inspect.isdatadescriptor(m)

Tcpp = TypeVar('Tcpp')
T = TypeVar('T')

def augments(cls_cpp: type[Tcpp]):
 """Attach methods of a Python support class to an existing class.

 This monkeypatches all methods defined in the support class onto an
 existing class. Example:

 .. code-block:: python

 @augments(ClassDefinedInCpp)
 class SupportClass:
 def foo(self):
 pass

 The Python method 'foo' will be monkeypatched on ClassDefinedInCpp. SupportClass
 has no meaning on its own and should not be used, but gets returned from
 this function so IDE code inspection doesn't get too confused.

 We don't subclass because it's much more convenient to monkeypatch Python
 methods onto the existing Python binding of the C++ class. For one thing,
 this allows the implementation to be moved from Python to C++ or vice
 versa. It saves having to implement an intermediate Python subclass and then
 ensures that the C++ superclass never 'leaks' to pikepdf users. Finally,
 wrapper classes and subclasses can become problematic if the call stack
 crosses the C++/Python boundary multiple times.

 Any existing methods may be used, regardless of whether they are defined
 elsewhere in the support class or in the target class.

 For data fields to work, the target class must be
 tagged ``py::dynamic_attr`` in pybind11.

 Strictly, the target class does not have to be C++ or derived from pybind11.
 This works on pure Python classes too.

 THIS DOES NOT work for class methods.

 (Alternative ideas: https://github.com/pybind/pybind11/issues/1074)
 """
 OVERRIDE_WHITELIST = {'__eq__', '__hash__', '__repr__'}
 if platform.python_implementation() == 'PyPy':
 # Either PyPy or pybind11's interface to PyPy automatically adds a __getattr__
 OVERRIDE_WHITELIST |= {'__getattr__'} # pragma: no cover

 def class_augment(cls: type[T], cls_cpp: type[Tcpp] = cls_cpp) -> type[T]:
 # inspect.getmembers has different behavior on PyPy - in particular it seems
 # that a typical PyPy class like cls will have more methods that it considers
 # methods than CPython does. Our predicate should take care of this.
 for name, member in inspect.getmembers(cls, predicate=_is_augmentable):
 if name == '__weakref__':
 continue
 if (
 hasattr(cls_cpp, name)
 and hasattr(cls, name)
 and name not in getattr(cls, '__abstractmethods__', set())
 and name not in OVERRIDE_WHITELIST
 and not getattr(getattr(cls, name), '_augment_override_cpp', False)
):
 if getattr(getattr(cls, name), '_augment_if_no_cpp', False):
 # If tagged as "augment if no C++", we only want the binding to be
 # applied when the primary class does not provide a C++
 # implementation. Usually this would be a function that not is
 # provided by pybind11 in some template.
 continue

 # If the original C++ class and Python support class both define the
 # same name, we generally have a conflict, because this is augmentation
 # not inheritance. However, if the method provided by the support class
 # is an abstract method, then we can consider the C++ version the
 # implementation. Also, pybind11 provides defaults for __eq__,
 # __hash__ and __repr__ that we often do want to override directly.

 raise RuntimeError(
 f"C++ {cls_cpp} and Python {cls} both define the same "
 f"non-abstract method {name}: "
 f"{getattr(cls_cpp, name, '')!r}, "
 f"{getattr(cls, name, '')!r}"
)
 if inspect.isfunction(member):
 if hasattr(cls_cpp, name):
 # If overriding a C++ named method, make a copy of the original
 # method. This is so that the Python override can call the C++
 # implementation if it needs to.
 setattr(cls_cpp, f"_cpp{name}", getattr(cls_cpp, name))
 setattr(cls_cpp, name, member)
 installed_member = getattr(cls_cpp, name)
 installed_member.__qualname__ = member.__qualname__.replace(
 cls.__name__, cls_cpp.__name__
)
 elif inspect.isdatadescriptor(member):
 setattr(cls_cpp, name, member)

 def disable_init(self):
 # Prevent initialization of the support class
 raise NotImplementedError(self.__class__.__name__ + '.__init__')

 cls.__init__ = disable_init # type: ignore
 return cls

 return class_augment

./usr/lib/python3/dist-packages/pikepdf/_core.cpython-311-riscv64-linux-gnu.so

./usr/lib/python3/dist-packages/pikepdf/_core.cpython-312-riscv64-linux-gnu.so

./usr/lib/python3/dist-packages/pikepdf/_core.pyi

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

from __future__ import annotations

pybind11 does not generate type annotations yet, and mypy doesn't understand
the way we're augmenting C++ classes with Python methods as in
pikepdf/_methods.py. Thus, we need to manually spell out the resulting types
after augmenting.
import datetime
from abc import abstractmethod
from decimal import Decimal
from enum import Enum
from pathlib import Path
from typing import (
 TYPE_CHECKING,
 Any,
 BinaryIO,
 Callable,
 ClassVar,
 Collection,
 Iterable,
 Iterator,
 KeysView,
 Literal,
 Mapping,
 MutableMapping,
 Sequence,
 TypeVar,
 overload,
)

from pikepdf.models.encryption import Encryption, EncryptionInfo, Permissions
from pikepdf.models.image import PdfInlineImage
from pikepdf.models.metadata import PdfMetadata
from pikepdf.models.outlines import Outline
from pikepdf.objects import Array, Dictionary, Name, Stream, String

if TYPE_CHECKING:
 import numpy as np

This is the whole point of stub files, but apparently we have to do this...
pylint: disable=no-method-argument,unused-argument,no-self-use,too-many-public-methods

T = TypeVar('T', bound='Object')
Numeric = TypeVar('Numeric', int, float, Decimal)

class Buffer: ...

Exceptions

class DataDecodingError(Exception): ...
class JobUsageError(Exception): ...
class PasswordError(Exception): ...
class PdfError(Exception): ...
class ForeignObjectError(Exception): ...
class DeletedObjectError(Exception): ...

Enums
class AccessMode(Enum):
 default: int = ...
 mmap: int = ...
 mmap_only: int = ...
 stream: int = ...

class EncryptionMethod(Enum):
 none: int = ...
 unknown: int = ...
 rc4: int = ...
 aes: int = ...
 aesv3: int = ...

class ObjectStreamMode(Enum):
 disable: int = ...
 generate: int = ...
 preserve: int = ...

class ObjectType(Enum):
 array: int = ...
 boolean: int = ...
 dictionary: int = ...
 inlineimage: int = ...
 integer: int = ...
 name_: int = ...
 null: int = ...
 operator: int = ...
 real: int = ...
 reserved: int = ...
 stream: int = ...
 string: int = ...
 uninitialized: int = ...

class StreamDecodeLevel(Enum):
 all: int = ...
 generalized: int = ...
 none: int = ...
 specialized: int = ...

class TokenType(Enum):
 array_close: int = ...
 array_open: int = ...
 bad: int = ...
 bool: int = ...
 brace_close: int = ...
 brace_open: int = ...
 comment: int = ...
 dict_close: int = ...
 dict_open: int = ...
 eof: int = ...
 inline_image: int = ...
 integer: int = ...
 name_: int = ...
 null: int = ...
 real: int = ...
 space: int = ...
 string: int = ...
 word: int = ...

class Object:
 def _ipython_key_completions_(self) -> KeysView | None: ...
 def _inline_image_raw_bytes(self) -> bytes: ...
 def _parse_page_contents(self, callbacks: Callable) -> None: ...
 def _parse_page_contents_grouped(
 self, whitelist: str
) -> list[tuple[Collection[Object | PdfInlineImage], Operator]]: ...
 @staticmethod
 def _parse_stream(stream: Object, parser: StreamParser) -> list: ...
 @staticmethod
 def _parse_stream_grouped(stream: Object, whitelist: str) -> list: ...
 def _repr_mimebundle_(self, include=None, exclude=None) -> dict | None: ...
 def _write(
 self,
 data: bytes,
 filter: Object, # pylint: disable=redefined-builtin
 decode_parms: Object,
) -> None: ...
 def append(self, pyitem: Any) -> None: ...
 def as_dict(self) -> _ObjectMapping: ...
 def as_list(self) -> _ObjectList: ...
 def emplace(self, other: Object, retain: Iterable[Name] = ...) -> None: ...
 def extend(self, arg0: Iterable[Object]) -> None: ...
 @overload
 def get(self, key: str, default: T | None = ...) -> Object | T | None: ...
 @overload
 def get(self, key: Name, default: T | None = ...) -> Object | T | None: ...
 def get_raw_stream_buffer(self) -> Buffer: ...
 def get_stream_buffer(self, decode_level: StreamDecodeLevel = ...) -> Buffer: ...
 def is_owned_by(self, possible_owner: Pdf) -> bool: ...
 def items(self) -> Iterable[tuple[str, Object]]: ...
 def keys(self) -> set[str]: ...
 @staticmethod
 def parse(stream: bytes, description: str = ...) -> Object: ...
 def read_bytes(self, decode_level: StreamDecodeLevel = ...) -> bytes: ...
 def read_raw_bytes(self) -> bytes: ...
 def same_owner_as(self, other: Object) -> bool: ...
 def to_json(self, dereference: bool = ...) -> bytes: ...
 def unparse(self, resolved: bool = ...) -> bytes: ...
 def with_same_owner_as(self, arg0: Object) -> Object: ...
 def wrap_in_array(self) -> Array: ...
 def write(
 self,
 data: bytes,
 *,
 filter: Name | Array | None = ..., # pylint: disable=redefined-builtin
 decode_parms: Dictionary | Array | None = ...,
 type_check: bool = ...,
) -> None: ...
 def __bool__(self) -> bool: ...
 def __bytes__(self) -> bytes: ...
 @overload
 def __contains__(self, arg0: Object) -> bool: ...
 @overload
 def __contains__(self, arg0: str) -> bool: ...
 def __copy__(self) -> Object: ...
 def __delattr__(self, arg0: str) -> None: ...
 @overload
 def __delitem__(self, arg0: str) -> None: ...
 @overload
 def __delitem__(self, arg0: Object) -> None: ...
 @overload
 def __delitem__(self, arg0: int) -> None: ...
 def __dir__(self) -> list: ...
 def __eq__(self, other: Any) -> bool: ...
 def __getattr__(self, arg0: str) -> Object: ...
 @overload
 def __getitem__(self, arg0: str) -> Object: ...
 @overload
 def __getitem__(self, arg0: Object) -> Object: ...
 @overload
 def __getitem__(self, arg0: int) -> Object: ...
 def __hash__(self) -> int: ...
 def __iter__(self) -> Iterable[Object]: ...
 def __len__(self) -> int: ...
 def __setattr__(self, arg0: str, arg1: object) -> None: ...
 @overload
 def __setitem__(self, arg0: str, arg1: Object) -> None: ...
 @overload
 def __setitem__(self, arg0: Object, arg1: Object) -> None: ...
 @overload
 def __setitem__(self, arg0: str, arg1: object) -> None: ...
 @overload
 def __setitem__(self, arg0: Object, arg1: object) -> None: ...
 @overload
 def __setitem__(self, arg0: int, arg1: Object) -> None: ...
 @overload
 def __setitem__(self, arg0: int, arg1: object) -> None: ...
 @property
 def _objgen(self) -> tuple[int, int]: ...
 @property
 def _type_code(self) -> ObjectType: ...
 @property
 def _type_name(self) -> str: ...
 @property
 def images(self) -> _ObjectMapping: ...
 @property
 def is_indirect(self) -> bool: ...
 @property
 def is_rectangle(self) -> bool: ...
 @property
 def objgen(self) -> tuple[int, int]: ...
 @property
 def stream_dict(self) -> Object: ...
 @stream_dict.setter
 def stream_dict(self, val: Object) -> None: ...

class ObjectHelper:
 def __eq__(self, other: Any) -> bool: ...
 @property
 def obj(self) -> Object: ...

class _ObjectList:
 @overload
 def __init__(self) -> None: ...
 @overload
 def __init__(self, arg0: _ObjectList) -> None: ...
 @overload
 def __init__(self, arg0: Iterable) -> None: ...
 @overload
 def __init__(*args, **kwargs) -> None: ...
 def append(self, x: Object) -> None: ...
 def clear(self) -> None: ...
 def count(self, x: Object) -> int: ...
 @overload
 def extend(self, L: _ObjectList) -> None: ...
 @overload
 def extend(self, L: Iterable[Object]) -> None: ...
 def insert(self, i: int, x: Object) -> None: ...
 @overload
 def pop(self) -> Object: ...
 @overload
 def pop(self, i: int) -> Object: ...
 @overload
 def pop(*args, **kwargs) -> Any: ...
 def remove(self, x: Object) -> None: ...
 def __bool__(self) -> bool: ...
 def __contains__(self, x: Object) -> bool: ...
 @overload
 def __delitem__(self, arg0: int) -> None: ...
 @overload
 def __delitem__(self, arg0: slice) -> None: ...
 @overload
 def __delitem__(*args, **kwargs) -> Any: ...
 def __eq__(self, other: Any) -> bool: ...
 @overload
 def __getitem__(self, s: slice) -> _ObjectList: ...
 @overload
 def __getitem__(self, arg0: int) -> Object: ...
 @overload
 def __getitem__(*args, **kwargs) -> Any: ...
 def __iter__(self) -> Iterator[Object]: ...
 def __len__(self) -> int: ...
 def __ne__(self, other: Any) -> bool: ...
 @overload
 def __setitem__(self, arg0: int, arg1: Object) -> None: ...
 @overload
 def __setitem__(self, arg0: slice, arg1: _ObjectList) -> None: ...
 @overload
 def __setitem__(*args, **kwargs) -> Any: ...

class _ObjectMapping:
 get: Any = ...
 keys: Any = ...
 values: Any = ...
 def __contains__(self, arg0: Name | str) -> bool: ...
 def __init__(self) -> None: ...
 def items(self) -> Iterator: ...
 def __bool__(self) -> bool: ...
 def __delitem__(self, arg0: str) -> None: ...
 def __getitem__(self, arg0: Name | str) -> Object: ...
 def __iter__(self) -> Iterator: ...
 def __len__(self) -> int: ...
 def __setitem__(self, arg0: str, arg1: Object) -> None: ...

class Operator(Object): ...

class Annotation:
 def __init__(self, arg0: Object) -> None: ...
 @overload
 def get_appearance_stream(self, which: Object) -> Object: ...
 @overload
 def get_appearance_stream(self, which: Object, state: Object) -> Object: ...
 def get_page_content_for_appearance(
 self,
 name: Object,
 rotate: int,
 required_flags: int = ...,
 forbidden_flags: int = ...,
) -> bytes: ...
 @property
 def appearance_dict(self) -> Object: ...
 @property
 def appearance_state(self) -> Object: ...
 @property
 def flags(self) -> int: ...
 @property
 def obj(self) -> Object: ...
 @property
 def subtype(self) -> str: ...

class AttachedFile:
 _creation_date: str
 _mod_date: str
 creation_date: datetime.datetime | None
 mime_type: str
 mod_date: datetime.datetime | None
 @property
 def md5(self) -> bytes: ...
 @property
 def obj(self) -> Object: ...
 def read_bytes(self) -> bytes: ...
 @property
 def size(self) -> int: ...

class AttachedFileSpec:
 description: str
 filename: str
 def __init__(
 self,
 data: bytes,
 *,
 description: str,
 filename: str,
 mime_type: str,
 creation_date: str,
 mod_date: str,
) -> None: ...
 def get_all_filenames(self) -> dict: ...
 @overload
 def get_file(self) -> AttachedFile: ...
 @overload
 def get_file(self, name: Name) -> AttachedFile: ...
 @property
 def obj(self) -> Object: ...
 @staticmethod
 def from_filepath(
 pdf: Pdf, path: Path | str, *, description: str = ''
) -> AttachedFileSpec: ...
 @property
 def relationship(self) -> Name | None: ...
 @relationship.setter
 def relationship(self, value: Name | None) -> None: ...

class Attachments(MutableMapping[str, AttachedFileSpec]):
 def __contains__(self, k: object) -> bool: ...
 def __delitem__(self, k: str) -> None: ...
 def __eq__(self, other: Any) -> bool: ...
 def __getitem__(self, k: str) -> AttachedFileSpec: ...
 def __iter__(self) -> Iterator[str]: ...
 def __len__(self) -> int: ...
 def __setitem__(self, k: str, v: AttachedFileSpec): ...
 def __init__(self, *args, **kwargs) -> None: ...
 def _add_replace_filespec(self, arg0: str, arg1: AttachedFileSpec) -> None: ...
 def _get_all_filespecs(self) -> dict[str, AttachedFileSpec]: ...
 def _get_filespec(self, arg0: str) -> AttachedFileSpec: ...
 def _remove_filespec(self, arg0: str) -> bool: ...
 @property
 def _has_embedded_files(self) -> bool: ...

class Token:
 def __init__(self, arg0: TokenType, arg1: bytes) -> None: ...
 def __eq__(self, other: Any) -> bool: ...
 @property
 def error_msg(self) -> str: ...
 @property
 def raw_value(self) -> bytes: ...
 @property
 def type_(self) -> TokenType: ...
 @property
 def value(self) -> str: ...

class _QPDFTokenFilter: ...

class TokenFilter(_QPDFTokenFilter):
 def __init__(self) -> None: ...
 def handle_token(self, token: Token = ...) -> None | list | Token: ...

class StreamParser:
 def __init__(self) -> None: ...
 @abstractmethod
 def handle_eof(self) -> None: ...
 @abstractmethod
 def handle_object(self, obj: Object, offset: int, length: int) -> None: ...

class Page:
 _repr_mimebundle_: Any = ...
 @overload
 def __init__(self, arg0: Object) -> None: ...
 @overload
 def __init__(self, arg0: Page) -> None: ...
 def __contains__(self, key: Any) -> bool: ...
 def __delattr__(self, name: Any) -> None: ...
 def __eq__(self, other: Any) -> bool: ...
 def __getattr__(self, name: Any) -> Object: ...
 def __getitem__(self, name: Any) -> Object: ...
 def __setattr__(self, name: Any, value: Any): ...
 def __setitem__(self, name: Any, value: Any): ...
 def _get_artbox(self, arg0: bool, arg1: bool) -> Object: ...
 def _get_bleedbox(self, arg0: bool, arg1: bool) -> Object: ...
 def _get_cropbox(self, arg0: bool, arg1: bool) -> Object: ...
 def _get_mediabox(self, arg0: bool) -> Object: ...
 def _get_trimbox(self, arg0: bool, arg1: bool) -> Object: ...
 def add_content_token_filter(self, tf: TokenFilter) -> None: ...
 def add_overlay(
 self,
 other: Object | Page,
 rect: Rectangle | None,
 *,
 push_stack: bool | None = ...,
): ...
 def add_underlay(self, other: Object | Page, rect: Rectangle | None): ...
 def as_form_xobject(self, handle_transformations: bool = ...) -> Object: ...
 def calc_form_xobject_placement(
 self,
 formx: Object,
 name: Name,
 rec: Rectangle,
 *,
 invert_transformations: bool,
 allow_shrink: bool,
 allow_expand: bool,
) -> bytes: ...
 def contents_add(
 self, contents: Stream | bytes, *, prepend: bool = ...
) -> None: ...
 def contents_coalesce(self) -> None: ...
 def emplace(self, other: Page, retain: Iterable[Name] = ...) -> None: ...
 def externalize_inline_images(self, min_size: int = ...) -> None: ...
 def get(self, key: str | Name, default: T | None = ...) -> T | None | Object: ...
 def get_filtered_contents(self, tf: TokenFilter) -> bytes: ...
 def index(self) -> int: ...
 def label(self) -> str: ...
 def parse_contents(self, arg0: StreamParser) -> None: ...
 def remove_unreferenced_resources(self) -> None: ...
 def rotate(self, angle: int, relative: bool) -> None: ...
 @property
 def images(self) -> _ObjectMapping: ...
 @property
 def cropbox(self) -> Array: ...
 @cropbox.setter
 def cropbox(self, val: Array) -> None: ...
 @property
 def mediabox(self) -> Array: ...
 @mediabox.setter
 def mediabox(self, val: Array) -> None: ...
 @property
 def obj(self) -> Dictionary: ...
 @property
 def trimbox(self) -> Array: ...
 @trimbox.setter
 def trimbox(self, val: Array) -> None: ...
 @property
 def resources(self) -> Dictionary: ...
 def add_resource(
 self,
 res: Object,
 res_type: Name,
 name: Name | None = None,
 *,
 prefix: str = '',
 replace_existing: bool = True,
) -> Name: ...

class PageList:
 def __init__(self, *args, **kwargs) -> None: ...
 def append(self, page: Page) -> None: ...
 @overload
 def extend(self, other: PageList) -> None: ...
 @overload
 def extend(self, iterable: Iterable[Page]) -> None: ...
 def insert(self, index: int, obj: Page) -> None: ...
 def p(self, pnum: int) -> Page: ...
 def remove(self, **kwargs) -> None: ...
 def reverse(self) -> None: ...
 @overload
 def __delitem__(self, arg0: int) -> None: ...
 @overload
 def __delitem__(self, arg0: slice) -> None: ...
 @overload
 def __getitem__(self, arg0: int) -> Page: ...
 @overload
 def __getitem__(self, arg0: slice) -> list[Page]: ...
 def __iter__(self) -> PageList: ...
 def __len__(self) -> int: ...
 def __next__(self) -> Page: ...
 @overload
 def __setitem__(self, arg0: int, arg1: Page) -> None: ...
 @overload
 def __setitem__(self, arg0: slice, arg1: Iterable[Page]) -> None: ...

class Pdf:
 _repr_mimebundle_: Any = ...
 def add_blank_page(self, *, page_size: tuple[Numeric, Numeric] = ...) -> Page: ...
 def __enter__(self) -> Pdf: ...
 def __exit__(self, exc_type, exc_value, traceback) -> None: ...
 def __init__(self, *args, **kwargs) -> None: ...
 def _add_page(self, page: Object, first: bool = ...) -> None: ...
 def _decode_all_streams_and_discard(self) -> None: ...
 def _get_object_id(self, arg0: int, arg1: int) -> Object: ...
 def _process(self, arg0: str, arg1: bytes) -> None: ...
 def _remove_page(self, arg0: Object) -> None: ...
 def _replace_object(self, arg0: tuple[int, int], arg1: Object) -> None: ...
 def _swap_objects(self, arg0: tuple[int, int], arg1: tuple[int, int]) -> None: ...
 def check(self) -> list[str]: ...
 def check_linearization(self, stream: object = ...) -> bool: ...
 def close(self) -> None: ...
 def copy_foreign(self, h: Object) -> Object: ...
 @overload
 def get_object(self, objgen: tuple[int, int]) -> Object: ...
 @overload
 def get_object(self, objid: int, gen: int) -> Object: ...
 def get_warnings(self) -> list: ...
 @overload
 def make_indirect(self, h: T) -> T: ...
 @overload
 def make_indirect(self, obj: Any) -> Object: ...
 def make_stream(self, data: bytes, d=None, **kwargs) -> Stream: ...
 @classmethod
 def new(cls) -> Pdf: ...
 @staticmethod
 def open(
 filename_or_stream: Path | str | BinaryIO,
 *,
 password: str | bytes = '',
 hex_password: bool = False,
 ignore_xref_streams: bool = False,
 suppress_warnings: bool = True,
 attempt_recovery: bool = True,
 inherit_page_attributes: bool = True,
 access_mode: AccessMode = AccessMode.default,
 allow_overwriting_input: bool = False,
) -> Pdf: ...
 def open_metadata(
 self,
 set_pikepdf_as_editor: bool = True,
 update_docinfo: bool = True,
 strict: bool = False,
) -> PdfMetadata: ...
 def open_outline(self, max_depth: int = 15, strict: bool = False) -> Outline: ...
 def remove_unreferenced_resources(self) -> None: ...
 def save(
 self,
 filename_or_stream: Path | str | BinaryIO | None = None,
 *,
 static_id: bool = False,
 preserve_pdfa: bool = True,
 min_version: str | tuple[str, int] = '',
 force_version: str | tuple[str, int] = '',
 fix_metadata_version: bool = True,
 compress_streams: bool = True,
 stream_decode_level: StreamDecodeLevel | None = None,
 object_stream_mode: ObjectStreamMode = ObjectStreamMode.preserve,
 normalize_content: bool = False,
 linearize: bool = False,
 qdf: bool = False,
 progress: Callable[[int], None] | None = None,
 encryption: Encryption | bool | None = None,
 recompress_flate: bool = False,
 deterministic_id: bool = False,
) -> None: ...
 def show_xref_table(self) -> None: ...
 @property
 def Root(self) -> Object: ...
 @property
 def _allow_accessibility(self) -> bool: ...
 @property
 def _allow_extract(self) -> bool: ...
 @property
 def _allow_modify_all(self) -> bool: ...
 @property
 def _allow_modify_annotation(self) -> bool: ...
 @property
 def _allow_modify_assembly(self) -> bool: ...
 @property
 def _allow_modify_form(self) -> bool: ...
 @property
 def _allow_modify_other(self) -> bool: ...
 @property
 def _allow_print_highres(self) -> bool: ...
 @property
 def _allow_print_lowres(self) -> bool: ...
 @property
 def _encryption_data(self) -> dict: ...
 @property
 def _pages(self) -> Any: ...
 @property
 def allow(self) -> Permissions: ...
 @property
 def docinfo(self) -> Object: ...
 @docinfo.setter
 def docinfo(self, val: Object) -> None: ...
 @property
 def encryption(self) -> EncryptionInfo: ...
 @property
 def extension_level(self) -> int: ...
 @property
 def filename(self) -> str: ...
 @property
 def is_encrypted(self) -> bool: ...
 @property
 def is_linearized(self) -> bool: ...
 @property
 def objects(self) -> Any: ...
 @property
 def pages(self) -> PageList: ...
 @property
 def pdf_version(self) -> str: ...
 @property
 def root(self) -> Object: ...
 @property
 def trailer(self) -> Object: ...
 @property
 def user_password_matched(self) -> bool: ...
 @property
 def owner_password_matched(self) -> bool: ...
 def generate_appearance_streams(self) -> None: ...
 def flatten_annotations(self, mode: str) -> None: ...
 @property
 def attachments(self) -> Attachments: ...

class Rectangle:
 llx: float = ...
 lly: float = ...
 urx: float = ...
 ury: float = ...
 @overload
 def __init__(self, llx: float, lly: float, urx: float, ury: float, /) -> None: ...
 @overload
 def __init__(self, other: Rectangle): ...
 @overload
 def __init__(self, other: Array) -> None: ...
 def __and__(self, other: Rectangle) -> Rectangle: ...
 def __le__(self, other: Rectangle) -> bool: ...
 @property
 def width(self) -> float: ...
 @property
 def height(self) -> float: ...
 @property
 def lower_left(self) -> tuple[float, float]: ...
 @property
 def lower_right(self) -> tuple[float, float]: ...
 @property
 def upper_left(self) -> tuple[float, float]: ...
 @property
 def upper_right(self) -> tuple[float, float]: ...
 def as_array(self) -> Array: ...
 def __eq__(self, other: Any) -> bool: ...
 def __repr__(self) -> str: ...

class NameTree(MutableMapping[str | bytes, Object]):
 @staticmethod
 def new(pdf: Pdf, auto_repair: bool = True) -> NameTree: ...
 def __contains__(self, name: object) -> bool: ...
 def __delitem__(self, name: str | bytes) -> None: ...
 def __eq__(self, other: Any) -> bool: ...
 def __getitem__(self, name: str | bytes) -> Object: ...
 def __iter__(self) -> Iterator[bytes]: ...
 def __len__(self) -> int: ...
 def __setitem__(self, name: str | bytes, o: Object) -> None: ...
 def __init__(self, obj: Object, *, auto_repair: bool = ...) -> None: ...
 def _as_map(self) -> _ObjectMapping: ...
 @property
 def obj(self) -> Object: ...

class NumberTree(MutableMapping[int, Object]):
 @staticmethod
 def new(pdf: Pdf, auto_repair: bool = True) -> NumberTree: ...
 def __contains__(self, key: object) -> bool: ...
 def __delitem__(self, key: int) -> None: ...
 def __eq__(self, other: Any) -> bool: ...
 def __getitem__(self, key: int) -> Object: ...
 def __iter__(self) -> Iterator[int]: ...
 def __len__(self) -> int: ...
 def __setitem__(self, key: int, o: Object) -> None: ...
 def __init__(self, obj: Object, *, auto_repair: bool = ...) -> None: ...
 def _as_map(self) -> _ObjectMapping: ...
 @property
 def obj(self) -> Object: ...

class ContentStreamInstruction:
 @property
 def operands(self) -> _ObjectList: ...
 @property
 def operator(self) -> Operator: ...
 def __getitem__(self, index: int) -> _ObjectList | Operator: ...
 def __len__(self) -> int: ...

class ContentStreamInlineImage:
 @property
 def operands(self) -> _ObjectList: ...
 @property
 def operator(self) -> Operator: ...
 def __getitem__(self, index: int) -> _ObjectList | Operator: ...
 def __len__(self) -> int: ...
 @property
 def iimage(self) -> PdfInlineImage: ...

class Job:
 EXIT_ERROR: ClassVar[int] = 2
 EXIT_WARNING: ClassVar[int] = 3
 EXIT_IS_NOT_ENCRYPTED: ClassVar[int] = 2
 EXIT_CORRECT_PASSWORD: ClassVar[int] = 3
 LATEST_JOB_JSON: ClassVar[int]
 LATEST_JSON: ClassVar[int]

 @staticmethod
 def json_out_schema(*, schema: int) -> str: ...
 @staticmethod
 def job_json_schema(*, schema: int) -> str: ...
 @overload
 def __init__(self, json: str) -> None: ...
 @overload
 def __init__(self, json_dict: Mapping) -> None: ...
 @overload
 def __init__(
 self, args: Sequence[str | bytes], *, progname: str = 'pikepdf'
) -> None: ...
 def check_configuration(self) -> None: ...
 @property
 def creates_output(self) -> bool: ...
 @property
 def message_prefix(self) -> str: ...
 def run(self) -> None: ...
 @property
 def has_warnings(self) -> bool: ...
 @property
 def exit_code(self) -> int: ...
 @property
 def encryption_status(self) -> dict[str, bool]: ...

class Matrix:
 @overload
 def __init__(self): ...
 @overload
 def __init__(
 self, a: float, b: float, c: float, d: float, e: float, f: float, /
): ...
 @overload
 def __init__(self, other: Matrix): ...
 @overload
 def __init__(self, values: tuple[float, float, float, float, float, float], /): ...
 @property
 def a(self) -> float: ...
 @property
 def b(self) -> float: ...
 @property
 def c(self) -> float: ...
 @property
 def d(self) -> float: ...
 @property
 def e(self) -> float: ...
 @property
 def f(self) -> float: ...
 @property
 def shorthand(self) -> tuple[float, float, float, float, float, float]: ...
 def encode(self) -> bytes: ...
 def translated(self) -> Matrix: ...
 def scaled(self) -> Matrix: ...
 def rotated(self) -> Matrix: ...
 def __matmul__(self, other: Matrix) -> Matrix: ...
 def inverse(self) -> Matrix: ...
 def __array__(self) -> np.ndarray: ...
 def as_array(self) -> Array: ...
 @overload
 def transform(self, point: tuple[float, float]) -> tuple[float, float]: ...
 @overload
 def transform(self, rect: Rectangle) -> Rectangle: ...
 def __repr__(self) -> str: ...
 def __eq__(self, other: Any) -> bool: ...
 def __getstate__(self) -> tuple[float, float, float, float, float, float]: ...
 def __setstate__(
 self, state: tuple[float, float, float, float, float, float]
) -> None: ...

def _Null() -> Any: ...
def _encode(handle: Any) -> Object: ...
def _new_array(arg0: Iterable) -> Array: ...
def _new_boolean(arg0: bool) -> Object: ...
def _new_dictionary(arg0: Mapping[Any, Any]) -> Dictionary: ...
def _new_integer(arg0: int) -> Object: ...
def _new_name(arg0: str) -> Name: ...
def _new_operator(op: str) -> Operator: ...
@overload
def _new_real(arg0: str) -> Object: ...
@overload
def _new_real(value: float, places: int = ...) -> Object: ...
def _new_stream(arg0: Pdf, arg1: bytes) -> Stream: ...
def _new_string(s: str | bytes) -> String: ...
def _new_string_utf8(s: str) -> String: ...
def _test_file_not_found(*args, **kwargs) -> Any: ...
def _translate_qpdf_logic_error(arg0: str) -> str: ...
def get_decimal_precision() -> int: ...
def pdf_doc_to_utf8(pdfdoc: bytes) -> str: ...
def qpdf_version() -> str: ...
def set_access_default_mmap(mmap: bool) -> bool: ...
def get_access_default_mmap() -> bool: ...
def set_decimal_precision(prec: int) -> int: ...
def unparse(obj: Any) -> bytes: ...
def utf8_to_pdf_doc(utf8: str, unknown: bytes) -> tuple[bool, bytes]: ...
def _unparse_content_stream(contentstream: Iterable[Any]) -> bytes: ...
def set_flate_compression_level(
 level: Literal[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
) -> int: ...

./usr/lib/python3/dist-packages/pikepdf/_cpphelpers.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Support functions called by the C++ library binding layer.

Not intended to be called from Python, and subject to change at any time.
"""

from __future__ import annotations

from typing import TYPE_CHECKING, Callable
from warnings import warn

from pikepdf.objects import Name

if TYPE_CHECKING:
 from pikepdf import Dictionary, Pdf

def update_xmp_pdfversion(pdf: Pdf, version: str) -> None:
 """Update XMP metadata to specified PDF version."""
 if Name.Metadata not in pdf.Root:
 return # Don't create an empty XMP object just to store the version

 with pdf.open_metadata(set_pikepdf_as_editor=False, update_docinfo=False) as meta:
 if 'pdf:PDFVersion' in meta:
 meta['pdf:PDFVersion'] = version

def _alpha(n: int) -> str:
 """Excel-style column numbering A..Z, AA..AZ..BA..ZZ.., AAA."""
 if n < 1:
 raise ValueError(f"Can't represent {n} in alphabetic numbering")
 p = []
 while n > 0:
 n, r = divmod(n - 1, 26)
 p.append(r)
 base = ord('A')
 ords = [(base + v) for v in reversed(p)]
 return ''.join(chr(o) for o in ords)

def _roman(n: int) -> str:
 """Convert integer n to Roman numeral representation as a string."""
 if not (1 <= n <= 5000):
 raise ValueError(f"Can't represent {n} in Roman numerals")
 roman_numerals = (
 (1000, 'M'),
 (900, 'CM'),
 (500, 'D'),
 (400, 'CD'),
 (100, 'C'),
 (90, 'XC'),
 (50, 'L'),
 (40, 'XL'),
 (10, 'X'),
 (9, 'IX'),
 (5, 'V'),
 (4, 'IV'),
 (1, 'I'),
)
 roman = ""
 for value, numeral in roman_numerals:
 while n >= value:
 roman += numeral
 n -= value
 return roman

LABEL_STYLE_MAP: dict[Name, Callable[[int], str]] = {
 Name.D: str,
 Name.A: _alpha,
 Name.a: lambda x: _alpha(x).lower(),
 Name.R: _roman,
 Name.r: lambda x: _roman(x).lower(),
}

def label_from_label_dict(label_dict: int | Dictionary) -> str:
 """Convert a label dictionary returned by QPDF into a text string."""
 if isinstance(label_dict, int):
 return str(label_dict)

 label = ''
 if Name.P in label_dict:
 prefix = label_dict[Name.P]
 label += str(prefix)

 # If there is no S, return only the P portion
 if Name.S in label_dict:
 # St defaults to 1
 numeric_value = label_dict[Name.St] if Name.St in label_dict else 1
 if not isinstance(numeric_value, int):
 warn(
 "Page label dictionary has invalid non-integer start value", UserWarning
)
 numeric_value = 1

 style = label_dict[Name.S]
 if isinstance(style, Name):
 style_fn = LABEL_STYLE_MAP[style]
 value = style_fn(numeric_value)
 label += value
 else:
 warn("Page label dictionary has invalid page label style", UserWarning)

 return label

./usr/lib/python3/dist-packages/pikepdf/_exceptions.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

from __future__ import annotations

class DependencyError(Exception):
 """A third party dependency is needed to extract streams of this type."""

./usr/lib/python3/dist-packages/pikepdf/_io.py

SPDX-FileCopyrightText: 2023 James R. Barlow
SPDX-License-Identifier: MPL-2.0

from __future__ import annotations

from contextlib import contextmanager, suppress
from io import TextIOBase
from os import PathLike
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import IO, Generator

def check_stream_is_usable(stream: IO) -> None:
 """Check that a stream is seekable and binary."""
 if isinstance(stream, TextIOBase):
 raise TypeError("stream must be binary (no transcoding) and seekable")

def check_different_files(file1: str | PathLike, file2: str | PathLike) -> None:
 """Check that two files are different."""
 with suppress(FileNotFoundError):
 if Path(file1) == Path(file2) or Path(file1).samefile(Path(file2)):
 raise ValueError(
 "Cannot overwrite input file. Open the file with "
 "pikepdf.open(..., allow_overwriting_input=True) to "
 "allow overwriting the input file."
)

@contextmanager
def atomic_overwrite(filename: Path) -> Generator[IO[bytes], None, None]:
 """Atomically ovewrite a file.

 If the destination file does not exist, it is created. If writing fails,
 the destination file is deleted.

 If the destination file does exist, a temporaryfile is created in the same
 directory, and data is written to that file. If writing succeeds, the temporary
 file is renamed to the destination file. If writing fails, the temporary file
 is deleted and the original destination file is left untouched.
 """
 try:
 # Try to create the file using exclusive creation mode
 stream = filename.open("xb")
 except FileExistsError:
 pass
 else:
 # We were able to create the file, so we can use it directly
 try:
 with stream:
 yield stream
 except Exception:
 # ...but if an error occurs while using it, clean up
 with suppress(FileNotFoundError):
 filename.unlink()
 raise
 return

 # If we get here, the file already exists. Use a temporary file, then rename
 # it to the destination file if we succeed. Destination file is not touched
 # if we fail.

 with filename.open("ab") as stream:
 pass # Confirm we will be able to write to the indicated destination

 with NamedTemporaryFile(
 dir=filename.parent, prefix=f".pikepdf.{filename.name}", delete=False
) as tf:
 try:
 yield tf
 except Exception:
 tf.close()
 Path(tf.name).unlink()
 raise
 tf.flush()
 tf.close()
 Path(tf.name).replace(filename)

./usr/lib/python3/dist-packages/pikepdf/_methods.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Implement some features in Python and monkey-patch them onto C++ classes.

In several cases the implementation of some higher levels features might as
well be in Python. Fortunately we can attach Python methods to C++ class
bindings after the fact.

We can also move the implementation to C++ if desired.
"""

from __future__ import annotations

import datetime
import mimetypes
import shutil
from collections.abc import KeysView, MutableMapping
from contextlib import ExitStack
from decimal import Decimal
from io import BytesIO, RawIOBase
from pathlib import Path
from subprocess import run
from tempfile import NamedTemporaryFile
from typing import BinaryIO, Callable, ItemsView, Iterator, TypeVar, ValuesView
from warnings import warn

from . import Array, Dictionary, Name, Object, Page, Pdf, Stream
from ._augments import augment_override_cpp, augments
from ._core import (
 AccessMode,
 AttachedFile,
 AttachedFileSpec,
 Attachments,
 NameTree,
 NumberTree,
 ObjectStreamMode,
 Rectangle,
 StreamDecodeLevel,
 StreamParser,
 Token,
 _ObjectMapping,
)
from ._io import atomic_overwrite, check_different_files, check_stream_is_usable
from .models import Encryption, EncryptionInfo, Outline, PdfMetadata, Permissions
from .models.metadata import decode_pdf_date, encode_pdf_date

pylint: disable=no-member,unsupported-membership-test,unsubscriptable-object
mypy: ignore-errors

__all__ = []

Numeric = TypeVar('Numeric', int, float, Decimal)

def _single_page_pdf(page) -> bytes:
 """Construct a single page PDF from the provided page in memory."""
 pdf = Pdf.new()
 pdf.pages.append(page)
 bio = BytesIO()
 pdf.save(bio)
 bio.seek(0)
 return bio.read()

def _mudraw(buffer, fmt) -> bytes:
 """Use mupdf draw to rasterize the PDF in the memory buffer."""
 # mudraw cannot read from stdin so NamedTemporaryFile is required
 with NamedTemporaryFile(suffix='.pdf') as tmp_in:
 tmp_in.write(buffer)
 tmp_in.seek(0)
 tmp_in.flush()

 proc = run(
 ['mudraw', '-F', fmt, '-o', '-', tmp_in.name],
 capture_output=True,
 check=True,
)
 return proc.stdout

@augments(Object)
class Extend_Object:
 def _ipython_key_completions_(self):
 if isinstance(self, (Dictionary, Stream)):
 return self.keys()
 return None

 def emplace(self, other: Object, retain=(Name.Parent,)):
 """Copy all items from other without making a new object.

 Particularly when working with pages, it may be desirable to remove all
 of the existing page's contents and emplace (insert) a new page on top
 of it, in a way that preserves all links and references to the original
 page. (Or similarly, for other Dictionary objects in a PDF.)

 Any Dictionary keys in the iterable *retain* are preserved. By default,
 /Parent is retained.

 When a page is assigned (``pdf.pages[0] = new_page``), only the
 application knows if references to the original the original page are
 still valid. For example, a PDF optimizer might restructure a page
 object into another visually similar one, and references would be valid;
 but for a program that reorganizes page contents such as a N-up
 compositor, references may not be valid anymore.

 This method takes precautions to ensure that child objects in common
 with ``self`` and ``other`` are not inadvertently deleted.

 Example:
 >>> pdf.pages[0].objgen
 (16, 0)
 >>> pdf.pages[0].emplace(pdf.pages[1])
 >>> pdf.pages[0].objgen
 (16, 0) # Same object

 .. versionchanged:: 2.11.1
 Added the *retain* argument.
 """
 if not self.same_owner_as(other):
 raise TypeError("Objects must have the same owner for emplace()")

 # .keys() returns strings, so make all strings
 retain = {str(k) for k in retain}
 self_keys = set(self.keys())
 other_keys = set(other.keys())

 assert all(isinstance(k, str) for k in (retain | self_keys | other_keys))

 del_keys = self_keys - other_keys - retain
 for k in (k for k in other_keys if k not in retain):
 self[k] = other[k] # pylint: disable=unsupported-assignment-operation
 for k in del_keys:
 del self[k] # pylint: disable=unsupported-delete-operation

 def _type_check_write(self, filter_, decode_parms):
 if isinstance(filter_, list):
 filter_ = Array(filter_)
 filter_ = filter_.wrap_in_array()

 if isinstance(decode_parms, list):
 decode_parms = Array(decode_parms)
 elif decode_parms is None:
 decode_parms = Array([])
 else:
 decode_parms = decode_parms.wrap_in_array()

 if not all(isinstance(item, Name) for item in filter_):
 raise TypeError(
 "filter must be: pikepdf.Name or pikepdf.Array([pikepdf.Name])"
)
 if not all(
 (isinstance(item, Dictionary) or item is None) for item in decode_parms
):
 raise TypeError(
 "decode_parms must be: pikepdf.Dictionary or "
 "pikepdf.Array([pikepdf.Dictionary])"
)
 if len(decode_parms) != 0 and len(filter_) != len(decode_parms):
 raise ValueError(
 f"filter ({repr(filter_)}) and decode_parms "
 f"({repr(decode_parms)}) must be arrays of same length"
)
 if len(filter_) == 1:
 filter_ = filter_[0]
 if len(decode_parms) == 0:
 decode_parms = None
 elif len(decode_parms) == 1:
 decode_parms = decode_parms[0]
 return filter_, decode_parms

 def write(
 self,
 data: bytes,
 *,
 filter: Name | Array | None = None,
 decode_parms: Dictionary | Array | None = None,
 type_check: bool = True,
): # pylint: disable=redefined-builtin
 """Replace stream object's data with new (possibly compressed) `data`.

 `filter` and `decode_parms` describe any compression that is already
 present on the input `data`. For example, if your data is already
 compressed with the Deflate algorithm, you would set
 ``filter=Name.FlateDecode``.

 When writing the PDF in :meth:`pikepdf.Pdf.save`,
 pikepdf may change the compression or apply compression to data that was
 not compressed, depending on the parameters given to that function. It
 will never change lossless to lossy encoding.

 PNG and TIFF images, even if compressed, cannot be directly inserted
 into a PDF and displayed as images.

 Args:
 data: the new data to use for replacement
 filter: The filter(s) with which the
 data is (already) encoded
 decode_parms: Parameters for the
 filters with which the object is encode
 type_check: Check arguments; use False only if you want to
 intentionally create malformed PDFs.

 If only one `filter` is specified, it may be a name such as
 `Name('/FlateDecode')`. If there are multiple filters, then array
 of names should be given.

 If there is only one filter, `decode_parms` is a Dictionary of
 parameters for that filter. If there are multiple filters, then
 `decode_parms` is an Array of Dictionary, where each array index
 is corresponds to the filter.
 """
 if type_check and filter is not None:
 filter, decode_parms = self._type_check_write(filter, decode_parms)

 self._write(data, filter=filter, decode_parms=decode_parms)

@augments(Pdf)
class Extend_Pdf:
 def _repr_mimebundle_(
 self, include=None, exclude=None
): # pylint: disable=unused-argument
 """Present options to IPython or Jupyter for rich display of this object.

 See:
 https://ipython.readthedocs.io/en/stable/config/integrating.html#rich-display
 """
 bio = BytesIO()
 self.save(bio)
 bio.seek(0)

 data = {'application/pdf': bio.read()}
 return data

 @property
 def docinfo(self) -> Dictionary:
 """Access the (deprecated) document information dictionary.

 The document information dictionary is a brief metadata record that can
 store some information about the origin of a PDF. It is deprecated and
 removed in the PDF 2.0 specification (not deprecated from the
 perspective of pikepdf). Use the ``.open_metadata()`` API instead, which
 will edit the modern (and unfortunately, more complicated) XMP metadata
 object and synchronize changes to the document information dictionary.

 This property simplifies access to the actual document information
 dictionary and ensures that it is created correctly if it needs to be
 created.

 A new, empty dictionary will be created if this property is accessed
 and dictionary does not exist. (This is to ensure that convenient code
 like ``pdf.docinfo[Name.Title] = "Title"`` will work when the dictionary
 does not exist at all.)

 You can delete the document information dictionary by deleting this property,
 ``del pdf.docinfo``. Note that accessing the property after deleting it
 will re-create with a new, empty dictionary.

 .. versionchanged:: 2.4
 Added support for ``del pdf.docinfo``.
 """
 if Name.Info not in self.trailer:
 self.trailer.Info = self.make_indirect(Dictionary())
 return self.trailer.Info

 @docinfo.setter
 def docinfo(self, new_docinfo: Dictionary):
 if not new_docinfo.is_indirect:
 raise ValueError(
 "docinfo must be an indirect object - use Pdf.make_indirect"
)
 self.trailer.Info = new_docinfo

 @docinfo.deleter
 def docinfo(self):
 if Name.Info in self.trailer:
 del self.trailer.Info

 def open_metadata(
 self,
 set_pikepdf_as_editor: bool = True,
 update_docinfo: bool = True,
 strict: bool = False,
) -> PdfMetadata:
 """Open the PDF's XMP metadata for editing.

 There is no ``.close()`` function on the metadata object, since this is
 intended to be used inside a ``with`` block only.

 For historical reasons, certain parts of PDF metadata are stored in
 two different locations and formats. This feature coordinates edits so
 that both types of metadata are updated consistently and "atomically"
 (assuming single threaded access). It operates on the ``Pdf`` in memory,
 not any file on disk. To persist metadata changes, you must still use
 ``Pdf.save()``.

 Example:
 >>> with pdf.open_metadata() as meta:
 meta['dc:title'] = 'Set the Dublic Core Title'
 meta['dc:description'] = 'Put the Abstract here'

 Args:
 set_pikepdf_as_editor: Automatically update the metadata ``pdf:Producer``
 to show that this version of pikepdf is the most recent software to
 modify the metadata, and ``xmp:MetadataDate`` to timestamp the update.
 Recommended, except for testing.

 update_docinfo: Update the standard fields of DocumentInfo
 (the old PDF metadata dictionary) to match the corresponding
 XMP fields. The mapping is described in
 :attr:`PdfMetadata.DOCINFO_MAPPING`. Nonstandard DocumentInfo
 fields and XMP metadata fields with no DocumentInfo equivalent
 are ignored.

 strict: If ``False`` (the default), we aggressively attempt
 to recover from any parse errors in XMP, and if that fails we
 overwrite the XMP with an empty XMP record. If ``True``, raise
 errors when either metadata bytes are not valid and well-formed
 XMP (and thus, XML). Some trivial cases that are equivalent to
 empty or incomplete "XMP skeletons" are never treated as errors,
 and always replaced with a proper empty XMP block. Certain
 errors may be logged.
 """
 return PdfMetadata(
 self,
 pikepdf_mark=set_pikepdf_as_editor,
 sync_docinfo=update_docinfo,
 overwrite_invalid_xml=not strict,
)

 def open_outline(self, max_depth: int = 15, strict: bool = False) -> Outline:
 """Open the PDF outline ("bookmarks") for editing.

 Recommend for use in a ``with`` block. Changes are committed to the
 PDF when the block exits. (The ``Pdf`` must still be opened.)

 Example:
 >>> with pdf.open_outline() as outline:
 outline.root.insert(0, OutlineItem('Intro', 0))

 Args:
 max_depth: Maximum recursion depth of the outline to be
 imported and re-written to the document. ``0`` means only
 considering the root level, ``1`` the first-level
 sub-outline of each root element, and so on. Items beyond
 this depth will be silently ignored. Default is ``15``.
 strict: With the default behavior (set to ``False``),
 structural errors (e.g. reference loops) in the PDF document
 will only cancel processing further nodes on that particular
 level, recovering the valid parts of the document outline
 without raising an exception. When set to ``True``, any such
 error will raise an ``OutlineStructureError``, leaving the
 invalid parts in place.
 Similarly, outline objects that have been accidentally
 duplicated in the ``Outline`` container will be silently
 fixed (i.e. reproduced as new objects) or raise an
 ``OutlineStructureError``.
 """
 return Outline(self, max_depth=max_depth, strict=strict)

 def make_stream(self, data: bytes, d=None, **kwargs) -> Stream:
 """Create a new pikepdf.Stream object that is attached to this PDF.

 See:
 :meth:`pikepdf.Stream.__new__`

 """
 return Stream(self, data, d, **kwargs)

 def add_blank_page(
 self, *, page_size: tuple[Numeric, Numeric] = (612.0, 792.0)
) -> Page:
 """Add a blank page to this PDF.

 If pages already exist, the page will be added to the end. Pages may be
 reordered using ``Pdf.pages``.

 The caller may add content to the page by modifying its objects after creating
 it.

 Args:
 page_size (tuple): The size of the page in PDF units (1/72 inch or 0.35mm).
 Default size is set to a US Letter 8.5" x 11" page.
 """
 for dim in page_size:
 if not (3 <= dim <= 14400):
 raise ValueError('Page size must be between 3 and 14400 PDF units')

 page_dict = Dictionary(
 Type=Name.Page,
 MediaBox=Array([0, 0, page_size[0], page_size[1]]),
 Contents=self.make_stream(b''),
 Resources=Dictionary(),
)
 page_obj = self.make_indirect(page_dict)
 self._add_page(page_obj, first=False)
 return Page(page_obj)

 def close(self) -> None:
 """Close a ``Pdf`` object and release resources acquired by pikepdf.

 If pikepdf opened the file handle it will close it (e.g. when opened with a file
 path). If the caller opened the file for pikepdf, the caller close the file.
 ``with`` blocks will call close when exit.

 pikepdf lazily loads data from PDFs, so some :class:`pikepdf.Object` may
 implicitly depend on the :class:`pikepdf.Pdf` being open. This is always the
 case for :class:`pikepdf.Stream` but can be true for any object. Do not close
 the `Pdf` object if you might still be accessing content from it.

 When an ``Object`` is copied from one ``Pdf`` to another, the ``Object`` is
 copied into the destination ``Pdf`` immediately, so after accessing all desired
 information from the source ``Pdf`` it may be closed.

 .. versionchanged:: 3.0
 In pikepdf 2.x, this function actually worked by resetting to a very short
 empty PDF. Code that relied on this quirk may not function correctly.
 """
 self._close()
 if getattr(self, '_tmp_stream', None):
 self._tmp_stream.close()

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, traceback):
 self.close()

 @property
 def allow(self) -> Permissions:
 """Report permissions associated with this PDF.

 By default these permissions will be replicated when the PDF is
 saved. Permissions may also only be changed when a PDF is being saved,
 and are only available for encrypted PDFs. If a PDF is not encrypted,
 all operations are reported as allowed.

 pikepdf has no way of enforcing permissions.
 """
 results = {}
 for field in Permissions._fields:
 results[field] = getattr(self, '_allow_' + field)
 return Permissions(**results)

 @property
 def encryption(self) -> EncryptionInfo:
 """Report encryption information for this PDF.

 Encryption settings may only be changed when a PDF is saved.
 """
 return EncryptionInfo(self._encryption_data)

 def check(self) -> list[str]:
 """Check if PDF is syntactically well-formed.

 Similar to ``qpdf --check``, checks for syntax
 or structural problems in the PDF. This is mainly useful to PDF
 developers and may not be informative to the average user. PDFs with
 these problems still render correctly, if PDF viewers are capable of
 working around the issues they contain. In many cases, pikepdf can
 also fix the problems.

 An example problem found by this function is a xref table that is
 missing an object reference. A page dictionary with the wrong type of
 key, such as a string instead of an array of integers for its mediabox,
 is not the sort of issue checked for. If this were an XML checker, it
 would tell you if the XML is well-formed, but could not tell you if
 the XML is valid XHTML or if it can be rendered as a usable web page.

 This function also attempts to decompress all streams in the PDF.
 If no JBIG2 decoder is available and JBIG2 images are presented,
 a warning will occur that JBIG2 cannot be checked.

 This function returns a list of strings describing the issues. The
 text is subject to change and should not be treated as a stable API.

 Returns:
 Empty list if no issues were found. List of issues as text strings
 if issues were found.
 """

 class DiscardingParser(StreamParser):
 def __init__(self): # pylint: disable=useless-super-delegation
 super().__init__() # required for C++

 def handle_object(self, *_args):
 pass

 def handle_eof(self):
 pass

 problems: list[str] = []

 self._decode_all_streams_and_discard()

 discarding_parser = DiscardingParser()
 for page in self.pages:
 page.parse_contents(discarding_parser)

 for warning in self.get_warnings():
 problems.append("WARNING: " + warning)

 return problems

 def save(
 self,
 filename_or_stream: Path | str | BinaryIO | None = None,
 *,
 static_id: bool = False,
 preserve_pdfa: bool = True,
 min_version: str | tuple[str, int] = "",
 force_version: str | tuple[str, int] = "",
 fix_metadata_version: bool = True,
 compress_streams: bool = True,
 stream_decode_level: StreamDecodeLevel | None = None,
 object_stream_mode: ObjectStreamMode = ObjectStreamMode.preserve,
 normalize_content: bool = False,
 linearize: bool = False,
 qdf: bool = False,
 progress: Callable[[int], None] = None,
 encryption: Encryption | bool | None = None,
 recompress_flate: bool = False,
 deterministic_id: bool = False,
) -> None:
 """Save all modifications to this :class:`pikepdf.Pdf`.

 Args:
 filename_or_stream: Where to write the output. If a file
 exists in this location it will be overwritten.
 If the file was opened with ``allow_overwriting_input=True``,
 then it is permitted to overwrite the original file, and
 this parameter may be omitted to implicitly use the original
 filename. Otherwise, the filename may not be the same as the
 input file, as overwriting the input file would corrupt data
 since pikepdf using lazy loading.

 static_id: Indicates that the ``/ID`` metadata, normally
 calculated as a hash of certain PDF contents and metadata
 including the current time, should instead be set to a static
 value. Only use this for debugging and testing. Use
 ``deterministic_id`` if you want to get the same ``/ID`` for
 the same document contents.
 preserve_pdfa: Ensures that the file is generated in a
 manner compliant with PDF/A and other stricter variants.
 This should be True, the default, in most cases.

 min_version: Sets the minimum version of PDF
 specification that should be required. If left alone QPDF
 will decide. If a tuple, the second element is an integer, the
 extension level. If the version number is not a valid format,
 QPDF will decide what to do.
 force_version: Override the version recommend by QPDF,
 potentially creating an invalid file that does not display
 in old versions. See QPDF manual for details. If a tuple, the
 second element is an integer, the extension level.
 fix_metadata_version: If ``True`` (default) and the XMP metadata
 contains the optional PDF version field, ensure the version in
 metadata is correct. If the XMP metadata does not contain a PDF
 version field, none will be added. To ensure that the field is
 added, edit the metadata and insert a placeholder value in
 ``pdf:PDFVersion``. If XMP metadata does not exist, it will
 not be created regardless of the value of this argument.

 object_stream_mode:
 ``disable`` prevents the use of object streams.
 ``preserve`` keeps object streams from the input file.
 ``generate`` uses object streams wherever possible,
 creating the smallest files but requiring PDF 1.5+.

 compress_streams: Enables or disables the compression of
 uncompressed stream objects. By default this is set to
 ``True``, and the only reason to set it to ``False`` is for
 debugging or inspecting PDF contents.

 When enabled, uncompressed stream objects will be compressed
 whether they were uncompressed in the PDF when it was opened,
 or when the user creates new :class:`pikepdf.Stream` objects
 attached to the PDF. Stream objects can also be created
 indirectly, such as when content from another PDF is merged
 into the one being saved.

 Only stream objects that have no compression will be
 compressed when this object is set. If the object is
 compressed, compression will be preserved.

 Setting compress_streams=False does not trigger decompression
 unless decompression is specifically requested by setting
 both ``compress_streams=False`` and ``stream_decode_level``
 to the desired decode level (e.g. ``.generalized`` will
 decompress most non-image content).

 This option does not trigger recompression of existing
 compressed streams. For that, use ``recompress_flate``.

 The XMP metadata stream object, if present, is never
 compressed, to facilitate metadata reading by parsers that
 don't understand the full structure of PDF.

 stream_decode_level: Specifies how
 to encode stream objects. See documentation for
 :class:`pikepdf.StreamDecodeLevel`.

 recompress_flate: When disabled (the default), qpdf does not
 uncompress and recompress streams compressed with the Flate
 compression algorithm. If True, pikepdf will instruct qpdf to
 do this, which may be useful if recompressing streams to a
 higher compression level.

 normalize_content: Enables parsing and reformatting the
 content stream within PDFs. This may debugging PDFs easier.

 linearize: Enables creating linear or "fast web view",
 where the file's contents are organized sequentially so that
 a viewer can begin rendering before it has the whole file.
 As a drawback, it tends to make files larger.

 qdf: Save output QDF mode. QDF mode is a special output
 mode in QPDF to allow editing of PDFs in a text editor. Use
 the program ``fix-qdf`` to fix convert back to a standard
 PDF.

 progress: Specify a callback function that is called
 as the PDF is written. The function will be called with an
 integer between 0-100 as the sole parameter, the progress
 percentage. This function may not access or modify the PDF
 while it is being written, or data corruption will almost
 certainly occur.

 encryption: If ``False``
 or omitted, existing encryption will be removed. If ``True``
 encryption settings are copied from the originating PDF.
 Alternately, an ``Encryption`` object may be provided that
 sets the parameters for new encryption.

 deterministic_id: Indicates that the ``/ID`` metadata, normally
 calculated as a hash of certain PDF contents and metadata
 including the current time, should instead be computed using
 only deterministic data like the file contents. At a small
 runtime cost, this enables generation of the same ``/ID`` if
 the same inputs are converted in the same way multiple times.
 Does not work for encrypted files.

 Raises:
 PdfError
 ForeignObjectError
 ValueError

 You may call ``.save()`` multiple times with different parameters
 to generate different versions of a file, and you *may* continue
 to modify the file after saving it. ``.save()`` does not modify
 the ``Pdf`` object in memory, except possibly by updating the XMP
 metadata version with ``fix_metadata_version``.

 .. note::

 :meth:`pikepdf.Pdf.remove_unreferenced_resources` before saving
 may eliminate unnecessary resources from the output file if there
 are any objects (such as images) that are referenced in a page's
 Resources dictionary but never called in the page's content stream.

 .. note::

 pikepdf can read PDFs with incremental updates, but always
 coalesces any incremental updates into a single non-incremental
 PDF file when saving.

 .. note::
 If filename_or_stream is a stream and the process is interrupted during
 writing, the stream may be left in a corrupt state. It is the
 responsibility of the caller to manage the stream in this case.

 .. versionchanged:: 2.7
 Added *recompress_flate*.

 .. versionchanged:: 3.0
 Keyword arguments now mandatory for everything except the first
 argument.

 .. versionchanged:: 8.1
 If filename_or_stream is a filename and that file exists, the new file
 is written to a temporary file in the same directory and then moved into
 place. This prevents the existing destination file from being corrupted
 if the process is interrupted during writing; previously, corrupting the
 destination file was possible. If no file exists at the destination, output
 is written directly to the destination, but the destination will be deleted
 if errors occur during writing. Prior to 8.1, the file was always written
 directly to the destination, which could result in a corrupt destination
 file if the process was interrupted during writing.
 """
 if not filename_or_stream and getattr(self, '_original_filename', None):
 filename_or_stream = self._original_filename
 if not filename_or_stream:
 raise ValueError(
 "Cannot save to original filename because the original file was "
 "not opening using Pdf.open(..., allow_overwriting_input=True). "
 "Either specify a new destination filename/file stream or open "
 "with allow_overwriting_input=True. If this Pdf was created using "
 "Pdf.new(), you must specify a destination object since there is "
 "no original filename to save to."
)
 with ExitStack() as stack:
 if hasattr(filename_or_stream, 'seek'):
 stream = filename_or_stream
 check_stream_is_usable(filename_or_stream)
 else:
 if not isinstance(filename_or_stream, (str, bytes, Path)):
 raise TypeError("expected str, bytes or os.PathLike object")
 filename = Path(filename_or_stream)
 if (
 not getattr(self, '_tmp_stream', None)
 and getattr(self, '_original_filename', None) is not None
):
 check_different_files(self._original_filename, filename)
 stream = stack.enter_context(atomic_overwrite(filename))
 self._save(
 stream,
 static_id=static_id,
 preserve_pdfa=preserve_pdfa,
 min_version=min_version,
 force_version=force_version,
 fix_metadata_version=fix_metadata_version,
 compress_streams=compress_streams,
 stream_decode_level=stream_decode_level,
 object_stream_mode=object_stream_mode,
 normalize_content=normalize_content,
 linearize=linearize,
 qdf=qdf,
 progress=progress,
 encryption=encryption,
 samefile_check=getattr(self, '_tmp_stream', None) is None,
 recompress_flate=recompress_flate,
 deterministic_id=deterministic_id,
)

 @staticmethod
 def open(
 filename_or_stream: Path | str | BinaryIO,
 *,
 password: str | bytes = "",
 hex_password: bool = False,
 ignore_xref_streams: bool = False,
 suppress_warnings: bool = True,
 attempt_recovery: bool = True,
 inherit_page_attributes: bool = True,
 access_mode: AccessMode = AccessMode.default,
 allow_overwriting_input: bool = False,
) -> Pdf:
 """Open an existing file at *filename_or_stream*.

 If *filename_or_stream* is path-like, the file will be opened for reading.
 The file should not be modified by another process while it is open in
 pikepdf, or undefined behavior may occur. This is because the file may be
 lazily loaded. Despite this restriction, pikepdf does not try to use any OS
 services to obtain an exclusive lock on the file. Some applications may
 want to attempt this or copy the file to a temporary location before
 editing. This behaviour changes if *allow_overwriting_input* is set: the whole
 file is then read and copied to memory, so that pikepdf can overwrite it
 when calling ``.save()``.

 When this function is called with a stream-like object, you must ensure
 that the data it returns cannot be modified, or undefined behavior will
 occur.

 Any changes to the file must be persisted by using ``.save()``.

 If *filename_or_stream* has ``.read()`` and ``.seek()`` methods, the file
 will be accessed as a readable binary stream. pikepdf will read the
 entire stream into a private buffer.

 ``.open()`` may be used in a ``with``-block; ``.close()`` will be called when
 the block exits, if applicable.

 Whenever pikepdf opens a file, it will close it. If you open the file
 for pikepdf or give it a stream-like object to read from, you must
 release that object when appropriate.

 Examples:
 >>> with Pdf.open("test.pdf") as pdf:
 ...

 >>> pdf = Pdf.open("test.pdf", password="rosebud")

 Args:
 filename_or_stream: Filename or Python readable and seekable file
 stream of PDF to open.
 password: User or owner password to open an
 encrypted PDF. If the type of this parameter is ``str``
 it will be encoded as UTF-8. If the type is ``bytes`` it will
 be saved verbatim. Passwords are always padded or
 truncated to 32 bytes internally. Use ASCII passwords for
 maximum compatibility.
 hex_password: If True, interpret the password as a
 hex-encoded version of the exact encryption key to use, without
 performing the normal key computation. Useful in forensics.
 ignore_xref_streams: If True, ignore cross-reference
 streams. See qpdf documentation.
 suppress_warnings: If True (default), warnings are not
 printed to stderr. Use :meth:`pikepdf.Pdf.get_warnings()` to
 retrieve warnings.
 attempt_recovery: If True (default), attempt to recover
 from PDF parsing errors.
 inherit_page_attributes: If True (default), push attributes
 set on a group of pages to individual pages
 access_mode: If ``.default``, pikepdf will
 decide how to access the file. Currently, it will always
 selected stream access. To attempt memory mapping and fallback
 to stream if memory mapping failed, use ``.mmap``. Use
 ``.mmap_only`` to require memory mapping or fail
 (this is expected to only be useful for testing). Applications
 should be prepared to handle the SIGBUS signal on POSIX in
 the event that the file is successfully mapped but later goes
 away.
 allow_overwriting_input: If True, allows calling ``.save()``
 to overwrite the input file. This is performed by loading the
 entire input file into memory at open time; this will use more
 memory and may recent performance especially when the opened
 file will not be modified.

 Raises:
 pikepdf.PasswordError: If the password failed to open the
 file.
 pikepdf.PdfError: If for other reasons we could not open
 the file.
 TypeError: If the type of ``filename_or_stream`` is not
 usable.
 FileNotFoundError: If the file was not found.

 Note:
 When *filename_or_stream* is a stream and the stream is located on a
 network, pikepdf assumes that the stream using buffering and read caches
 to achieve reasonable performance. Streams that fetch data over a network
 in response to every read or seek request, no matter how small, will
 perform poorly. It may be easier to download a PDF from network to
 temporary local storage (such as ``io.BytesIO``), manipulate it, and
 then re-upload it.

 .. versionchanged:: 3.0
 Keyword arguments now mandatory for everything except the first
 argument.
 """
 if isinstance(filename_or_stream, bytes) and filename_or_stream.startswith(
 b'%PDF-'
):
 warn(
 "It looks like you called with Pdf.open(data) with a bytes-like object "
 "containing a PDF. This will probably fail because this function "
 "expects a filename or opened file-like object. Instead, please use "
 "Pdf.open(BytesIO(data))."
)
 if isinstance(filename_or_stream, int):
 # Attempted to open with integer file descriptor?
 # TODO improve error
 raise TypeError("expected str, bytes or os.PathLike object")

 stream: RawIOBase | None = None
 closing_stream: bool = False
 original_filename: Path | None = None

 if allow_overwriting_input:
 try:
 Path(filename_or_stream)
 except TypeError as error:
 raise ValueError(
 '"allow_overwriting_input=True" requires "open" first argument '
 'to be a file path'
) from error
 original_filename = Path(filename_or_stream)
 with open(original_filename, 'rb') as pdf_file:
 stream = BytesIO()
 shutil.copyfileobj(pdf_file, stream)
 stream.seek(0)
 # description = f"memory copy of {original_filename}"
 description = str(original_filename)
 elif hasattr(filename_or_stream, 'read') and hasattr(
 filename_or_stream, 'seek'
):
 stream = filename_or_stream
 description = f"stream {stream}"
 else:
 stream = open(filename_or_stream, 'rb')
 original_filename = Path(filename_or_stream)
 description = str(filename_or_stream)
 closing_stream = True

 check_stream_is_usable(stream)
 pdf = Pdf._open(
 stream,
 password=password,
 hex_password=hex_password,
 ignore_xref_streams=ignore_xref_streams,
 suppress_warnings=suppress_warnings,
 attempt_recovery=attempt_recovery,
 inherit_page_attributes=inherit_page_attributes,
 access_mode=access_mode,
 description=description,
 closing_stream=closing_stream,
)
 pdf._tmp_stream = stream if allow_overwriting_input else None
 pdf._original_filename = original_filename
 return pdf

@augments(_ObjectMapping)
class Extend_ObjectMapping:
 def get(self, key, default=None) -> Object:
 try:
 return self[key]
 except KeyError:
 return default

 @augment_override_cpp
 def __contains__(self, key: Name | str) -> bool:
 if isinstance(key, Name):
 key = str(key)
 return _ObjectMapping._cpp__contains__(self, key)

 @augment_override_cpp
 def __getitem__(self, key: Name | str) -> Object:
 if isinstance(key, Name):
 key = str(key)
 return _ObjectMapping._cpp__getitem__(self, key)

def check_is_box(obj) -> None:
 try:
 if obj.is_rectangle:
 return
 except AttributeError:
 pass

 try:
 pdfobj = Array(obj)
 if pdfobj.is_rectangle:
 return
 except Exception as e:
 raise ValueError("object is not a rectangle") from e

 raise ValueError("object is not a rectangle")

@augments(Page)
class Extend_Page:
 @property
 def mediabox(self):
 """Return page's /MediaBox, in PDF units.

 According to the PDF specification:
 "The media box defines the boundaries of the physical medium on which
 the page is to be printed."
 """
 return self._get_mediabox(True)

 @mediabox.setter
 def mediabox(self, value):
 check_is_box(value)
 self.obj['/MediaBox'] = value

 @property
 def artbox(self):
 """Return page's effective /ArtBox, in PDF units.

 According to the PDF specification:
 "The art box defines the page's meaningful content area, including
 white space."

 If the /ArtBox is not defined, the /CropBox is returned.
 """
 return self._get_artbox(True, False)

 @artbox.setter
 def artbox(self, value):
 check_is_box(value)
 self.obj['/ArtBox'] = value

 @property
 def bleedbox(self):
 """Return page's effective /BleedBox, in PDF units.

 According to the PDF specification:
 "The bleed box defines the region to which the contents of the page
 should be clipped when output in a print production environment."

 If the /BleedBox is not defined, the /CropBox is returned.
 """
 return self._get_bleedbox(True, False)

 @bleedbox.setter
 def bleedbox(self, value):
 check_is_box(value)
 self.obj['/BleedBox'] = value

 @property
 def cropbox(self):
 """Return page's effective /CropBox, in PDF units.

 According to the PDF specification:
 "The crop box defines the region to which the contents of the page
 shall be clipped (cropped) when displayed or printed. It has no
 defined meaning in the context of the PDF imaging model; it merely
 imposes clipping on the page contents."

 If the /CropBox is not defined, the /MediaBox is returned.
 """
 return self._get_cropbox(True, False)

 @cropbox.setter
 def cropbox(self, value):
 check_is_box(value)
 self.obj['/CropBox'] = value

 @property
 def trimbox(self):
 """Return page's effective /TrimBox, in PDF units.

 According to the PDF specification:
 "The trim box defines the intended dimensions of the finished page
 after trimming. It may be smaller than the media box to allow for
 production-related content, such as printing instructions, cut marks,
 or color bars."

 If the /TrimBox is not defined, the /CropBox is returned (and if
 /CropBox is not defined, /MediaBox is returned).
 """
 return self._get_trimbox(True, False)

 @trimbox.setter
 def trimbox(self, value):
 check_is_box(value)
 self.obj['/TrimBox'] = value

 @property
 def images(self) -> _ObjectMapping:
 """Return all regular images associated with this page.

 This method does not search for Form XObjects that contain images,
 and does not attempt to find inline images.
 """
 return self._images

 @property
 def form_xobjects(self) -> _ObjectMapping:
 """Return all Form XObjects associated with this page.

 This method does not recurse into nested Form XObjects.

 .. versionadded:: 7.0.0
 """
 return self._form_xobjects

 @property
 def resources(self) -> Dictionary:
 """Return this page's resources dictionary.

 .. versionchanged:: 7.0.0
 If the resources dictionary does not exist, an empty one will be created.
 A TypeError is raised if a page has a /Resources key but it is not a
 dictionary.
 """
 if Name.Resources not in self.obj:
 self.obj.Resources = Dictionary()
 elif not isinstance(self.obj.Resources, Dictionary):
 raise TypeError("Page /Resources exists but is not a dictionary")
 return self.obj.Resources

 def add_resource(
 self,
 res: Object,
 res_type: Name,
 name: Name | None = None,
 *,
 prefix: str = '',
 replace_existing: bool = True,
) -> Name:
 """Add a new resource to the page's Resources dictionary.

 If the Resources dictionaries do not exist, they will be created.

 Args:
 self: The object to add to the resources dictionary.
 res: The dictionary object to insert into the resources
 dictionary.
 res_type: Should be one of the following Resource dictionary types:
 ExtGState, ColorSpace, Pattern, Shading, XObject, Font, Properties.
 name: The name of the object. If omitted, a random name will be
 generated with enough randomness to be globally unique.
 prefix: A prefix for the name of the object. Allows conveniently
 namespacing when using random names, e.g. prefix="Im" for images.
 Mutually exclusive with name parameter.
 replace_existing: If the name already exists in one of the resource
 dictionaries, remove it.

 Example:
 >>> resource_name = pdf.pages[0].add_resource(formxobj, Name.XObject)

 .. versionadded:: 2.3

 .. versionchanged:: 2.14
 If *res* does not belong to the same `Pdf` that owns this page,
 a copy of *res* is automatically created and added instead. In previous
 versions, it was necessary to change for this case manually.

 .. versionchanged:: 4.3.0
 Returns the name of the overlay in the resources dictionary instead
 of returning None.
 """
 resources = self.resources
 if res_type not in resources:
 resources[res_type] = Dictionary()

 if name is not None and prefix:
 raise ValueError("Must specify one of name= or prefix=")
 if name is None:
 name = Name.random(prefix=prefix)

 for res_dict in resources.as_dict().values():
 if not isinstance(res_dict, Dictionary):
 continue
 if name in res_dict:
 if replace_existing:
 del res_dict[name]
 else:
 raise ValueError(f"Name {name} already exists in page /Resources")

 resources[res_type][name] = res.with_same_owner_as(self.obj)
 return name

 def _over_underlay(
 self,
 other,
 rect: Rectangle | None,
 under: bool,
 push_stack: bool,
 shrink: bool,
 expand: bool,
) -> Name:
 formx = None
 if isinstance(other, Page):
 formx = other.as_form_xobject()
 elif isinstance(other, Dictionary) and other.get(Name.Type) == Name.Page:
 formx = Page(other).as_form_xobject()
 elif (
 isinstance(other, Stream)
 and other.get(Name.Type) == Name.XObject
 and other.get(Name.Subtype) == Name.Form
):
 formx = other

 if formx is None:
 raise TypeError(
 "other object is not something we can convert to Form XObject"
)

 if rect is None:
 rect = Rectangle(self.trimbox)

 formx_placed_name = self.add_resource(formx, Name.XObject)
 cs = self.calc_form_xobject_placement(
 formx, formx_placed_name, rect, allow_shrink=shrink, allow_expand=expand
)

 if push_stack:
 self.contents_add(b'q\n', prepend=True) # prepend q
 self.contents_add(b'Q\n', prepend=False) # i.e. append Q

 self.contents_add(cs, prepend=under)
 self.contents_coalesce()
 return formx_placed_name

 def add_overlay(
 self,
 other: Object | Page,
 rect: Rectangle | None = None,
 *,
 push_stack: bool = True,
 shrink: bool = True,
 expand: bool = True,
) -> Name:
 """Overlay another object on this page.

 Overlays will be drawn after all previous content, potentially drawing on top
 of existing content.

 Args:
 other: A Page or Form XObject to render as an overlay on top of this
 page.
 rect: The PDF rectangle (in PDF units) in which to draw the overlay.
 If omitted, this page's trimbox, cropbox or mediabox (in that order)
 will be used.
 push_stack: If True (default), push the graphics stack of the existing
 content stream to ensure that the overlay is rendered correctly.
 Officially PDF limits the graphics stack depth to 32. Most
 viewers will tolerate more, but excessive pushes may cause problems.
 Multiple content streams may also be coalesced into a single content
 stream where this parameter is True, since the PDF specification
 permits PDF writers to coalesce streams as they see fit.
 shrink: If True (default), allow the object to shrink to fit inside the
 rectangle. The aspect ratio will be preserved.
 expand: If True (default), allow the object to expand to fit inside the
 rectangle. The aspect ratio will be preserved.

 Returns:
 The name of the Form XObject that contains the overlay.

 .. versionadded:: 2.14

 .. versionchanged:: 4.0.0
 Added the *push_stack* parameter. Previously, this method behaved
 as if *push_stack* were False.

 .. versionchanged:: 4.2.0
 Added the *shrink* and *expand* parameters. Previously, this method
 behaved as if ``shrink=True, expand=False``.

 .. versionchanged:: 4.3.0
 Returns the name of the overlay in the resources dictionary instead
 of returning None.
 """
 return self._over_underlay(
 other,
 rect,
 under=False,
 push_stack=push_stack,
 expand=expand,
 shrink=shrink,
)

 def add_underlay(
 self,
 other: Object | Page,
 rect: Rectangle | None = None,
 *,
 shrink: bool = True,
 expand: bool = True,
) -> Name:
 """Underlay another object beneath this page.

 Underlays will be drawn before all other content, so they may be overdrawn
 partially or completely.

 There is no *push_stack* parameter for this function, since adding an
 underlay can be done without manipulating the graphics stack.

 Args:
 other: A Page or Form XObject to render as an underlay underneath this
 page.
 rect: The PDF rectangle (in PDF units) in which to draw the underlay.
 If omitted, this page's trimbox, cropbox or mediabox (in that order)
 will be used.
 shrink: If True (default), allow the object to shrink to fit inside the
 rectangle. The aspect ratio will be preserved.
 expand: If True (default), allow the object to expand to fit inside the
 rectangle. The aspect ratio will be preserved.

 Returns:
 The name of the Form XObject that contains the underlay.

 .. versionadded:: 2.14

 .. versionchanged:: 4.2.0
 Added the *shrink* and *expand* parameters. Previously, this method
 behaved as if ``shrink=True, expand=False``. Fixed issue with wrong
 page rect being selected.
 """
 return self._over_underlay(
 other, rect, under=True, push_stack=False, expand=expand, shrink=shrink
)

 def contents_add(self, contents: Stream | bytes, *, prepend: bool = False):
 """Append or prepend to an existing page's content stream.

 Args:
 contents: An existing content stream to append or prepend.
 prepend: Prepend if true, append if false (default).

 .. versionadded:: 2.14
 """
 return self._contents_add(contents, prepend=prepend)

 def __getattr__(self, name):
 return getattr(self.obj, name)

 @augment_override_cpp
 def __setattr__(self, name, value):
 if hasattr(self.__class__, name):
 object.__setattr__(self, name, value)
 else:
 setattr(self.obj, name, value)

 @augment_override_cpp
 def __delattr__(self, name):
 if hasattr(self.__class__, name):
 object.__delattr__(self, name)
 else:
 delattr(self.obj, name)

 def __getitem__(self, key):
 return self.obj[key]

 def __setitem__(self, key, value):
 self.obj[key] = value

 def __delitem__(self, key):
 del self.obj[key]

 def __contains__(self, key):
 return key in self.obj

 def get(self, key, default=None):
 try:
 return self[key]
 except KeyError:
 return default

 def emplace(self, other: Page, retain=(Name.Parent,)):
 return self.obj.emplace(other.obj, retain=retain)

 def __repr__(self):
 return (
 repr(self.obj)
 .replace('Dictionary', 'Page', 1)
 .replace('(Type="/Page")', '', 1)
)

 def _repr_mimebundle_(self, include=None, exclude=None):
 data = {}
 bundle = {'application/pdf', 'image/png'}
 if include:
 bundle = {k for k in bundle if k in include}
 if exclude:
 bundle = {k for k in bundle if k not in exclude}
 pagedata = _single_page_pdf(self.obj)
 if 'application/pdf' in bundle:
 data['application/pdf'] = pagedata
 if 'image/png' in bundle:
 try:
 data['image/png'] = _mudraw(pagedata, 'png')
 except (FileNotFoundError, RuntimeError):
 pass
 return data

@augments(Token)
class Extend_Token:
 def __repr__(self):
 return f'pikepdf.Token({self.type_}, {self.raw_value})'

@augments(Rectangle)
class Extend_Rectangle:
 def __repr__(self):
 return f'pikepdf.Rectangle({self.llx}, {self.lly}, {self.urx}, {self.ury})'

 def __hash__(self):
 return hash((self.llx, self.lly, self.urx, self.ury))

@augments(Attachments)
class Extend_Attachments(MutableMapping):
 def __getitem__(self, k: str) -> AttachedFileSpec:
 filespec = self._get_filespec(k)
 if filespec is None:
 raise KeyError(k)
 return filespec

 def __setitem__(self, k: str, v: AttachedFileSpec) -> None:
 if not v.filename:
 v.filename = k
 return self._add_replace_filespec(k, v)

 def __delitem__(self, k: str) -> None:
 return self._remove_filespec(k)

 def __len__(self):
 return len(self._get_all_filespecs())

 def __iter__(self) -> Iterator[str]:
 yield from self._get_all_filespecs()

 def __repr__(self):
 return f"<pikepdf._core.Attachments with {len(self)} attached files>"

@augments(AttachedFileSpec)
class Extend_AttachedFileSpec:
 @staticmethod
 def from_filepath(
 pdf: Pdf,
 path: Path | str,
 *,
 description: str = '',
 relationship: Name | None = Name.Unspecified,
):
 """Construct a file specification from a file path.

 This function will automatically add a creation and modified date
 using the file system, and a MIME type inferred from the file's extension.

 If the data required for the attach is in memory, use
 :meth:`pikepdf.AttachedFileSpec` instead.

 Args:
 pdf: The Pdf to attach this file specification to.
 path: A file path for the file to attach to this Pdf.
 description: An optional description. May be shown to the user in
 PDF viewers.
 relationship: An optional relationship type. May be used to
 indicate the type of attachment, e.g. Name.Source or Name.Data.
 Canonically, this should be a name from the PDF specification:
 Source, Data, Alternative, Supplement, EncryptedPayload, FormData,
 Schema, Unspecified. If omitted, Unspecified is used.
 """
 mime, _ = mimetypes.guess_type(str(path))
 if mime is None:
 mime = ''
 if not isinstance(path, Path):
 path = Path(path)

 stat = path.stat()
 return AttachedFileSpec(
 pdf,
 path.read_bytes(),
 description=description,
 filename=str(path.name),
 mime_type=mime,
 creation_date=encode_pdf_date(
 datetime.datetime.fromtimestamp(stat.st_ctime)
),
 mod_date=encode_pdf_date(datetime.datetime.fromtimestamp(stat.st_mtime)),
 relationship=relationship,
)

 @property
 def relationship(self) -> Name | None:
 return self.obj.get(Name.AFRelationship)

 @relationship.setter
 def relationship(self, value: Name | None):
 if value is None:
 del self.obj[Name.AFRelationship]
 else:
 self.obj[Name.AFRelationship] = value

 def __repr__(self):
 if self.filename:
 return (
 f"<pikepdf._core.AttachedFileSpec for {self.filename!r}, "
 f"description {self.description!r}>"
)
 return f"<pikepdf._core.AttachedFileSpec description {self.description!r}>"

@augments(AttachedFile)
class Extend_AttachedFile:
 @property
 def creation_date(self) -> datetime.datetime | None:
 if not self._creation_date:
 return None
 return decode_pdf_date(self._creation_date)

 @creation_date.setter
 def creation_date(self, value: datetime.datetime):
 self._creation_date = encode_pdf_date(value)

 @property
 def mod_date(self) -> datetime.datetime | None:
 if not self._mod_date:
 return None
 return decode_pdf_date(self._mod_date)

 @mod_date.setter
 def mod_date(self, value: datetime.datetime):
 self._mod_date = encode_pdf_date(value)

 def read_bytes(self) -> bytes:
 return self.obj.read_bytes()

 def __repr__(self):
 return (
 f'<pikepdf._core.AttachedFile objid={self.obj.objgen} size={self.size} '
 f'mime_type={self.mime_type} creation_date={self.creation_date} '
 f'mod_date={self.mod_date}>'
)

@augments(NameTree)
class Extend_NameTree:
 def keys(self):
 return KeysView(self._as_map())

 def values(self):
 return ValuesView(self._as_map())

 def items(self):
 return ItemsView(self._as_map())

 get = MutableMapping.get
 pop = MutableMapping.pop
 popitem = MutableMapping.popitem
 clear = MutableMapping.clear
 update = MutableMapping.update
 setdefault = MutableMapping.setdefault

MutableMapping.register(NameTree)

@augments(NumberTree)
class Extend_NumberTree:
 def keys(self):
 return KeysView(self._as_map())

 def values(self):
 return ValuesView(self._as_map())

 def items(self):
 return ItemsView(self._as_map())

 get = MutableMapping.get
 pop = MutableMapping.pop
 popitem = MutableMapping.popitem
 clear = MutableMapping.clear
 update = MutableMapping.update
 setdefault = MutableMapping.setdefault

MutableMapping.register(NumberTree)

./usr/lib/python3/dist-packages/pikepdf/_qpdf.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

from __future__ import annotations

isort: skip_file
type: ignore

This module is deprecated - use pikepdf._core instead, if you must
Remove for pikepdf 9
from warnings import warn as _warn

from pikepdf._core import (
 AccessMode,
 Annotation,
 AttachedFile,
 AttachedFileSpec,
 Attachments,
 Buffer,
 ContentStreamInlineImage,
 ContentStreamInstruction,
 DataDecodingError,
 DeletedObjectError,
 EncryptionMethod,
 ForeignObjectError,
 Job,
 JobUsageError,
 NameTree,
 NumberTree,
 Object,
 ObjectHelper,
 ObjectStreamMode,
 ObjectType,
 Page,
 PageList,
 PasswordError,
 Pdf,
 PdfError,
 Rectangle,
 StreamDecodeLevel,
 StreamParser,
 Token,
 TokenFilter,
 TokenType,
 get_decimal_precision,
 pdf_doc_to_utf8,
 qpdf_version,
 set_decimal_precision,
 set_flate_compression_level,
 unparse,
 utf8_to_pdf_doc,
)

__all__ = [
 'AccessMode',
 'Annotation',
 'AttachedFile',
 'AttachedFileSpec',
 'Attachments',
 'Buffer',
 'ContentStreamInlineImage',
 'ContentStreamInstruction',
 'DataDecodingError',
 'DeletedObjectError',
 'EncryptionMethod',
 'ForeignObjectError',
 'Job',
 'JobUsageError',
 'NameTree',
 'NumberTree',
 'Object',
 'ObjectHelper',
 'ObjectStreamMode',
 'ObjectType',
 'Page',
 'PageList',
 'PasswordError',
 'Pdf',
 'PdfError',
 'Rectangle',
 'StreamDecodeLevel',
 'StreamParser',
 'Token',
 'TokenFilter',
 'TokenType',
 'get_decimal_precision',
 'pdf_doc_to_utf8',
 'qpdf_version',
 'set_decimal_precision',
 'set_flate_compression_level',
 'unparse',
 'utf8_to_pdf_doc',
]

_warn("pikepdf._qpdf is deprecated, use pikepdf._core instead.", DeprecationWarning)

./usr/lib/python3/dist-packages/pikepdf/_xml.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

from __future__ import annotations

from typing import IO, Any, AnyStr

from lxml.etree import XMLParser as _UnsafeXMLParser
from lxml.etree import _ElementTree
from lxml.etree import parse as _parse

class _XMLParser(_UnsafeXMLParser):
 def __init__(self, *args: Any, **kwargs: Any):
 # Prevent XXE attacks
 # https://rules.sonarsource.com/python/type/Vulnerability/RSPEC-2755
 kwargs['resolve_entities'] = False
 kwargs['no_network'] = True
 super().__init__(*args, **kwargs)

def parse_xml(source: AnyStr | IO[Any], recover: bool = False) -> _ElementTree:
 """Wrap lxml's parse to provide protection against XXE attacks."""
 parser = _XMLParser(recover=recover, remove_pis=False)
 return _parse(source, parser=parser)

__all__ = ['parse_xml']

./usr/lib/python3/dist-packages/pikepdf/codec.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Implement pdfdoc codec."""

from __future__ import annotations

import codecs
from typing import Any, Container

from ._core import pdf_doc_to_utf8, utf8_to_pdf_doc

pylint: disable=redefined-builtin

See PDF Reference Manual 1.7, Table D.2.
The following generates set of all Unicode code points that can be encoded in
pdfdoc. Since pdfdoc is 8-bit, the vast majority of code points cannot be.

Due to a bug, QPDF <= 10.5 and pikepdf < 5 had some inconsistencies around
PdfDocEncoding.
PDFDOC_ENCODABLE = frozenset(
 list(range(0x00, 0x17 + 1))
 + list(range(0x20, 0x7E + 1))
 + [
 0x2022,
 0x2020,
 0x2021,
 0x2026,
 0x2014,
 0x2013,
 0x0192,
 0x2044,
 0x2039,
 0x203A,
 0x2212,
 0x2030,
 0x201E,
 0x201C,
 0x201D,
 0x2018,
 0x2019,
 0x201A,
 0x2122,
 0xFB01,
 0xFB02,
 0x0141,
 0x0152,
 0x0160,
 0x0178,
 0x017D,
 0x0131,
 0x0142,
 0x0153,
 0x0161,
 0x017E,
 0x20AC,
]
 + [0x02D8, 0x02C7, 0x02C6, 0x02D9, 0x02DD, 0x02DB, 0x02DA, 0x02DC]
 + list(range(0xA1, 0xAC + 1))
 + list(range(0xAE, 0xFF + 1))
)

def _find_first_index(s: str, ordinals: Container[int]) -> int:
 for n, char in enumerate(s):
 if ord(char) not in ordinals:
 return n
 raise ValueError("couldn't find the unencodable character") # pragma: no cover

def pdfdoc_encode(input: str, errors: str = 'strict') -> tuple[bytes, int]:
 """Convert input string to bytes in PdfDocEncoding."""
 error_marker = b'?' if errors == 'replace' else b'\xad'
 success, pdfdoc = utf8_to_pdf_doc(input, error_marker)
 if success:
 return pdfdoc, len(input)

 if errors == 'ignore':
 pdfdoc = pdfdoc.replace(b'\xad', b'')
 return pdfdoc, len(input)
 if errors == 'replace':
 return pdfdoc, len(input)
 if errors == 'strict':
 if input.startswith('\xfe\xff') or input.startswith('\xff\xfe'):
 raise UnicodeEncodeError(
 'pdfdoc',
 input,
 0,
 2,
 "strings beginning with byte order marks cannot be encoded in pdfdoc",
)

 # libqpdf doesn't return what character caused the error, and Python
 # needs this, so make an educated guess and raise an exception based
 # on that.
 offending_index = _find_first_index(input, PDFDOC_ENCODABLE)
 raise UnicodeEncodeError(
 'pdfdoc',
 input,
 offending_index,
 offending_index + 1,
 "character cannot be represented in pdfdoc encoding",
)
 raise LookupError(errors)

def pdfdoc_decode(input: bytes, errors: str = 'strict') -> tuple[str, int]:
 """Convert PdfDoc-encoded input into a Python str."""
 if isinstance(input, memoryview):
 input = input.tobytes()
 s = pdf_doc_to_utf8(input)
 if errors == 'strict':
 idx = s.find('\ufffd')
 if idx >= 0:
 raise UnicodeDecodeError(
 'pdfdoc',
 input,
 idx,
 idx + 1,
 "no Unicode mapping is defined for this character",
)

 return s, len(input)

class PdfDocCodec(codecs.Codec):
 """Implement PdfDocEncoding character map used inside PDFs."""

 def encode(self, input: str, errors: str = 'strict') -> tuple[bytes, int]:
 """Implement codecs.Codec.encode for pdfdoc."""
 return pdfdoc_encode(input, errors)

 def decode(self, input: bytes, errors: str = 'strict') -> tuple[str, int]:
 """Implement codecs.Codec.decode for pdfdoc."""
 return pdfdoc_decode(input, errors)

class PdfDocStreamWriter(PdfDocCodec, codecs.StreamWriter):
 """Implement PdfDocEncoding stream writer."""

class PdfDocStreamReader(PdfDocCodec, codecs.StreamReader):
 """Implement PdfDocEncoding stream reader."""

 def decode(self, input: bytes, errors: str = 'strict') -> tuple[str, int]:
 """Implement codecs.StreamReader.decode for pdfdoc."""
 return PdfDocCodec.decode(self, input, errors)

class PdfDocIncrementalEncoder(codecs.IncrementalEncoder):
 """Implement PdfDocEncoding incremental encoder."""

 def encode(self, input: str, final: bool = False) -> bytes:
 """Implement codecs.IncrementalEncoder.encode for pdfdoc."""
 return pdfdoc_encode(input, 'strict')[0]

class PdfDocIncrementalDecoder(codecs.IncrementalDecoder):
 """Implement PdfDocEncoding incremental decoder."""

 def decode(self, input: Any, final: bool = False) -> str: # type: ignore
 """Implement codecs.IncrementalDecoder.decode for pdfdoc."""
 return pdfdoc_decode(bytes(input), 'strict')[0]

def find_pdfdoc(encoding: str) -> codecs.CodecInfo | None:
 """Register pdfdoc codec with Python.

 Both pdfdoc and pdfdoc_pikepdf are registered. Use "pdfdoc_pikepdf" if pikepdf's
 codec is required. If another third party package installs a codec named pdfdoc,
 the first imported by Python will be registered and will service all encoding.
 Unfortunately, Python's codec infrastructure does not give a better mechanism
 for resolving conflicts.
 """
 if encoding in ('pdfdoc', 'pdfdoc_pikepdf'):
 codec = PdfDocCodec()
 return codecs.CodecInfo(
 name=encoding,
 encode=codec.encode,
 decode=codec.decode,
 streamwriter=PdfDocStreamWriter,
 streamreader=PdfDocStreamReader,
 incrementalencoder=PdfDocIncrementalEncoder,
 incrementaldecoder=PdfDocIncrementalDecoder,
)
 return None # pragma: no cover

codecs.register(find_pdfdoc)

__all__ = ['utf8_to_pdf_doc', 'pdf_doc_to_utf8']

./usr/lib/python3/dist-packages/pikepdf/jbig2.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Integrate JBIG2 image decoding.

Requires third-party JBIG2 decoder in the form of an external program, like
jbig2dec.
"""

from __future__ import annotations

import os
from abc import ABC, abstractmethod
from pathlib import Path
from subprocess import DEVNULL, PIPE, CalledProcessError, run
from tempfile import TemporaryDirectory

from packaging.version import Version
from PIL import Image

from pikepdf._exceptions import DependencyError

class JBIG2DecoderInterface(ABC):
 """pikepdf's C++ expects this Python interface to be available for JBIG2."""

 @abstractmethod
 def check_available(self) -> None:
 """Check if decoder is available. Throws DependencyError if not."""

 @abstractmethod
 def decode_jbig2(self, jbig2: bytes, jbig2_globals: bytes) -> bytes:
 """Decode JBIG2 from jbig2 and globals, returning decoded bytes."""

 def available(self) -> bool:
 """Return True if decoder is available."""
 try:
 self.check_available()
 except DependencyError:
 return False
 else:
 return True

class JBIG2Decoder(JBIG2DecoderInterface):
 """JBIG2 decoder implementation."""

 def __init__(self, *, subprocess_run=run):
 """Initialize the decoder."""
 self._run = subprocess_run

 def check_available(self) -> None:
 """Check if jbig2dec is installed and usable."""
 version = self._version()
 if version < Version('0.15'):
 raise DependencyError("jbig2dec is too old (older than version 0.15)")

 def decode_jbig2(self, jbig2: bytes, jbig2_globals: bytes) -> bytes:
 """Decode JBIG2 from binary data, returning decode bytes."""
 with TemporaryDirectory(prefix='pikepdf-', suffix='.jbig2') as tmpdir:
 image_path = Path(tmpdir) / "image"
 global_path = Path(tmpdir) / "global"
 output_path = Path(tmpdir) / "outfile"

 args = [
 "jbig2dec",
 "--embedded",
 "--format",
 "png",
 "--output",
 os.fspath(output_path),
]

 # Get the raw stream, because we can't decode im_obj
 # (that is why we're here).
 # (Strictly speaking we should remove any non-JBIG2 filters if double
 # encoded).
 image_path.write_bytes(jbig2)

 if len(jbig2_globals) > 0:
 global_path.write_bytes(jbig2_globals)
 args.append(os.fspath(global_path))

 args.append(os.fspath(image_path))

 self._run(args, stdout=DEVNULL, check=True)
 with Image.open(output_path) as im:
 return im.tobytes()

 def _version(self) -> Version:
 try:
 proc = self._run(
 ['jbig2dec', '--version'], stdout=PIPE, check=True, encoding='ascii'
)
 except (CalledProcessError, FileNotFoundError) as e:
 raise DependencyError("jbig2dec - not installed or not found") from e
 else:
 result = proc.stdout
 version_str = result.replace(
 'jbig2dec', ''
).strip() # returns "jbig2dec 0.xx"
 return Version(version_str)

_jbig2_decoder: JBIG2DecoderInterface = JBIG2Decoder()

def get_decoder() -> JBIG2DecoderInterface:
 """Return an instance of a JBIG2 decoder."""
 return _jbig2_decoder

def set_decoder(jbig2_decoder: JBIG2DecoderInterface) -> None:
 """Set the JBIG2 decoder to use."""
 global _jbig2_decoder
 _jbig2_decoder = jbig2_decoder

./usr/lib/python3/dist-packages/pikepdf/models/__init__.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Python implementation of higher level PDF constructs."""

from __future__ import annotations

from ._content_stream import (
 ContentStreamInstructions,
 PdfParsingError,
 UnparseableContentStreamInstructions,
 parse_content_stream,
 unparse_content_stream,
)
from .encryption import Encryption, EncryptionInfo, Permissions
from .image import PdfImage, PdfInlineImage, UnsupportedImageTypeError
from .matrix import PdfMatrix
from .metadata import PdfMetadata
from .outlines import (
 Outline,
 OutlineItem,
 OutlineStructureError,
 PageLocation,
 make_page_destination,
)

__all__ = [
 'ContentStreamInstructions',
 'PdfParsingError',
 'UnparseableContentStreamInstructions',
 'parse_content_stream',
 'unparse_content_stream',
 'Encryption',
 'EncryptionInfo',
 'Permissions',
 'PdfImage',
 'PdfInlineImage',
 'UnsupportedImageTypeError',
 'PdfMatrix',
 'PdfMetadata',
 'Outline',
 'OutlineItem',
 'OutlineStructureError',
 'PageLocation',
 'make_page_destination',
]

./usr/lib/python3/dist-packages/pikepdf/models/_content_stream.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Content stream parsing."""

from __future__ import annotations

from typing import TYPE_CHECKING, Collection, List, Tuple, Union, cast

from pikepdf import Object, ObjectType, Operator, Page, PdfError, _core

if TYPE_CHECKING:
 from pikepdf.models.image import PdfInlineImage

Operands, Operator
_OldContentStreamOperands = Collection[Union[Object, 'PdfInlineImage']]
_OldContentStreamInstructions = Tuple[_OldContentStreamOperands, Operator]

ContentStreamInstructions = Union[
 _core.ContentStreamInstruction, _core.ContentStreamInlineImage
]

UnparseableContentStreamInstructions = Union[
 ContentStreamInstructions, _OldContentStreamInstructions
]

class PdfParsingError(Exception):
 """Error when parsing a PDF content stream."""

 def __init__(self, message=None, line=None):
 if not message:
 message = f"Error encoding content stream at line {line}"
 super().__init__(message)
 self.line = line

def parse_content_stream(
 page_or_stream: Object | Page, operators: str = ''
) -> list[ContentStreamInstructions]:
 """Parse a PDF content stream into a sequence of instructions.

 A PDF content stream is list of instructions that describe where to render
 the text and graphics in a PDF. This is the starting point for analyzing
 PDFs.

 If the input is a page and page.Contents is an array, then the content
 stream is automatically treated as one coalesced stream.

 Each instruction contains at least one operator and zero or more operands.

 This function does not have anything to do with opening a PDF file itself or
 processing data from a whole PDF. It is for processing a specific object inside
 a PDF that is already opened.

 Args:
 page_or_stream: A page object, or the content
 stream attached to another object such as a Form XObject.
 operators: A space-separated string of operators to whitelist.
 For example 'q Q cm Do' will return only operators
 that pertain to drawing images. Use 'BI ID EI' for inline images.
 All other operators and associated tokens are ignored. If blank,
 all tokens are accepted.

 Example:
 >>> with pikepdf.Pdf.open(input_pdf) as pdf:
 >>> page = pdf.pages[0]
 >>> for operands, command in parse_content_stream(page):
 >>> print(command)

 .. versionchanged:: 3.0
 Returns a list of ``ContentStreamInstructions`` instead of a list
 of (operand, operator) tuples. The returned items are duck-type compatible
 with the previous returned items.
 """
 if not isinstance(page_or_stream, (Object, Page)):
 raise TypeError("stream must be a pikepdf.Object or pikepdf.Page")

 if (
 isinstance(page_or_stream, Object)
 and page_or_stream._type_code != ObjectType.stream
 and page_or_stream.get('/Type') != '/Page'
):
 raise TypeError("parse_content_stream called on page or stream object")

 if isinstance(page_or_stream, Page):
 page_or_stream = page_or_stream.obj

 try:
 if page_or_stream.get('/Type') == '/Page':
 page = page_or_stream
 instructions = cast(
 List[ContentStreamInstructions],
 page._parse_page_contents_grouped(operators),
)
 else:
 stream = page_or_stream
 instructions = cast(
 List[ContentStreamInstructions],
 Object._parse_stream_grouped(stream, operators),
)
 except PdfError as e:
 if 'supposed to be a stream or an array' in str(e):
 raise TypeError("parse_content_stream called on non-stream Object") from e
 raise e from e

 return instructions

def unparse_content_stream(
 instructions: Collection[UnparseableContentStreamInstructions],
) -> bytes:
 """Convert collection of instructions to bytes suitable for storing in PDF.

 Given a parsed list of instructions/operand-operators, convert to bytes suitable
 for embedding in a PDF. In PDF the operator always follows the operands.

 Args:
 instructions: collection of instructions such as is returned
 by :func:`parse_content_stream()`

 Returns:
 A binary content stream, suitable for attaching to a Pdf.
 To attach to a Pdf, use :meth:`Pdf.make_stream()``.

 .. versionchanged:: 3.0
 Now accept collections that contain any mixture of
 ``ContentStreamInstruction``, ``ContentStreamInlineImage``, and the older
 operand-operator tuples from pikepdf 2.x.
 """
 try:
 return _core._unparse_content_stream(instructions)
 except (ValueError, TypeError, RuntimeError) as e:
 raise PdfParsingError(
 "While unparsing a content stream, an error occurred"
) from e

./usr/lib/python3/dist-packages/pikepdf/models/_transcoding.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

from __future__ import annotations

import struct
from typing import Any, Callable, NamedTuple, Union

from PIL import Image
from PIL.TiffTags import TAGS_V2 as TIFF_TAGS

BytesLike = Union[bytes, memoryview]
MutableBytesLike = Union[bytearray, memoryview]

def _next_multiple(n: int, k: int) -> int:
 """Return the multiple of k that is greater than or equal n.

 >>> _next_multiple(101, 4)
 104
 >>> _next_multiple(100, 4)
 100
 """
 div, mod = divmod(n, k)
 if mod > 0:
 div += 1
 return div * k

def unpack_subbyte_pixels(
 packed: BytesLike, size: tuple[int, int], bits: int, scale: int = 0
) -> tuple[BytesLike, int]:
 """Unpack subbyte *bits* pixels into full bytes and rescale.

 When scale is 0, the appropriate scale is calculated.
 e.g. for 2-bit, the scale is adjusted so that
 0b00 = 0.00 = 0x00
 0b01 = 0.33 = 0x55
 0b10 = 0.66 = 0xaa
 0b11 = 1.00 = 0xff
 When scale is 1, no scaling is applied, appropriate when
 the bytes are palette indexes.
 """
 width, height = size
 bits_per_byte = 8 // bits
 stride = _next_multiple(width, bits_per_byte)
 buffer = bytearray(bits_per_byte * stride * height)
 max_read = len(buffer) // bits_per_byte
 if scale == 0:
 scale = 255 / ((2**bits) - 1)
 if bits == 4:
 _4bit_inner_loop(packed[:max_read], buffer, scale)
 elif bits == 2:
 _2bit_inner_loop(packed[:max_read], buffer, scale)
 # elif bits == 1:
 # _1bit_inner_loop(packed[:max_read], buffer, scale)
 else:
 raise NotImplementedError(bits)
 return memoryview(buffer), stride

def _1bit_inner_loop(in_: BytesLike, out: MutableBytesLike, scale: int) -> None:
"""Unpack 1-bit values to their 8-bit equivalents.

Thus *out* must be 8x at long as *in*.
"""
for n, val in enumerate(in_):
out[8 * n + 0] = int((val >> 7) & 0b1) * scale
out[8 * n + 1] = int((val >> 6) & 0b1) * scale
out[8 * n + 2] = int((val >> 5) & 0b1) * scale
out[8 * n + 3] = int((val >> 4) & 0b1) * scale
out[8 * n + 4] = int((val >> 3) & 0b1) * scale
out[8 * n + 5] = int((val >> 2) & 0b1) * scale
out[8 * n + 6] = int((val >> 1) & 0b1) * scale
out[8 * n + 7] = int((val >> 0) & 0b1) * scale

def _2bit_inner_loop(in_: BytesLike, out: MutableBytesLike, scale: int) -> None:
 """Unpack 2-bit values to their 8-bit equivalents.

 Thus *out* must be 4x at long as *in*.

 Images of this type are quite rare in practice, so we don't
 optimize this loop.
 """
 for n, val in enumerate(in_):
 out[4 * n] = int((val >> 6) * scale)
 out[4 * n + 1] = int(((val >> 4) & 0b11) * scale)
 out[4 * n + 2] = int(((val >> 2) & 0b11) * scale)
 out[4 * n + 3] = int((val & 0b11) * scale)

def _4bit_inner_loop(in_: BytesLike, out: MutableBytesLike, scale: int) -> None:
 """Unpack 4-bit values to their 8-bit equivalents.

 Thus *out* must be 2x at long as *in*.

 Images of this type are quite rare in practice, so we don't
 optimize this loop.
 """
 for n, val in enumerate(in_):
 out[2 * n] = int((val >> 4) * scale)
 out[2 * n + 1] = int((val & 0b1111) * scale)

def image_from_byte_buffer(buffer: BytesLike, size: tuple[int, int], stride: int):
 """Use Pillow to create one-component image from a byte buffer.

 stride is the number of bytes per row, and is essential for packed bits
 with odd image widths.
 """
 ystep = 1 # image is top to bottom in memory
 return Image.frombuffer('L', size, buffer, "raw", 'L', stride, ystep)

def _make_rgb_palette(gray_palette: bytes) -> bytes:
 palette = b''
 for entry in gray_palette:
 palette += bytes([entry]) * 3
 return palette

def _depalettize_cmyk(buffer: BytesLike, palette: BytesLike):
 with memoryview(buffer) as mv:
 output = bytearray(4 * len(mv))
 for n, pal_idx in enumerate(mv):
 output[4 * n : 4 * (n + 1)] = palette[4 * pal_idx : 4 * (pal_idx + 1)]
 return output

def image_from_buffer_and_palette(
 buffer: BytesLike,
 size: tuple[int, int],
 stride: int,
 base_mode: str,
 palette: BytesLike,
) -> Image.Image:
 """Construct an image from a byte buffer and apply the palette.

 1/2/4-bit images must be unpacked (no scaling!) to byte buffers first, such
 that every 8-bit integer is an index into the palette.
 """
 # Reminder Pillow palette byte order unintentionally changed in 8.3.0
 # https://github.com/python-pillow/Pillow/issues/5595
 # 8.2.0: all aligned by channel (very nonstandard)
 # 8.3.0: all channels for one color followed by the next color (e.g. RGBRGBRGB)

 if base_mode == 'RGB':
 im = image_from_byte_buffer(buffer, size, stride)
 im.putpalette(palette, rawmode=base_mode)
 elif base_mode == 'L':
 # Pillow does not fully support palettes with rawmode='L'.
 # Convert to RGB palette.
 gray_palette = _make_rgb_palette(palette)
 im = image_from_byte_buffer(buffer, size, stride)
 im.putpalette(gray_palette, rawmode='RGB')
 elif base_mode == 'CMYK':
 # Pillow does not support CMYK with palettes; convert manually
 output = _depalettize_cmyk(buffer, palette)
 im = Image.frombuffer('CMYK', size, data=output, decoder_name='raw')
 else:
 raise NotImplementedError(f'palette with {base_mode}')
 return im

def fix_1bit_palette_image(
 im: Image.Image, base_mode: str, palette: BytesLike
) -> Image.Image:
 """Apply palettes to 1-bit images."""
 im = im.convert('P')
 if base_mode == 'RGB' and len(palette) == 6:
 # rgbrgb -> rgb000000...rgb
 expanded_palette = b''.join(
 [palette[0:3], (b'\x00\x00\x00' * (256 - 2)), palette[3:6]]
)
 im.putpalette(expanded_palette, rawmode='RGB')
 elif base_mode == 'L':
 try:
 im.putpalette(palette, rawmode='L')
 except ValueError as e:
 if 'unrecognized raw mode' in str(e):
 rgb_palette = _make_rgb_palette(palette)
 im.putpalette(rgb_palette, rawmode='RGB')
 return im

def generate_ccitt_header(
 size: tuple[int, int],
 *,
 data_length: int,
 ccitt_group: int,
 t4_options: int | None,
 photometry: int,
 icc: bytes,
) -> bytes:
 """Generate binary CCITT header for image with given parameters."""
 tiff_header_struct = '<' + '2s' + 'H' + 'L' + 'H'

 tag_keys = {tag.name: key for key, tag in TIFF_TAGS.items()} # type: ignore
 ifd_struct = '<HHLL'

 class IFD(NamedTuple):
 key: int
 typecode: Any
 count_: int
 data: int | Callable[[], int | None]

 ifds: list[IFD] = []

 def header_length(ifd_count) -> int:
 return (
 struct.calcsize(tiff_header_struct)
 + struct.calcsize(ifd_struct) * ifd_count
 + 4
)

 def add_ifd(tag_name: str, data: int | Callable[[], int | None], count: int = 1):
 key = tag_keys[tag_name]
 typecode = TIFF_TAGS[key].type # type: ignore
 ifds.append(IFD(key, typecode, count, data))

 image_offset = None
 width, height = size
 add_ifd('ImageWidth', width)
 add_ifd('ImageLength', height)
 add_ifd('BitsPerSample', 1)
 add_ifd('Compression', ccitt_group)
 add_ifd('FillOrder', 1)
 if t4_options is not None:
 add_ifd('T4Options', t4_options)
 add_ifd('PhotometricInterpretation', photometry)
 add_ifd('StripOffsets', lambda: image_offset)
 add_ifd('RowsPerStrip', height)
 add_ifd('StripByteCounts', data_length)

 icc_offset = 0
 if icc:
 add_ifd('ICCProfile', lambda: icc_offset, count=len(icc))

 icc_offset = header_length(len(ifds))
 image_offset = icc_offset + len(icc)

 ifd_args = [(arg() if callable(arg) else arg) for ifd in ifds for arg in ifd]
 tiff_header = struct.pack(
 (tiff_header_struct + ifd_struct[1:] * len(ifds) + 'L'),
 b'II', # Byte order indication: Little endian
 42, # Version number (always 42)
 8, # Offset to first IFD
 len(ifds), # Number of tags in IFD
 *ifd_args,
 0, # Last IFD
)

 if icc:
 tiff_header += icc
 return tiff_header

./usr/lib/python3/dist-packages/pikepdf/models/encryption.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""For managing PDF encryption."""

from __future__ import annotations

from typing import TYPE_CHECKING, Any, Literal, NamedTuple, cast

if TYPE_CHECKING:
 from pikepdf._core import EncryptionMethod

class Permissions(NamedTuple):
 """Stores the user-level permissions for an encrypted PDF.

 A compliant PDF reader/writer should enforce these restrictions on people
 who have the user password and not the owner password. In practice, either
 password is sufficient to decrypt all document contents. A person who has
 the owner password should be allowed to modify the document in any way.
 pikepdf does not enforce the restrictions in any way; it is up to application
 developers to enforce them as they see fit.

 Unencrypted PDFs implicitly have all permissions allowed. Permissions can
 only be changed when a PDF is saved.
 """

 accessibility: bool = True
 """Can users use screen readers and accessibility tools to read the PDF?"""

 extract: bool = True
 """Can users extract contents?"""

 modify_annotation: bool = True
 """Can users modify annotations?"""

 modify_assembly: bool = False
 """Can users arrange document contents?"""

 modify_form: bool = True
 """Can users fill out forms?"""

 modify_other: bool = True
 """Can users modify the document?"""

 print_lowres: bool = True
 """Can users print the document at low resolution?"""

 print_highres: bool = True
 """Can users print the document at high resolution?"""

DEFAULT_PERMISSIONS = Permissions()

class EncryptionInfo:
 """Reports encryption information for an encrypted PDF.

 This information may not be changed, except when a PDF is saved.
 This object is not used to specify the encryption settings to save
 a PDF, due to non-overlapping information requirements.
 """

 def __init__(self, encdict: dict[str, Any]):
 """Initialize EncryptionInfo.

 Generally pikepdf will initialize and return it.

 Args:
 encdict: Python dictionary containing encryption settings.
 """
 self._encdict = encdict

 @property
 def R(self) -> int:
 """Revision number of the security handler."""
 return int(self._encdict['R'])

 @property
 def V(self) -> int:
 """Version of PDF password algorithm."""
 return int(self._encdict['V'])

 @property
 def P(self) -> int:
 """Return encoded permission bits.

 See :meth:`Pdf.allow` instead.
 """
 return int(self._encdict['P'])

 @property
 def stream_method(self) -> EncryptionMethod:
 """Encryption method used to encode streams."""
 return cast('EncryptionMethod', self._encdict['stream'])

 @property
 def string_method(self) -> EncryptionMethod:
 """Encryption method used to encode strings."""
 return cast('EncryptionMethod', self._encdict['string'])

 @property
 def file_method(self) -> EncryptionMethod:
 """Encryption method used to encode the whole file."""
 return cast('EncryptionMethod', self._encdict['file'])

 @property
 def user_password(self) -> bytes:
 """If possible, return the user password.

 The user password can only be retrieved when a PDF is opened
 with the owner password and when older versions of the
 encryption algorithm are used.

 The password is always returned as ``bytes`` even if it has
 a clear Unicode representation.
 """
 return bytes(self._encdict['user_passwd'])

 @property
 def encryption_key(self) -> bytes:
 """Return the RC4 or AES encryption key used for this file."""
 return bytes(self._encdict['encryption_key'])

 @property
 def bits(self) -> int:
 """Return the number of bits in the encryption algorithm.

 e.g. if the algorithm is AES-256, this returns 256.
 """
 return len(self._encdict['encryption_key']) * 8

class Encryption(NamedTuple):
 """Specify the encryption settings to apply when a PDF is saved."""

 owner: str = ''
 """The owner password to use. This allows full control
 of the file. If blank, the PDF will be encrypted and
 present as "(SECURED)" in PDF viewers. If the owner password
 is blank, the user password should be as well."""

 user: str = ''
 """The user password to use. With this password, some
 restrictions will be imposed by a typical PDF reader.
 If blank, the PDF can be opened by anyone, but only modified
 as allowed by the permissions in ``allow``."""

 R: Literal[2, 3, 4, 5, 6] = 6
 """Select the security handler algorithm to use. Choose from:
 ``2``, ``3``, ``4`` or ``6``. By default, the highest version of
 is selected (``6``). ``5`` is a deprecated algorithm that should
 not be used."""

 allow: Permissions = DEFAULT_PERMISSIONS
 """The permissions to set.
 If omitted, all permissions are granted to the user."""

 aes: bool = True
 """If True, request the AES algorithm. If False, use RC4.
 If omitted, AES is selected whenever possible (R >= 4)."""

 metadata: bool = True
 """If True, also encrypt the PDF metadata. If False,
 metadata is not encrypted. Reading document metadata without
 decryption may be desirable in some cases. Requires ``aes=True``.
 If omitted, metadata is encrypted whenever possible."""

./usr/lib/python3/dist-packages/pikepdf/models/image.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Extract images embedded in PDF."""

from __future__ import annotations

import sys
from abc import ABC, abstractmethod
from copy import copy
from decimal import Decimal
from io import BytesIO
from itertools import zip_longest
from pathlib import Path
from shutil import copyfileobj
from typing import Any, BinaryIO, Callable, NamedTuple, TypeVar, Union, cast

from PIL import Image
from PIL.ImageCms import ImageCmsProfile

from pikepdf import (
 Array,
 Dictionary,
 Name,
 Object,
 Pdf,
 PdfError,
 Stream,
 StreamDecodeLevel,
 String,
 jbig2,
)
from pikepdf._core import Buffer
from pikepdf._exceptions import DependencyError
from pikepdf.models import _transcoding

T = TypeVar('T')

if sys.version_info >= (3, 9):
 RGBDecodeArray = tuple[float, float, float, float, float, float]
 GrayDecodeArray = tuple[float, float]
 CMYKDecodeArray = tuple[float, float, float, float, float, float, float, float]
 DecodeArray = Union[RGBDecodeArray, GrayDecodeArray, CMYKDecodeArray]
else:
 RGBDecodeArray = Any
 GrayDecodeArray = Any
 CMYKDecodeArray = Any
 DecodeArray = Any

class UnsupportedImageTypeError(Exception):
 """This image is formatted in a way pikepdf does not supported."""

class NotExtractableError(Exception):
 """Indicates that an image cannot be directly extracted."""

class HifiPrintImageNotTranscodableError(NotExtractableError):
 """Image contains high fidelity printing information and cannot be extracted."""

class InvalidPdfImageError(Exception):
 """This image is not valid according to the PDF 1.7 specification."""

def _array_str(value: Object | str | list):
 """Simplify pikepdf objects to array of str. Keep streams, dictionaries intact."""

 def _convert(item):
 if isinstance(item, (list, Array)):
 return [_convert(subitem) for subitem in item]
 if isinstance(item, (Stream, Dictionary, bytes, int)):
 return item
 if isinstance(item, (Name, str)):
 return str(item)
 if isinstance(item, (String)):
 return bytes(item)
 raise NotImplementedError(value)

 result = _convert(value)
 if not isinstance(result, list):
 result = [result]
 return result

def _ensure_list(value: list[Object] | Dictionary | Array | Object) -> list[Object]:
 """Ensure value is a list of pikepdf.Object, if it was not already.

 To support DecodeParms which can be present as either an array of dicts or a single
 dict. It's easier to convert to an array of one dict.
 """
 if isinstance(value, list):
 return value
 return list(value.wrap_in_array().as_list())

def _metadata_from_obj(
 obj: Dictionary | Stream, name: str, type_: Callable[[Any], T], default: T
) -> T | None:
 """Retrieve metadata from a dictionary or stream and wrangle types."""
 val = getattr(obj, name, default)
 try:
 return type_(val)
 except TypeError:
 if val is None:
 return None
 raise NotImplementedError('Metadata access for ' + name)

class PaletteData(NamedTuple):
 """Returns the color space and binary representation of the palette.

 ``base_colorspace`` is typically ``"RGB"`` or ``"L"`` (for grayscale).

 ``palette`` is typically 256 or 256*3=768 bytes, for grayscale and RGB color
 respectively, with each unit/triplet being the grayscale/RGB triplet values.
 """

 base_colorspace: str
 palette: bytes

class PdfImageBase(ABC):
 """Abstract base class for images."""

 SIMPLE_COLORSPACES = {'/DeviceRGB', '/DeviceGray', '/CalRGB', '/CalGray'}
 MAIN_COLORSPACES = SIMPLE_COLORSPACES | {'/DeviceCMYK', '/CalCMYK', '/ICCBased'}
 PRINT_COLORSPACES = {'/Separation', '/DeviceN'}

 @abstractmethod
 def _metadata(self, name: str, type_: Callable[[Any], T], default: T) -> T:
 """Get metadata for this image type."""

 @property
 def width(self) -> int:
 """Width of the image data in pixels."""
 return self._metadata('Width', int, 0)

 @property
 def height(self) -> int:
 """Height of the image data in pixels."""
 return self._metadata('Height', int, 0)

 @property
 def image_mask(self) -> bool:
 """Return ``True`` if this is an image mask."""
 return self._metadata('ImageMask', bool, False)

 @property
 def _bpc(self) -> int | None:
 """Bits per component for this image (low-level)."""
 return self._metadata('BitsPerComponent', int, 0)

 @property
 def _colorspaces(self):
 """Colorspace (low-level)."""
 return self._metadata('ColorSpace', _array_str, [])

 @property
 def filters(self):
 """List of names of the filters that we applied to encode this image."""
 return self._metadata('Filter', _array_str, [])

 @property
 def _decode_array(self) -> DecodeArray:
 """Extract the /Decode array."""
 decode: list = self._metadata('Decode', _ensure_list, [])
 if decode and len(decode) in (2, 6, 8):
 return cast(DecodeArray, tuple(float(value) for value in decode))

 if self.colorspace in ('/DeviceGray', '/CalGray'):
 return (0.0, 1.0)
 if self.colorspace == ('/DeviceRGB', '/CalRGB'):
 return (0.0, 1.0, 0.0, 1.0, 0.0, 1.0)
 if self.colorspace == '/DeviceCMYK':
 return (0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0)
 if self.colorspace == '/ICCBased':
 if self._approx_mode_from_icc() == 'L':
 return (0.0, 1.0)
 if self._approx_mode_from_icc() == 'RGB':
 return (0.0, 1.0, 0.0, 1.0, 0.0, 1.0)

 raise NotImplementedError(
 "Don't how to retrieve default /Decode array for image" + repr(self)
)

 @property
 def decode_parms(self):
 """List of the /DecodeParms, arguments to filters."""
 return self._metadata('DecodeParms', _ensure_list, [])

 @property
 def colorspace(self) -> str | None:
 """PDF name of the colorspace that best describes this image."""
 if self.image_mask:
 return None # Undefined for image masks
 if self._colorspaces:
 if self._colorspaces[0] in self.MAIN_COLORSPACES:
 return self._colorspaces[0]
 if self._colorspaces[0] == '/Indexed':
 subspace = self._colorspaces[1]
 if isinstance(subspace, str) and subspace in self.MAIN_COLORSPACES:
 return subspace
 if isinstance(subspace, list) and subspace[0] in (
 '/ICCBased',
 '/DeviceN',
):
 return subspace[0]
 if self._colorspaces[0] == '/DeviceN':
 return '/DeviceN'

 raise NotImplementedError(
 "not sure how to get colorspace: " + repr(self._colorspaces)
)

 @property
 def bits_per_component(self) -> int:
 """Bits per component of this image."""
 if self._bpc is None or self._bpc == 0:
 return 1 if self.image_mask else 8
 return self._bpc

 @property
 @abstractmethod
 def icc(self) -> ImageCmsProfile | None:
 """Return ICC profile for this image if one is defined."""

 @property
 def indexed(self) -> bool:
 """Check if the image has a defined color palette."""
 return '/Indexed' in self._colorspaces

 def _colorspace_has_name(self, name):
 try:
 cs = self._colorspaces
 if cs[0] == '/Indexed' and cs[1][0] == name:
 return True
 if cs[0] == name:
 return True
 except (IndexError, AttributeError, KeyError):
 pass
 return False

 @property
 def is_device_n(self) -> bool:
 """Check if image has a /DeviceN (complex printing) colorspace."""
 return self._colorspace_has_name('/DeviceN')

 @property
 def is_separation(self) -> bool:
 """Check if image has a /DeviceN (complex printing) colorspace."""
 return self._colorspace_has_name('/Separation')

 @property
 def size(self) -> tuple[int, int]:
 """Size of image as (width, height)."""
 return self.width, self.height

 def _approx_mode_from_icc(self):
 if self.indexed:
 icc_profile = self._colorspaces[1][1]
 else:
 icc_profile = self._colorspaces[1]
 icc_profile_nchannels = int(icc_profile['/N'])

 if icc_profile_nchannels == 1:
 return 'L'

 # Multiple channels, need to open the profile and look
 mode_from_xcolor_space = {'RGB ': 'RGB', 'CMYK': 'CMYK'}
 xcolor_space = self.icc.profile.xcolor_space
 return mode_from_xcolor_space.get(xcolor_space, '')

 @property
 def mode(self) -> str:
 """``PIL.Image.mode`` equivalent for this image, where possible.

 If an ICC profile is attached to the image, we still attempt to resolve a Pillow
 mode.
 """
 m = ''
 if self.is_device_n:
 m = 'DeviceN'
 elif self.is_separation:
 m = 'Separation'
 elif self.indexed:
 m = 'P'
 elif self.colorspace == '/DeviceGray' and self.bits_per_component == 1:
 m = '1'
 elif self.colorspace == '/DeviceGray' and self.bits_per_component > 1:
 m = 'L'
 elif self.colorspace == '/DeviceRGB':
 m = 'RGB'
 elif self.colorspace == '/DeviceCMYK':
 m = 'CMYK'
 elif self.colorspace == '/ICCBased':
 try:
 m = self._approx_mode_from_icc()
 except (ValueError, TypeError) as e:
 raise NotImplementedError(
 "Not sure how to handle PDF image of this type"
) from e
 if m == '':
 raise NotImplementedError(
 "Not sure how to handle PDF image of this type"
) from None
 return m

 @property
 def filter_decodeparms(self):
 """Return normalized the Filter and DecodeParms data.

 PDF has a lot of possible data structures concerning /Filter and
 /DecodeParms. /Filter can be absent or a name or an array, /DecodeParms
 can be absent or a dictionary (if /Filter is a name) or an array (if
 /Filter is an array). When both are arrays the lengths match.

 Normalize this into:
 [(/FilterName, {/DecodeParmName: Value, ...}), ...]

 The order of /Filter matters as indicates the encoding/decoding sequence.
 """
 return list(zip_longest(self.filters, self.decode_parms, fillvalue={}))

 @property
 def palette(self) -> PaletteData | None:
 """Retrieve the color palette for this image if applicable."""
 if not self.indexed:
 return None
 try:
 _idx, base, _hival, lookup = self._colorspaces
 except ValueError as e:
 raise ValueError('Not sure how to interpret this palette') from e
 if self.icc or self.is_device_n or self.is_separation:
 base = str(base[0])
 else:
 base = str(base)
 lookup = bytes(lookup)
 if base not in self.MAIN_COLORSPACES and base not in self.PRINT_COLORSPACES:
 raise NotImplementedError(f"not sure how to interpret this palette: {base}")
 if base == '/DeviceRGB':
 base = 'RGB'
 elif base == '/DeviceGray':
 base = 'L'
 elif base == '/DeviceCMYK':
 base = 'CMYK'
 elif base == '/DeviceN':
 base = 'DeviceN'
 elif base == '/Separation':
 base = 'Separation'
 elif base == '/ICCBased':
 base = self._approx_mode_from_icc()
 return PaletteData(base, lookup)

 @abstractmethod
 def as_pil_image(self) -> Image.Image:
 """Convert this PDF image to a Python PIL (Pillow) image."""

class PdfImage(PdfImageBase):
 """Support class to provide a consistent API for manipulating PDF images.

 The data structure for images inside PDFs is irregular and complex,
 making it difficult to use without introducing errors for less
 typical cases. This class addresses these difficulties by providing a
 regular, Pythonic API similar in spirit (and convertible to) the Python
 Pillow imaging library.
 """

 obj: Stream
 _icc: ImageCmsProfile | None
 _pdf_source: Pdf | None

 def __new__(cls, obj: Stream):
 """Construct a PdfImage... or a PdfJpxImage if that is what we really are."""
 try:
 # Check if JPXDecode is called for and initialize as PdfJpxImage
 filters = _ensure_list(obj.Filter)
 if Name.JPXDecode in filters:
 return super().__new__(PdfJpxImage)
 except (AttributeError, KeyError):
 # __init__ will deal with any other errors
 pass
 return super().__new__(PdfImage)

 def __init__(self, obj: Stream):
 """Construct a PDF image from a Image XObject inside a PDF.

 ``pim = PdfImage(page.Resources.XObject['/ImageNN'])``

 Args:
 obj: an Image XObject
 """
 if isinstance(obj, Stream) and obj.stream_dict.get("/Subtype") != "/Image":
 raise TypeError("can't construct PdfImage from non-image")
 self.obj = obj
 self._icc = None

 def __eq__(self, other):
 if not isinstance(other, PdfImageBase):
 return NotImplemented
 return self.obj == other.obj

 @classmethod
 def _from_pil_image(cls, *, pdf, page, name, image): # pragma: no cover
 """Insert a PIL image into a PDF (rudimentary).

 Args:
 pdf (pikepdf.Pdf): the PDF to attach the image to
 page (pikepdf.Object): the page to attach the image to
 name (str or pikepdf.Name): the name to set the image
 image (PIL.Image.Image): the image to insert
 """
 data = image.tobytes()

 imstream = Stream(pdf, data)
 imstream.Type = Name('/XObject')
 imstream.Subtype = Name('/Image')
 if image.mode == 'RGB':
 imstream.ColorSpace = Name('/DeviceRGB')
 elif image.mode in ('1', 'L'):
 imstream.ColorSpace = Name('/DeviceGray')
 imstream.BitsPerComponent = 1 if image.mode == '1' else 8
 imstream.Width = image.width
 imstream.Height = image.height

 page.Resources.XObject[name] = imstream

 return cls(imstream)

 def _metadata(self, name, type_, default):
 return _metadata_from_obj(self.obj, name, type_, default)

 @property
 def _iccstream(self):
 if self.colorspace == '/ICCBased':
 if not self.indexed:
 return self._colorspaces[1]
 assert isinstance(self._colorspaces[1], list)
 return self._colorspaces[1][1]
 raise NotImplementedError("Don't know how to find ICC stream for image")

 @property
 def icc(self) -> ImageCmsProfile | None:
 """If an ICC profile is attached, return a Pillow object that describe it.

 Most of the information may be found in ``icc.profile``.
 """
 if self.colorspace not in ('/ICCBased', '/Indexed'):
 return None
 if not self._icc:
 iccstream = self._iccstream
 iccbuffer = iccstream.get_stream_buffer()
 iccbytesio = BytesIO(iccbuffer)
 try:
 self._icc = ImageCmsProfile(iccbytesio)
 except OSError as e:
 if str(e) == 'cannot open profile from string':
 # ICC profile is corrupt
 raise UnsupportedImageTypeError(
 "ICC profile corrupt or not readable"
) from e
 return self._icc

 def _remove_simple_filters(self):
 """Remove simple lossless compression where it appears."""
 COMPLEX_FILTERS = {
 '/DCTDecode',
 '/JPXDecode',
 '/JBIG2Decode',
 '/CCITTFaxDecode',
 }
 indices = [n for n, filt in enumerate(self.filters) if filt in COMPLEX_FILTERS]
 if len(indices) > 1:
 raise NotImplementedError(
 f"Object {self.obj.objgen} has compound complex filters: "
 f"{self.filters}. We cannot decompress this."
)
 if len(indices) == 0:
 # No complex filter indices, so all filters are simple - remove them all
 return self.obj.read_bytes(StreamDecodeLevel.specialized), []

 n = indices[0]
 if n == 0:
 # The only filter is complex, so return
 return self.obj.read_raw_bytes(), self.filters

 obj_copy = copy(self.obj)
 obj_copy.Filter = Array([Name(f) for f in self.filters[:n]])
 obj_copy.DecodeParms = Array(self.decode_parms[:n])
 return obj_copy.read_bytes(StreamDecodeLevel.specialized), self.filters[n:]

 def _extract_direct(self, *, stream: BinaryIO) -> str | None:
 """Attempt to extract the image directly to a usable image file.

 If there is no way to extract the image without decompressing or
 transcoding then raise an exception. The type and format of image
 generated will vary.

 Args:
 stream: Writable file stream to write data to, e.g. an open file
 """

 def normal_dct_rgb() -> bool:
 # Normal DCTDecode RGB images have the default value of
 # /ColorTransform 1 and are actually in YUV. Such a file can be
 # saved as a standard JPEG. RGB JPEGs without YUV conversion can't
 # be saved as JPEGs, and are probably bugs. Some software in the
 # wild actually produces RGB JPEGs in PDFs (probably a bug).
 DEFAULT_CT_RGB = 1
 ct = DEFAULT_CT_RGB
 if self.filter_decodeparms[0][1] is not None:
 ct = self.filter_decodeparms[0][1].get(
 '/ColorTransform', DEFAULT_CT_RGB
)
 return self.mode == 'RGB' and ct == DEFAULT_CT_RGB

 def normal_dct_cmyk() -> bool:
 # Normal DCTDecode CMYKs have /ColorTransform 0 and can be saved.
 # There is a YUVK colorspace but CMYK JPEGs don't generally use it
 DEFAULT_CT_CMYK = 0
 ct = DEFAULT_CT_CMYK
 if self.filter_decodeparms[0][1] is not None:
 ct = self.filter_decodeparms[0][1].get(
 '/ColorTransform', DEFAULT_CT_CMYK
)
 return self.mode == 'CMYK' and ct == DEFAULT_CT_CMYK

 data, filters = self._remove_simple_filters()

 if filters == ['/CCITTFaxDecode']:
 if self.colorspace == '/ICCBased':
 icc = self._iccstream.read_bytes()
 else:
 icc = None
 stream.write(self._generate_ccitt_header(data, icc=icc))
 stream.write(data)
 return '.tif'
 if filters == ['/DCTDecode'] and (
 self.mode == 'L' or normal_dct_rgb() or normal_dct_cmyk()
):
 stream.write(data)
 return '.jpg'

 return None

 def _extract_transcoded_1248bits(self) -> Image.Image:
 """Extract an image when there are 1/2/4/8 bits packed in byte data."""
 stride = 0 # tell Pillow to calculate stride from line width
 scale = 0 if self.mode == 'L' else 1
 if self.bits_per_component in (2, 4):
 buffer, stride = _transcoding.unpack_subbyte_pixels(
 self.read_bytes(), self.size, self.bits_per_component, scale
)
 elif self.bits_per_component == 8:
 buffer = cast(memoryview, self.get_stream_buffer())
 else:
 raise InvalidPdfImageError("BitsPerComponent must be 1, 2, 4, 8, or 16")

 if self.mode == 'P' and self.palette is not None:
 base_mode, palette = self.palette
 im = _transcoding.image_from_buffer_and_palette(
 buffer,
 self.size,
 stride,
 base_mode,
 palette,
)
 else:
 im = _transcoding.image_from_byte_buffer(buffer, self.size, stride)
 return im

 def _extract_transcoded_1bit(self) -> Image.Image:
 if not self.image_mask and self.mode in ('RGB', 'CMYK'):
 raise UnsupportedImageTypeError("1-bit RGB and CMYK are not supported")
 try:
 data = self.read_bytes()
 except (RuntimeError, PdfError) as e:
 if (
 'read_bytes called on unfilterable stream' in str(e)
 and not jbig2.get_decoder().available()
):
 raise DependencyError(
 "jbig2dec - not installed or installed version is too old "
 "(older than version 0.15)"
) from None
 raise

 im = Image.frombytes('1', self.size, data)

 if self.palette is not None:
 base_mode, palette = self.palette
 im = _transcoding.fix_1bit_palette_image(im, base_mode, palette)

 return im

 def _extract_transcoded_mask(self) -> Image.Image:
 return self._extract_transcoded_1bit()

 def _extract_transcoded(self) -> Image.Image:
 if self.image_mask:
 return self._extract_transcoded_mask()

 if self.mode in {'DeviceN', 'Separation'}:
 raise HifiPrintImageNotTranscodableError()

 if self.mode == 'RGB' and self.bits_per_component == 8:
 # Cannot use the zero-copy .get_stream_buffer here, we have 3-byte
 # RGB and Pillow needs RGBX.
 im = Image.frombuffer(
 'RGB', self.size, self.read_bytes(), 'raw', 'RGB', 0, 1
)
 elif self.mode == 'CMYK' and self.bits_per_component == 8:
 im = Image.frombuffer(
 'CMYK', self.size, self.get_stream_buffer(), 'raw', 'CMYK', 0, 1
)
 # elif self.mode == '1':
 elif self.bits_per_component == 1:
 im = self._extract_transcoded_1bit()
 elif self.mode in ('L', 'P') and self.bits_per_component <= 8:
 im = self._extract_transcoded_1248bits()
 else:
 raise UnsupportedImageTypeError(repr(self) + ", " + repr(self.obj))

 if self.colorspace == '/ICCBased' and self.icc is not None:
 im.info['icc_profile'] = self.icc.tobytes()

 return im

 def _extract_to_stream(self, *, stream: BinaryIO) -> str:
 """Extract the image to a stream.

 If possible, the compressed data is extracted and inserted into
 a compressed image file format without transcoding the compressed
 content. If this is not possible, the data will be decompressed
 and extracted to an appropriate format.

 Args:
 stream: Writable stream to write data to

 Returns:
 The file format extension.
 """
 direct_extraction = self._extract_direct(stream=stream)
 if direct_extraction:
 return direct_extraction

 im = None
 try:
 im = self._extract_transcoded()
 if im.mode == 'CMYK':
 im.save(stream, format='tiff', compression='tiff_adobe_deflate')
 return '.tiff'
 if im:
 im.save(stream, format='png')
 return '.png'
 except PdfError as e:
 if 'called on unfilterable stream' in str(e):
 raise UnsupportedImageTypeError(repr(self)) from e
 raise
 finally:
 if im:
 im.close()

 raise UnsupportedImageTypeError(repr(self))

 def extract_to(
 self, *, stream: BinaryIO | None = None, fileprefix: str = ''
) -> str:
 """Extract the image directly to a usable image file.

 If possible, the compressed data is extracted and inserted into
 a compressed image file format without transcoding the compressed
 content. If this is not possible, the data will be decompressed
 and extracted to an appropriate format.

 Because it is not known until attempted what image format will be
 extracted, users should not assume what format they are getting back.
 When saving the image to a file, use a temporary filename, and then
 rename the file to its final name based on the returned file extension.

 Images might be saved as any of .png, .jpg, or .tiff.

 Examples:
 >>> im.extract_to(stream=bytes_io)
 '.png'

 >>> im.extract_to(fileprefix='/tmp/image00')
 '/tmp/image00.jpg'

 Args:
 stream: Writable stream to write data to.
 fileprefix (str or Path): The path to write the extracted image to,
 without the file extension.

 Returns:
 If *fileprefix* was provided, then the fileprefix with the
 appropriate extension. If no *fileprefix*, then an extension
 indicating the file type.
 """
 if bool(stream) == bool(fileprefix):
 raise ValueError("Cannot set both stream and fileprefix")
 if stream:
 return self._extract_to_stream(stream=stream)

 bio = BytesIO()
 extension = self._extract_to_stream(stream=bio)
 bio.seek(0)
 filepath = Path(str(Path(fileprefix)) + extension)
 with filepath.open('wb') as target:
 copyfileobj(bio, target)
 return str(filepath)

 def read_bytes(
 self, decode_level: StreamDecodeLevel = StreamDecodeLevel.specialized
) -> bytes:
 """Decompress this image and return it as unencoded bytes."""
 return self.obj.read_bytes(decode_level=decode_level)

 def get_stream_buffer(
 self, decode_level: StreamDecodeLevel = StreamDecodeLevel.specialized
) -> Buffer:
 """Access this image with the buffer protocol."""
 return self.obj.get_stream_buffer(decode_level=decode_level)

 def as_pil_image(self) -> Image.Image:
 """Extract the image as a Pillow Image, using decompression as necessary.

 Caller must close the image.
 """
 bio = BytesIO()
 direct_extraction = self._extract_direct(stream=bio)
 if direct_extraction:
 bio.seek(0)
 return Image.open(bio)

 im = self._extract_transcoded()
 if not im:
 raise UnsupportedImageTypeError(repr(self))

 return im

 def _generate_ccitt_header(self, data: bytes, icc: bytes | None = None) -> bytes:
 """Construct a CCITT G3 or G4 header from the PDF metadata."""
 # https://stackoverflow.com/questions/2641770/
 # https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

 if not self.decode_parms:
 raise ValueError("/CCITTFaxDecode without /DecodeParms")

 expected_defaults = [
 ("/EncodedByteAlign", False),
 ("/EndOfLine", False),
]
 for name, val in expected_defaults:
 if self.decode_parms[0].get(name, val) != val:
 raise UnsupportedImageTypeError(
 f"/CCITTFaxDecode with decode parameter {name} not equal {val}"
)

 k = self.decode_parms[0].get("/K", 0)
 t4_options = None
 if k < 0:
 ccitt_group = 4 # Group 4
 elif k > 0:
 ccitt_group = 3 # Group 3 2-D
 t4_options = 1
 else:
 ccitt_group = 3 # Group 3 1-D
 black_is_one = self.decode_parms[0].get("/BlackIs1", False)
 decode = self._decode_array
 # PDF spec says:
 # BlackIs1: A flag indicating whether 1 bits shall be interpreted as black
 # pixels and 0 bits as white pixels, the reverse of the normal
 # PDF convention for image data. Default value: false.
 # TIFF spec says:
 # use 0 for white_is_zero (=> black is 1) MINISWHITE
 # use 1 for black_is_zero (=> white is 1) MINISBLACK
 photometry = 1 if black_is_one else 0

 # If Decode is [1, 0] then the photometry is inverted
 if len(decode) == 2 and decode == (1.0, 0.0):
 photometry = 1 - photometry

 img_size = len(data)
 if icc is None:
 icc = b''

 return _transcoding.generate_ccitt_header(
 self.size,
 data_length=img_size,
 ccitt_group=ccitt_group,
 t4_options=t4_options,
 photometry=photometry,
 icc=icc,
)

 def show(self): # pragma: no cover
 """Show the image however PIL wants to."""
 self.as_pil_image().show()

 def _set_pdf_source(self, pdf: Pdf):
 self._pdf_source = pdf

 def __repr__(self):
 try:
 mode = self.mode
 except NotImplementedError:
 mode = '?'
 return (
 f'<pikepdf.PdfImage image mode={mode} '
 f'size={self.width}x{self.height} at {hex(id(self))}>'
)

 def _repr_png_(self) -> bytes:
 """Display hook for IPython/Jupyter."""
 b = BytesIO()
 with self.as_pil_image() as im:
 im.save(b, 'PNG')
 return b.getvalue()

class PdfJpxImage(PdfImage):
 """Support class for JPEG 2000 images. Implements the same API as :class:`PdfImage`.

 If you call PdfImage(object_that_is_actually_jpeg2000_image), pikepdf will return
 this class instead, due to the check in PdfImage.__new__.
 """

 def __init__(self, obj):
 """Initialize a JPEG 2000 image."""
 super().__init__(obj)
 self._jpxpil = self.as_pil_image()

 def __eq__(self, other):
 if not isinstance(other, PdfImageBase):
 return NotImplemented
 return (
 self.obj == other.obj
 and isinstance(other, PdfJpxImage)
 and self._jpxpil == other._jpxpil
)

 def _extract_direct(self, *, stream: BinaryIO) -> str | None:
 data, filters = self._remove_simple_filters()
 if filters != ['/JPXDecode']:
 return None
 stream.write(data)
 return '.jp2'

 def _extract_transcoded(self) -> Image.Image:
 return super()._extract_transcoded()

 @property
 def _colorspaces(self):
 """Return the effective colorspace of a JPEG 2000 image.

 If the ColorSpace dictionary is present, the colorspace embedded in the
 JPEG 2000 data will be ignored, as required by the specification.
 """
 # (PDF 1.7 Table 89) If ColorSpace is present, any colour space
 # specifications in the JPEG2000 data shall be ignored.
 super_colorspaces = super()._colorspaces
 if super_colorspaces:
 return super_colorspaces
 if self._jpxpil.mode == 'L':
 return ['/DeviceGray']
 if self._jpxpil.mode == 'RGB':
 return ['/DeviceRGB']
 raise NotImplementedError('Complex JP2 colorspace')

 @property
 def _bpc(self) -> int:
 """Return 8, since bpc is not meaningful for JPEG 2000 encoding."""
 # (PDF 1.7 Table 89) If the image stream uses the JPXDecode filter, this
 # entry is optional and shall be ignored if present. The bit depth is
 # determined by the conforming reader in the process of decoding the
 # JPEG2000 image.
 return 8

 @property
 def indexed(self) -> bool:
 """Return False, since JPEG 2000 should not be indexed."""
 # Nothing in the spec precludes an Indexed JPXDecode image, except for
 # the fact that doing so is madness. Let's assume it no one is that
 # insane.
 return False

 def __repr__(self):
 return (
 f'<pikepdf.PdfJpxImage JPEG2000 image mode={self.mode} '
 f'size={self.width}x{self.height} at {hex(id(self))}>'
)

class PdfInlineImage(PdfImageBase):
 """Support class for PDF inline images."""

 # Inline images can contain abbreviations that we write automatically
 ABBREVS = {
 b'/W': b'/Width',
 b'/H': b'/Height',
 b'/BPC': b'/BitsPerComponent',
 b'/IM': b'/ImageMask',
 b'/CS': b'/ColorSpace',
 b'/F': b'/Filter',
 b'/DP': b'/DecodeParms',
 b'/G': b'/DeviceGray',
 b'/RGB': b'/DeviceRGB',
 b'/CMYK': b'/DeviceCMYK',
 b'/I': b'/Indexed',
 b'/AHx': b'/ASCIIHexDecode',
 b'/A85': b'/ASCII85Decode',
 b'/LZW': b'/LZWDecode',
 b'/RL': b'/RunLengthDecode',
 b'/CCF': b'/CCITTFaxDecode',
 b'/DCT': b'/DCTDecode',
 }
 REVERSE_ABBREVS = {v: k for k, v in ABBREVS.items()}

 _data: Object
 _image_object: tuple[Object, ...]

 def __init__(self, *, image_data: Object, image_object: tuple):
 """Construct wrapper for inline image.

 Args:
 image_data: data stream for image, extracted from content stream
 image_object: the metadata for image, also from content stream
 """
 # Convert the sequence of pikepdf.Object from the content stream into
 # a dictionary object by unparsing it (to bytes), eliminating inline
 # image abbreviations, and constructing a bytes string equivalent to
 # what an image XObject would look like. Then retrieve data from there

 self._data = image_data
 self._image_object = image_object

 reparse = b' '.join(
 self._unparse_obj(obj, remap_names=self.ABBREVS) for obj in image_object
)
 try:
 reparsed_obj = Object.parse(b'<< ' + reparse + b' >>')
 except PdfError as e:
 raise PdfError("parsing inline " + reparse.decode('unicode_escape')) from e
 self.obj = reparsed_obj

 def __eq__(self, other):
 if not isinstance(other, PdfImageBase):
 return NotImplemented
 return (
 self.obj == other.obj
 and isinstance(other, PdfInlineImage)
 and (
 self._data._inline_image_raw_bytes()
 == other._data._inline_image_raw_bytes()
)
)

 @classmethod
 def _unparse_obj(cls, obj, remap_names):
 if isinstance(obj, Object):
 if isinstance(obj, Name):
 name = obj.unparse(resolved=True)
 assert isinstance(name, bytes)
 return remap_names.get(name, name)
 return obj.unparse(resolved=True)
 if isinstance(obj, bool):
 return b'true' if obj else b'false' # Lower case for PDF spec
 if isinstance(obj, (int, Decimal, float)):
 return str(obj).encode('ascii')
 raise NotImplementedError(repr(obj))

 def _metadata(self, name, type_, default):
 return _metadata_from_obj(self.obj, name, type_, default)

 def unparse(self) -> bytes:
 """Create the content stream bytes that reproduce this inline image."""

 def metadata_tokens():
 for metadata_obj in self._image_object:
 unparsed = self._unparse_obj(
 metadata_obj, remap_names=self.REVERSE_ABBREVS
)
 assert isinstance(unparsed, bytes)
 yield unparsed

 def inline_image_tokens():
 yield b'BI\n'
 yield b' '.join(m for m in metadata_tokens())
 yield b'\nID\n'
 yield self._data._inline_image_raw_bytes()
 yield b'EI'

 return b''.join(inline_image_tokens())

 @property
 def icc(self): # pragma: no cover
 """Raise an exception since ICC profiles are not supported on inline images."""
 raise InvalidPdfImageError(
 "Inline images with ICC profiles are not supported in the PDF specification"
)

 def __repr__(self):
 try:
 mode = self.mode
 except NotImplementedError:
 mode = '?'
 return (
 f'<pikepdf.PdfInlineImage image mode={mode} '
 f'size={self.width}x{self.height} at {hex(id(self))}>'
)

 def _convert_to_pdfimage(self) -> PdfImage:
 # Construct a temporary PDF that holds this inline image, and...
 tmppdf = Pdf.new()
 tmppdf.add_blank_page(page_size=(self.width, self.height))
 tmppdf.pages[0].contents_add(
 f'{self.width} 0 0 {self.height} 0 0 cm'.encode('ascii'), prepend=True
)
 tmppdf.pages[0].contents_add(self.unparse())

 # ...externalize it,
 tmppdf.pages[0].externalize_inline_images()
 raw_img = next(im for im in tmppdf.pages[0].images.values())

 # ...then use the regular PdfImage API to extract it.
 img = PdfImage(raw_img)
 img._set_pdf_source(tmppdf) # Hold tmppdf open while PdfImage exists
 return img

 def as_pil_image(self) -> Image.Image:
 """Return inline image as a Pillow Image."""
 return self._convert_to_pdfimage().as_pil_image()

 def extract_to(self, *, stream: BinaryIO | None = None, fileprefix: str = ''):
 """Extract the inline image directly to a usable image file.

 See:
 :meth:`PdfImage.extract_to`
 """
 return self._convert_to_pdfimage().extract_to(
 stream=stream, fileprefix=fileprefix
)

 def read_bytes(self):
 """Return decompressed image bytes."""
 # QPDF does not have an API to return this directly, so convert it.
 return self._convert_to_pdfimage().read_bytes()

 def get_stream_buffer(self):
 """Return decompressed stream buffer."""
 # QPDF does not have an API to return this directly, so convert it.
 return self._convert_to_pdfimage().get_stream_buffer()

./usr/lib/python3/dist-packages/pikepdf/models/matrix.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""PDF content matrix support."""

from __future__ import annotations

from math import cos, pi, sin

from deprecated import deprecated

@deprecated('use pikepdf.Matrix instead')
class PdfMatrix:
 """Support class for PDF content stream matrices.

 PDF content stream matrices are 3x3 matrices summarized by a shorthand
 ``(a, b, c, d, e, f)``, where the first column vector is ``(a, c, e)``
 and the second column vector is ``(b, d, f)``. The final column vector
 is always ``(0, 0, 1)`` since PDF uses
 `homogenous coordinates <https://en.wikipedia.org/wiki/Homogeneous_coordinates>`_.

 ``a`` is the horizontal scaling factor.
 ``b`` is horizontal skewing.
 ``c`` is vertical skewing.
 ``d`` is the vertical scaling factor.
 ``e`` is the horizontal translation.
 ``f`` is the vertical translation.

 For scaling, ``a`` and ``d`` are the scaling factors in the horizontal and vertical
 directions, respectively; for pure scaling, ``b`` and ``c`` are zero.

 PDF uses row vectors. That is, ``vr @ A'`` gives the effect of transforming
 a row vector ``vr=(x, y, 1)`` by the matrix ``A'``. Most textbook
 treatments use ``A @ vc`` where the column vector ``vc=(x, y, 1)'``.

 Matrices should be **premultipled** with other matrices to concatenate
 transformations.

 (``@`` is the Python matrix multiplication operator.)

 Addition and other operations are not implemented because they're not that
 meaningful in a PDF context (they can be defined and are mathematically
 meaningful in general).

 PdfMatrix objects are immutable. All transformations on them produce a new
 matrix.

 .. deprecated:: 8.7
 Use :class:`pikepdf.Matrix` instead.
 """

 def __init__(self, *args):
 """Initialize a PdfMatrix."""
 # fmt: off
 if not args:
 self.values = ((1, 0, 0), (0, 1, 0), (0, 0, 1))
 elif len(args) == 6:
 a, b, c, d, e, f = map(float, args)
 self.values = ((a, b, 0),
 (c, d, 0),
 (e, f, 1))
 elif isinstance(args[0], PdfMatrix):
 self.values = args[0].values
 elif len(args[0]) == 6:
 a, b, c, d, e, f = map(float, args[0])
 self.values = ((a, b, 0),
 (c, d, 0),
 (e, f, 1))
 elif len(args[0]) == 3 and len(args[0][0]) == 3:
 self.values = (tuple(args[0][0]),
 tuple(args[0][1]),
 tuple(args[0][2]))
 else:
 try:
 import numpy as np
 if isinstance(args[0], (np.ndarray, np.generic)):
 self.values = tuple(map(tuple, args[0]))
 except ImportError:
 pass
 raise ValueError('invalid arguments: ' + repr(args))
 # fmt: on

 @staticmethod
 def identity():
 """Return an identity matrix."""
 return PdfMatrix()

 def __matmul__(self, other):
 """Multiply this matrix by another matrix.

 Can be used to concatenate transformations. Transformations should be composed
 by pre-multiplying matrices.
 """
 a = self.values
 b = other.values
 return PdfMatrix(
 [
 [sum(float(i) * float(j) for i, j in zip(row, col)) for col in zip(*b)]
 for row in a
]
)

 def __array__(self):
 """Return a numpy array of the matrix.

 This function requires numpy, which is an optional dependency of pikepdf.
 If numpy is not installed, an ImportError will be raised.
 """
 import numpy as np

 return np.array(self.values)

 def inverse(self):
 """Return the inverse of this matrix.

 The inverse matrix reverses the transformation of the original matrix.

 This function requires numpy, which is an optional dependency of pikepdf.
 If numpy is not installed, an ImportError will be raised.
 """
 import numpy as np

 return PdfMatrix(np.linalg.inv(self.__array__()))

 def scaled(self, x, y):
 """Concatenate a scaling matrix to this matrix.

 .. warning::
 This function is subtly incorrect, because it post-multiplies by the
 scaling matrix instead of pre-multiplying. It is assumed that any users
 of the code may have noticed this and corrected it by compensating
 for it, so correcting the error would be a breaking change.
 """
 return self @ PdfMatrix((x, 0, 0, y, 0, 0))

 def rotated(self, angle_degrees_ccw):
 """Concatenate a rotation matrix to this matrix.

 .. warning::
 This function is subtly incorrect, because it post-multiplies by the
 scaling matrix instead of pre-multiplying. It is assumed that any users
 of the code may have noticed this and corrected it by compensating
 for it, so correcting the error would be a breaking change.
 """
 angle = angle_degrees_ccw / 180.0 * pi
 c, s = cos(angle), sin(angle)
 return self @ PdfMatrix((c, s, -s, c, 0, 0))

 def translated(self, x, y):
 """Translate this matrix.

 .. warning::
 This function is subtly incorrect, because it post-multiplies by the
 scaling matrix instead of pre-multiplying. It is assumed that any users
 of the code may have noticed this and corrected it by compensating
 for it, so correcting the error would be a breaking change.
 """
 return self @ PdfMatrix((1, 0, 0, 1, x, y))

 @property
 def shorthand(self):
 """Return the 6-tuple (a,b,c,d,e,f) that describes this matrix."""
 return (self.a, self.b, self.c, self.d, self.e, self.f)

 @property
 def a(self):
 """Return the horizontal scaling factor."""
 return self.values[0][0]

 @property
 def b(self):
 """Return horizontal skew."""
 return self.values[0][1]

 @property
 def c(self):
 """Return vertical skew."""
 return self.values[1][0]

 @property
 def d(self):
 """Return the vertical scaling factor."""
 return self.values[1][1]

 @property
 def e(self):
 """Return the horizontal translation.

 Typically corresponds to translation on the x-axis.
 """
 return self.values[2][0]

 @property
 def f(self):
 """Return the vertical translation.

 Typically corresponds to translation on the y-axis.
 """
 return self.values[2][1]

 def __eq__(self, other):
 if isinstance(other, PdfMatrix):
 return self.shorthand == other.shorthand
 return False

 def encode(self):
 """Encode this matrix in binary suitable for including in a PDF."""
 return '{:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f}'.format(
 self.a, self.b, self.c, self.d, self.e, self.f
).encode()

 def __repr__(self):
 return f'pikepdf.PdfMatrix({repr(self.values)})'

./usr/lib/python3/dist-packages/pikepdf/models/metadata.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""PDF metadata handling."""

from __future__ import annotations

import logging
import re
import sys
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from functools import wraps
from io import BytesIO
from typing import TYPE_CHECKING, Any, Callable, NamedTuple, Set
from warnings import warn

from lxml import etree
from lxml.etree import QName, XMLSyntaxError

from .. import Name, Stream, String
from .. import __version__ as pikepdf_version
from .._xml import parse_xml

if sys.version_info < (3, 9): # pragma: no cover
 from typing import Iterable, MutableMapping
else:
 from collections.abc import Iterable, MutableMapping

if TYPE_CHECKING: # pragma: no cover
 from pikepdf import Pdf

XMP_NS_DC = "http://purl.org/dc/elements/1.1/"
XMP_NS_PDF = "http://ns.adobe.com/pdf/1.3/"
XMP_NS_PDFA_ID = "http://www.aiim.org/pdfa/ns/id/"
XMP_NS_PDFA_EXTENSION = "http://www.aiim.org/pdfa/ns/extension/"
XMP_NS_PDFA_PROPERTY = "http://www.aiim.org/pdfa/ns/property#"
XMP_NS_PDFA_SCHEMA = "http://www.aiim.org/pdfa/ns/schema#"
XMP_NS_PDFUA_ID = "http://www.aiim.org/pdfua/ns/id/"
XMP_NS_PDFX_ID = "http://www.npes.org/pdfx/ns/id/"
XMP_NS_PHOTOSHOP = "http://ns.adobe.com/photoshop/1.0/"
XMP_NS_PRISM = "http://prismstandard.org/namespaces/basic/1.0/"
XMP_NS_PRISM2 = "http://prismstandard.org/namespaces/basic/2.0/"
XMP_NS_PRISM3 = "http://prismstandard.org/namespaces/basic/3.0/"
XMP_NS_RDF = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
XMP_NS_XMP = "http://ns.adobe.com/xap/1.0/"
XMP_NS_XMP_MM = "http://ns.adobe.com/xap/1.0/mm/"
XMP_NS_XMP_RIGHTS = "http://ns.adobe.com/xap/1.0/rights/"

DEFAULT_NAMESPACES: list[tuple[str, str]] = [
 ('adobe:ns:meta/', 'x'),
 (XMP_NS_DC, 'dc'),
 (XMP_NS_PDF, 'pdf'),
 (XMP_NS_PDFA_ID, 'pdfaid'),
 (XMP_NS_PDFA_EXTENSION, 'pdfaExtension'),
 (XMP_NS_PDFA_PROPERTY, 'pdfaProperty'),
 (XMP_NS_PDFA_SCHEMA, 'pdfaSchema'),
 (XMP_NS_PDFUA_ID, 'pdfuaid'),
 (XMP_NS_PDFX_ID, 'pdfxid'),
 (XMP_NS_PHOTOSHOP, 'photoshop'),
 (XMP_NS_PRISM, 'prism'),
 (XMP_NS_PRISM2, 'prism2'),
 (XMP_NS_PRISM3, 'prism3'),
 (XMP_NS_RDF, 'rdf'),
 (XMP_NS_XMP, 'xmp'),
 (XMP_NS_XMP_MM, 'xmpMM'),
 (XMP_NS_XMP_RIGHTS, 'xmpRights'),
 ('http://crossref.org/crossmark/1.0/', 'crossmark'),
 ('http://www.niso.org/schemas/jav/1.0/', 'jav'),
 ('http://ns.adobe.com/pdfx/1.3/', 'pdfx'),
 ('http://www.niso.org/schemas/ali/1.0/', 'ali'),
]

for _uri, _prefix in DEFAULT_NAMESPACES:
 etree.register_namespace(_prefix, _uri)

This one should not be registered
XMP_NS_XML = "http://www.w3.org/XML/1998/namespace"

XPACKET_BEGIN = b"""<?xpacket begin="\xef\xbb\xbf" id="W5M0MpCehiHzreSzNTczkc9d"?>\n"""

XMP_EMPTY = b"""<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="pikepdf">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 </rdf:RDF>
</x:xmpmeta>
"""

XPACKET_END = b"""\n<?xpacket end="w"?>\n"""

class XmpContainer(NamedTuple):
 """Map XMP container object to suitable Python container."""

 rdf_type: str
 py_type: type
 insert_fn: Callable[..., None]

log = logging.getLogger(__name__)

class NeverRaise(Exception):
 """An exception that is never raised."""

class AltList(list):
 """XMP AltList container."""

XMP_CONTAINERS = [
 XmpContainer('Alt', AltList, AltList.append),
 XmpContainer('Bag', set, set.add),
 XmpContainer('Seq', list, list.append),
]

LANG_ALTS = frozenset(
 [
 str(QName(XMP_NS_DC, 'title')),
 str(QName(XMP_NS_DC, 'description')),
 str(QName(XMP_NS_DC, 'rights')),
 str(QName(XMP_NS_XMP_RIGHTS, 'UsageTerms')),
]
)

These are the illegal characters in XML 1.0. (XML 1.1 is a bit more permissive,
but we'll be strict to ensure wider compatibility.)
re_xml_illegal_chars = re.compile(
 r"(?u)[^\x09\x0A\x0D\x20-\U0000D7FF\U0000E000-\U0000FFFD\U00010000-\U0010FFFF]"
)
re_xml_illegal_bytes = re.compile(br"[^\x09\x0A\x0D\x20-\xFF]|�")

Might want to check re_xml_illegal_bytes for patterns such as:
br"&#(?:[0-9]|0[0-9]|1[0-9]|2[0-9]|3[0-1]
|x[0-9A-Fa-f]|x0[0-9A-Fa-f]|x1[0-9A-Fa-f]);"

def _parser_basic(xml: bytes):
 return parse_xml(BytesIO(xml))

def _parser_strip_illegal_bytes(xml: bytes):
 return parse_xml(BytesIO(re_xml_illegal_bytes.sub(b'', xml)))

def _parser_recovery(xml: bytes):
 return parse_xml(BytesIO(xml), recover=True)

def _parser_replace_with_empty_xmp(_xml: bytes = b''):
 log.warning("Error occurred parsing XMP, replacing with empty XMP.")
 return _parser_basic(XMP_EMPTY)

def _clean(s: str | Iterable[str], joiner: str = '; ') -> str:
 """Ensure an object can safely be inserted in a XML tag body.

 If we still have a non-str object at this point, the best option is to
 join it, because it's apparently calling for a new node in a place that
 isn't allowed in the spec or not supported.
 """
 if not isinstance(s, str):
 if isinstance(s, Iterable):
 warn(f"Merging elements of {s}")
 if isinstance(s, Set):
 s = joiner.join(sorted(s))
 else:
 s = joiner.join(s)
 else:
 raise TypeError("object must be a string or iterable of strings")
 return re_xml_illegal_chars.sub('', s)

def encode_pdf_date(d: datetime) -> str:
 """Encode Python datetime object as PDF date string.

 From Adobe pdfmark manual:
 (D:YYYYMMDDHHmmSSOHH'mm')
 D: is an optional prefix. YYYY is the year. All fields after the year are
 optional. MM is the month (01-12), DD is the day (01-31), HH is the
 hour (00-23), mm are the minutes (00-59), and SS are the seconds
 (00-59). The remainder of the string defines the relation of local
 time to GMT. O is either + for a positive difference (local time is
 later than GMT) or - (minus) for a negative difference. HH' is the
 absolute value of the offset from GMT in hours, and mm' is the
 absolute value of the offset in minutes. If no GMT information is
 specified, the relation between the specified time and GMT is
 considered unknown. Regardless of whether or not GMT
 information is specified, the remainder of the string should specify
 the local time.

 'D:' is required in PDF/A, so we always add it.
 """
 # The formatting of %Y is not consistent as described in
 # https://bugs.python.org/issue13305 and underspecification in libc.
 # So explicitly format the year with leading zeros
 s = f"D:{d.year:04d}"
 s += d.strftime(r'%m%d%H%M%S')
 tz = d.strftime('%z')
 if tz:
 sign, tz_hours, tz_mins = tz[0], tz[1:3], tz[3:5]
 s += f"{sign}{tz_hours}'{tz_mins}'"
 return s

def decode_pdf_date(s: str) -> datetime:
 """Decode a pdfmark date to a Python datetime object.

 A pdfmark date is a string in a paritcular format. See the pdfmark
 Reference for the specification.
 """
 if isinstance(s, String):
 s = str(s)
 if s.startswith('D:'):
 s = s[2:]

 # Literal Z00'00', is incorrect but found in the wild,
 # probably made by OS X Quartz -- standardize
 if s.endswith("Z00'00'"):
 s = s.replace("Z00'00'", '+0000')
 elif s.endswith('Z'):
 s = s.replace('Z', '+0000')
 s = s.replace("'", "") # Remove apos from PDF time strings
 try:
 return datetime.strptime(s, r'%Y%m%d%H%M%S%z')
 except ValueError:
 return datetime.strptime(s, r'%Y%m%d%H%M%S')

class Converter(ABC):
 """XMP <-> DocumentInfo converter."""

 @staticmethod
 @abstractmethod
 def xmp_from_docinfo(docinfo_val: str | None) -> Any: # type: ignore
 """Derive XMP metadata from a DocumentInfo string."""

 @staticmethod
 @abstractmethod
 def docinfo_from_xmp(xmp_val: Any) -> str | None:
 """Derive a DocumentInfo value from equivalent XMP metadata."""

class AuthorConverter(Converter):
 """Convert XMP document authors to DocumentInfo."""

 @staticmethod
 def xmp_from_docinfo(docinfo_val: str | None) -> Any: # type: ignore
 """Derive XMP authors info from DocumentInfo."""
 return [docinfo_val]

 @staticmethod
 def docinfo_from_xmp(xmp_val):
 """Derive DocumentInfo authors from XMP.

 XMP supports multiple author values, while DocumentInfo has a string,
 so we return the values separated by semi-colons.
 """
 if isinstance(xmp_val, str):
 return xmp_val
 if xmp_val is None or xmp_val == [None]:
 return None
 return '; '.join(author for author in xmp_val if author is not None)

class DateConverter(Converter):
 """Convert XMP dates to DocumentInfo."""

 @staticmethod
 def xmp_from_docinfo(docinfo_val):
 """Derive XMP date from DocumentInfo."""
 if docinfo_val == '':
 return ''
 return decode_pdf_date(docinfo_val).isoformat()

 @staticmethod
 def docinfo_from_xmp(xmp_val):
 """Derive DocumentInfo from XMP."""
 if xmp_val.endswith('Z'):
 xmp_val = xmp_val[:-1] + '+00:00'
 try:
 dateobj = datetime.fromisoformat(xmp_val)
 except IndexError:
 # PyPy 3.8 may raise IndexError - convert to ValueError
 raise ValueError(f"Invalid isoformat string: '{xmp_val}'") from None
 return encode_pdf_date(dateobj)

class DocinfoMapping(NamedTuple):
 """Map DocumentInfo keys to their XMP equivalents, along with converter."""

 ns: str
 key: str
 name: Name
 converter: type[Converter] | None

def ensure_loaded(fn):
 """Ensure the XMP has been loaded and parsed.

 TODO: Can this be removed? Why allow the uninit'ed state to even exist?
 """

 @wraps(fn)
 def wrapper(self, *args, **kwargs):
 if not self._xmp:
 self._load()
 return fn(self, *args, **kwargs)

 return wrapper

class PdfMetadata(MutableMapping):
 """Read and edit the metadata associated with a PDF.

 The PDF specification contain two types of metadata, the newer XMP
 (Extensible Metadata Platform, XML-based) and older DocumentInformation
 dictionary. The PDF 2.0 specification removes the DocumentInformation
 dictionary.

 This primarily works with XMP metadata, but includes methods to generate
 XMP from DocumentInformation and will also coordinate updates to
 DocumentInformation so that the two are kept consistent.

 XMP metadata fields may be accessed using the full XML namespace URI or
 the short name. For example ``metadata['dc:description']``
 and ``metadata['{http://purl.org/dc/elements/1.1/}description']``
 both refer to the same field. Several common XML namespaces are registered
 automatically.

 See the XMP specification for details of allowable fields.

 To update metadata, use a with block.

 Example:
 >>> with pdf.open_metadata() as records:
 records['dc:title'] = 'New Title'

 See Also:
 :meth:`pikepdf.Pdf.open_metadata`
 """

 DOCINFO_MAPPING: list[DocinfoMapping] = [
 DocinfoMapping(XMP_NS_DC, 'creator', Name.Author, AuthorConverter),
 DocinfoMapping(XMP_NS_DC, 'description', Name.Subject, None),
 DocinfoMapping(XMP_NS_DC, 'title', Name.Title, None),
 DocinfoMapping(XMP_NS_PDF, 'Keywords', Name.Keywords, None),
 DocinfoMapping(XMP_NS_PDF, 'Producer', Name.Producer, None),
 DocinfoMapping(XMP_NS_XMP, 'CreateDate', Name.CreationDate, DateConverter),
 DocinfoMapping(XMP_NS_XMP, 'CreatorTool', Name.Creator, None),
 DocinfoMapping(XMP_NS_XMP, 'ModifyDate', Name.ModDate, DateConverter),
]

 NS: dict[str, str] = {prefix: uri for uri, prefix in DEFAULT_NAMESPACES}
 REVERSE_NS: dict[str, str] = dict(DEFAULT_NAMESPACES)

 _PARSERS_OVERWRITE_INVALID_XML: Iterable[Callable[[bytes], Any]] = [
 _parser_basic,
 _parser_strip_illegal_bytes,
 _parser_recovery,
 _parser_replace_with_empty_xmp,
]
 _PARSERS_STANDARD: Iterable[Callable[[bytes], Any]] = [_parser_basic]

 @classmethod
 def register_xml_namespace(cls, uri, prefix):
 """Register a new XML/XMP namespace.

 Arguments:
 uri: The long form of the namespace.
 prefix: The alias to use when interpreting XMP.
 """
 cls.NS[prefix] = uri
 cls.REVERSE_NS[uri] = prefix
 etree.register_namespace(_prefix, _uri)

 def __init__(
 self,
 pdf: Pdf,
 pikepdf_mark: bool = True,
 sync_docinfo: bool = True,
 overwrite_invalid_xml: bool = True,
):
 """Construct PdfMetadata. Use Pdf.open_metadata() instead."""
 self._pdf = pdf
 self._xmp = None
 self.mark = pikepdf_mark
 self.sync_docinfo = sync_docinfo
 self._updating = False
 self.overwrite_invalid_xml = overwrite_invalid_xml

 def load_from_docinfo(
 self, docinfo, delete_missing: bool = False, raise_failure: bool = False
) -> None:
 """Populate the XMP metadata object with DocumentInfo.

 Arguments:
 docinfo: a DocumentInfo, e.g pdf.docinfo
 delete_missing: if the entry is not DocumentInfo, delete the equivalent
 from XMP
 raise_failure: if True, raise any failure to convert docinfo;
 otherwise warn and continue

 A few entries in the deprecated DocumentInfo dictionary are considered
 approximately equivalent to certain XMP records. This method copies
 those entries into the XMP metadata.
 """

 def warn_or_raise(msg, e=None):
 if raise_failure:
 raise ValueError(msg) from e
 warn(msg)

 for uri, shortkey, docinfo_name, converter in self.DOCINFO_MAPPING:
 qname = QName(uri, shortkey)
 # docinfo might be a dict or pikepdf.Dictionary, so lookup keys
 # by str(Name)
 val = docinfo.get(str(docinfo_name))
 if val is None:
 if delete_missing and qname in self:
 del self[qname]
 continue
 try:
 val = str(val)
 if converter:
 val = converter.xmp_from_docinfo(val)
 if not val:
 continue
 self._setitem(qname, val, True)
 except (ValueError, AttributeError, NotImplementedError) as e:
 warn_or_raise(
 f"The metadata field {docinfo_name} could not be copied to XMP", e
)
 valid_docinfo_names = {
 str(docinfo_name) for _, _, docinfo_name, _ in self.DOCINFO_MAPPING
 }
 extra_docinfo_names = {str(k) for k in docinfo.keys()} - valid_docinfo_names
 for extra in extra_docinfo_names:
 warn_or_raise(
 f"The metadata field {extra} with value '{repr(docinfo.get(extra))}' "
 "has no XMP equivalent, so it was discarded",
)

 def _load(self) -> None:
 try:
 data = self._pdf.Root.Metadata.read_bytes()
 except AttributeError:
 data = b''
 self._load_from(data)

 def _load_from(self, data: bytes) -> None:
 if data.strip() == b'':
 data = XMP_EMPTY # on some platforms lxml chokes on empty documents

 parsers = (
 self._PARSERS_OVERWRITE_INVALID_XML
 if self.overwrite_invalid_xml
 else self._PARSERS_STANDARD
)

 for parser in parsers:
 try:
 self._xmp = parser(data)
 except (
 XMLSyntaxError
 if self.overwrite_invalid_xml
 else NeverRaise # type: ignore
) as e:
 if str(e).startswith("Start tag expected, '<' not found") or str(
 e
).startswith("Document is empty"):
 self._xmp = _parser_replace_with_empty_xmp()
 break
 else:
 break

 if self._xmp is not None:
 try:
 pis = self._xmp.xpath('/processing-instruction()')
 for pi in pis:
 etree.strip_tags(self._xmp, pi.tag)
 self._get_rdf_root()
 except (
 Exception # pylint: disable=broad-except
 if self.overwrite_invalid_xml
 else NeverRaise
) as e:
 log.warning("Error occurred parsing XMP", exc_info=e)
 self._xmp = _parser_replace_with_empty_xmp()
 else:
 log.warning("Error occurred parsing XMP")
 self._xmp = _parser_replace_with_empty_xmp()

 @ensure_loaded
 def __enter__(self):
 """Open metadata for editing."""
 self._updating = True
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 """Close metadata and apply changes."""
 try:
 if exc_type is not None:
 return
 self._apply_changes()
 finally:
 self._updating = False

 def _update_docinfo(self):
 """Update the PDF's DocumentInfo dictionary to match XMP metadata.

 The standard mapping is described here:
 https://www.pdfa.org/pdfa-metadata-xmp-rdf-dublin-core/
 """
 # Touch object to ensure it exists
 self._pdf.docinfo # pylint: disable=pointless-statement
 for uri, element, docinfo_name, converter in self.DOCINFO_MAPPING:
 qname = QName(uri, element)
 try:
 value = self[qname]
 except KeyError:
 if docinfo_name in self._pdf.docinfo:
 del self._pdf.docinfo[docinfo_name]
 continue
 if converter:
 try:
 value = converter.docinfo_from_xmp(value)
 except ValueError:
 warn(
 f"The DocumentInfo field {docinfo_name} could not be "
 "updated from XMP"
)
 value = None
 except Exception as e:
 raise ValueError(
 "An error occurred while updating DocumentInfo field "
 f"{docinfo_name} from XMP {qname} with value {value}"
) from e
 if value is None:
 if docinfo_name in self._pdf.docinfo:
 del self._pdf.docinfo[docinfo_name]
 continue
 value = _clean(value)
 try:
 # Try to save pure ASCII
 self._pdf.docinfo[docinfo_name] = value.encode('ascii')
 except UnicodeEncodeError:
 # qpdf will serialize this as a UTF-16 with BOM string
 self._pdf.docinfo[docinfo_name] = value

 def _get_xml_bytes(self, xpacket=True):
 data = BytesIO()
 if xpacket:
 data.write(XPACKET_BEGIN)
 self._xmp.write(data, encoding='utf-8', pretty_print=True)
 if xpacket:
 data.write(XPACKET_END)
 data.seek(0)
 xml_bytes = data.read()
 return xml_bytes

 def _apply_changes(self):
 """Serialize our changes back to the PDF in memory.

 Depending how we are initialized, leave our metadata mark and producer.
 """
 if self.mark:
 # We were asked to mark the file as being edited by pikepdf
 self._setitem(
 QName(XMP_NS_XMP, 'MetadataDate'),
 datetime.now(timezone.utc).isoformat(),
 applying_mark=True,
)
 self._setitem(
 QName(XMP_NS_PDF, 'Producer'),
 'pikepdf ' + pikepdf_version,
 applying_mark=True,
)
 xml = self._get_xml_bytes()
 self._pdf.Root.Metadata = Stream(self._pdf, xml)
 self._pdf.Root.Metadata[Name.Type] = Name.Metadata
 self._pdf.Root.Metadata[Name.Subtype] = Name.XML
 if self.sync_docinfo:
 self._update_docinfo()

 @classmethod
 def _qname(cls, name: QName | str) -> str:
 """Convert name to an XML QName.

 e.g. pdf:Producer -> {http://ns.adobe.com/pdf/1.3/}Producer
 """
 if isinstance(name, QName):
 return str(name)
 if not isinstance(name, str):
 raise TypeError(f"{name} must be str")
 if name == '':
 return name
 if name.startswith('{'):
 return name
 try:
 prefix, tag = name.split(':', maxsplit=1)
 except ValueError:
 # If missing the namespace, put it in the top level namespace
 # To do this completely correct we actually need to figure out
 # the namespace based on context defined by parent tags. That
 # https://www.w3.org/2001/tag/doc/qnameids.html
 prefix, tag = 'x', name
 uri = cls.NS[prefix]
 return str(QName(uri, tag))

 def _prefix_from_uri(self, uriname):
 """Given a fully qualified XML name, find a prefix.

 e.g. {http://ns.adobe.com/pdf/1.3/}Producer -> pdf:Producer
 """
 uripart, tag = uriname.split('}', maxsplit=1)
 uri = uripart.replace('{', '')
 return self.REVERSE_NS[uri] + ':' + tag

 def _get_subelements(self, node):
 """Gather the sub-elements attached to a node.

 Gather rdf:Bag and and rdf:Seq into set and list respectively. For
 alternate languages values, take the first language only for
 simplicity.
 """
 items = node.find('rdf:Alt', self.NS)
 if items is not None:
 try:
 return items[0].text
 except IndexError:
 return ''

 for xmlcontainer, container, insertfn in XMP_CONTAINERS:
 items = node.find(f'rdf:{xmlcontainer}', self.NS)
 if items is None:
 continue
 result = container()
 for item in items:
 insertfn(result, item.text)
 return result
 return ''

 def _get_rdf_root(self):
 rdf = self._xmp.find('.//rdf:RDF', self.NS)
 if rdf is None:
 rdf = self._xmp.getroot()
 if not rdf.tag == '{http://www.w3.org/1999/02/22-rdf-syntax-ns#}RDF':
 raise ValueError("Metadata seems to be XML but not XMP")
 return rdf

 def _get_elements(self, name: str | QName = ''):
 """Get elements from XMP.

 Core routine to find elements matching name within the XMP and yield
 them.

 For XMP spec 7.9.2.2, rdf:Description with property attributes,
 we yield the node which will have the desired as one of its attributes.
 qname is returned so that the node.attrib can be used to locate the
 source.

 For XMP spec 7.5, simple valued XMP properties, we yield the node,
 None, and the value. For structure or array valued properties we gather
 the elements. We ignore qualifiers.

 Args:
 name: a prefixed name or QName to look for within the
 data section of the XMP; looks for all data keys if omitted

 Yields:
 tuple: (node, qname_attrib, value, parent_node)

 """
 qname = self._qname(name)
 rdf = self._get_rdf_root()
 for rdfdesc in rdf.findall('rdf:Description[@rdf:about=""]', self.NS):
 if qname and qname in rdfdesc.keys():
 yield (rdfdesc, qname, rdfdesc.get(qname), rdf)
 elif not qname:
 for k, v in rdfdesc.items():
 if v:
 yield (rdfdesc, k, v, rdf)
 xpath = qname if name else '*'
 for node in rdfdesc.findall(xpath, self.NS):
 if node.text and node.text.strip():
 yield (node, None, node.text, rdfdesc)
 continue
 values = self._get_subelements(node)
 yield (node, None, values, rdfdesc)

 def _get_element_values(self, name=''):
 yield from (v[2] for v in self._get_elements(name))

 @ensure_loaded
 def __contains__(self, key: str | QName):
 """Test if XMP key is in metadata."""
 return any(self._get_element_values(key))

 @ensure_loaded
 def __getitem__(self, key: str | QName):
 """Retrieve XMP metadata for key."""
 try:
 return next(self._get_element_values(key))
 except StopIteration:
 raise KeyError(key) from None

 @ensure_loaded
 def __iter__(self):
 """Iterate through XMP metadata attributes and nodes."""
 for node, attrib, _val, _parents in self._get_elements():
 if attrib:
 yield attrib
 else:
 yield node.tag

 @ensure_loaded
 def __len__(self):
 """Return number of items in metadata."""
 return len(list(iter(self)))

 def _setitem(
 self,
 key: str | QName,
 val: set[str] | list[str] | str,
 applying_mark: bool = False,
):
 if not self._updating:
 raise RuntimeError("Metadata not opened for editing, use with block")

 qkey = self._qname(key)
 self._setitem_check_args(key, val, applying_mark, qkey)

 try:
 # Update existing node
 self._setitem_update(key, val, qkey)
 except StopIteration:
 # Insert a new node
 self._setitem_insert(key, val)

 def _setitem_check_args(self, key, val, applying_mark: bool, qkey: str) -> None:
 if (
 self.mark
 and not applying_mark
 and qkey
 in (
 self._qname('xmp:MetadataDate'),
 self._qname('pdf:Producer'),
)
):
 # Complain if user writes self[pdf:Producer] = ... and because it will
 # be overwritten on save, unless self._updating_mark, in which case
 # the action was initiated internally
 log.warning(
 f"Update to {key} will be overwritten because metadata was opened "
 "with set_pikepdf_as_editor=True"
)
 if isinstance(val, str) and qkey in (self._qname('dc:creator')):
 log.error(f"{key} should be set to a list of strings")

 def _setitem_add_array(self, node, items: Iterable) -> None:
 rdf_type = next(
 c.rdf_type for c in XMP_CONTAINERS if isinstance(items, c.py_type)
)
 seq = etree.SubElement(node, str(QName(XMP_NS_RDF, rdf_type)))
 tag_attrib: dict[str, str] | None = None
 if rdf_type == 'Alt':
 tag_attrib = {str(QName(XMP_NS_XML, 'lang')): 'x-default'}
 for item in items:
 el = etree.SubElement(seq, str(QName(XMP_NS_RDF, 'li')), attrib=tag_attrib)
 el.text = _clean(item)

 def _setitem_update(self, key, val, qkey):
 # Locate existing node to replace
 node, attrib, _oldval, _parent = next(self._get_elements(key))
 if attrib:
 if not isinstance(val, str):
 if qkey == self._qname('dc:creator'):
 # dc:creator incorrectly created as an attribute - we're
 # replacing it anyway, so remove the old one
 del node.attrib[qkey]
 self._setitem_add_array(node, _clean(val))
 else:
 raise TypeError(f"Setting {key} to {val} with type {type(val)}")
 else:
 node.set(attrib, _clean(val))
 elif isinstance(val, (list, set)):
 for child in node.findall('*'):
 node.remove(child)
 self._setitem_add_array(node, val)
 elif isinstance(val, str):
 for child in node.findall('*'):
 node.remove(child)
 if str(self._qname(key)) in LANG_ALTS:
 self._setitem_add_array(node, AltList([_clean(val)]))
 else:
 node.text = _clean(val)
 else:
 raise TypeError(f"Setting {key} to {val} with type {type(val)}")

 def _setitem_insert(self, key, val):
 rdf = self._get_rdf_root()
 if str(self._qname(key)) in LANG_ALTS:
 val = AltList([_clean(val)])
 if isinstance(val, (list, set)):
 rdfdesc = etree.SubElement(
 rdf,
 str(QName(XMP_NS_RDF, 'Description')),
 attrib={str(QName(XMP_NS_RDF, 'about')): ''},
)
 node = etree.SubElement(rdfdesc, self._qname(key))
 self._setitem_add_array(node, val)
 elif isinstance(val, str):
 _rdfdesc = etree.SubElement(
 rdf,
 str(QName(XMP_NS_RDF, 'Description')),
 attrib={
 QName(XMP_NS_RDF, 'about'): '',
 self._qname(key): _clean(val),
 },
)
 else:
 raise TypeError(f"Setting {key} to {val} with type {type(val)}") from None

 @ensure_loaded
 def __setitem__(self, key: str | QName, val: set[str] | list[str] | str):
 """Set XMP metadata key to value."""
 return self._setitem(key, val, False)

 @ensure_loaded
 def __delitem__(self, key: str | QName):
 """Delete item from XMP metadata."""
 if not self._updating:
 raise RuntimeError("Metadata not opened for editing, use with block")
 try:
 node, attrib, _oldval, parent = next(self._get_elements(key))
 if attrib: # Inline
 del node.attrib[attrib]
 if (
 len(node.attrib) == 1
 and len(node) == 0
 and QName(XMP_NS_RDF, 'about') in node.attrib
):
 # The only thing left on this node is rdf:about="", so remove it
 parent.remove(node)
 else:
 parent.remove(node)
 except StopIteration:
 raise KeyError(key) from None

 @property
 def pdfa_status(self) -> str:
 """Return the PDF/A conformance level claimed by this PDF, or False.

 A PDF may claim to PDF/A compliant without this being true. Use an
 independent verifier such as veraPDF to test if a PDF is truly
 conformant.

 Returns:
 The conformance level of the PDF/A, or an empty string if the
 PDF does not claim PDF/A conformance. Possible valid values
 are: 1A, 1B, 2A, 2B, 2U, 3A, 3B, 3U.
 """
 # do same as @ensure_loaded - mypy can't handle decorated property
 if not self._xmp:
 self._load()

 key_part = QName(XMP_NS_PDFA_ID, 'part')
 key_conformance = QName(XMP_NS_PDFA_ID, 'conformance')
 try:
 return self[key_part] + self[key_conformance]
 except KeyError:
 return ''

 @property
 def pdfx_status(self) -> str:
 """Return the PDF/X conformance level claimed by this PDF, or False.

 A PDF may claim to PDF/X compliant without this being true. Use an
 independent verifier such as veraPDF to test if a PDF is truly
 conformant.

 Returns:
 The conformance level of the PDF/X, or an empty string if the
 PDF does not claim PDF/X conformance.
 """
 # do same as @ensure_loaded - mypy can't handle decorated property
 if not self._xmp:
 self._load()

 pdfx_version = QName(XMP_NS_PDFX_ID, 'GTS_PDFXVersion')
 try:
 return self[pdfx_version]
 except KeyError:
 return ''

 @ensure_loaded
 def __str__(self):
 """Convert XMP metadata to XML string."""
 return self._get_xml_bytes(xpacket=False).decode('utf-8')

./usr/lib/python3/dist-packages/pikepdf/models/outlines.py

SPDX-FileCopyrightText: 2022 James R. Barlow, 2020 Matthias Erll

SPDX-License-Identifier: MPL-2.0

"""Support for document outlines (e.g. table of contents)."""

from __future__ import annotations

from enum import Enum
from itertools import chain
from typing import Iterable, List, cast

from pikepdf import Array, Dictionary, Name, Object, Page, Pdf, String

class PageLocation(Enum):
 """Page view location definitions, from PDF spec."""

 XYZ = 1
 Fit = 2
 FitH = 3
 FitV = 4
 FitR = 5
 FitB = 6
 FitBH = 7
 FitBV = 8

PAGE_LOCATION_ARGS = {
 PageLocation.XYZ: ('left', 'top', 'zoom'),
 PageLocation.FitH: ('top',),
 PageLocation.FitV: ('left',),
 PageLocation.FitR: ('left', 'bottom', 'right', 'top'),
 PageLocation.FitBH: ('top',),
 PageLocation.FitBV: ('left',),
}
ALL_PAGE_LOCATION_KWARGS = set(chain.from_iterable(PAGE_LOCATION_ARGS.values()))

def make_page_destination(
 pdf: Pdf,
 page_num: int,
 page_location: PageLocation | str | None = None,
 *,
 left: float | None = None,
 top: float | None = None,
 right: float | None = None,
 bottom: float | None = None,
 zoom: float | None = None,
) -> Array:
 """Create a destination ``Array`` with reference to a Pdf document's page number.

 Arguments:
 pdf: PDF document object.
 page_num: Page number (zero-based).
 page_location: Optional page location, as a string or :enum:`PageLocation`.
 left: Specify page viewport rectangle.
 top: Specify page viewport rectangle.
 right: Specify page viewport rectangle.
 bottom: Specify page viewport rectangle.
 zoom: Specify page viewport rectangle's zoom level.

 left, top, right, bottom, zoom are used in conjunction with the page fit style
 specified by *page_location*.
 """
 return _make_page_destination(
 pdf,
 page_num,
 page_location=page_location,
 left=left,
 top=top,
 right=right,
 bottom=bottom,
 zoom=zoom,
)

def _make_page_destination(
 pdf: Pdf,
 page_num: int,
 page_location: PageLocation | str | None = None,
 **kwargs,
) -> Array:
 kwargs = {k: v for k, v in kwargs.items() if v is not None}

 res: list[Dictionary | Name] = [pdf.pages[page_num].obj]
 if page_location:
 if isinstance(page_location, PageLocation):
 loc_key = page_location
 loc_str = loc_key.name
 else:
 loc_str = page_location
 try:
 loc_key = PageLocation[loc_str]
 except KeyError:
 raise ValueError(
 f"Invalid or unsupported page location type {loc_str}"
) from None
 res.append(Name(f'/{loc_str}'))
 dest_arg_names = PAGE_LOCATION_ARGS.get(loc_key)
 if dest_arg_names:
 res.extend(kwargs.get(k, 0) for k in dest_arg_names)
 else:
 res.append(Name.Fit)
 return Array(res)

class OutlineStructureError(Exception):
 """Indicates an error in the outline data structure."""

class OutlineItem:
 """Manage a single item in a PDF document outlines structure.

 Includes nested items.

 Arguments:
 title: Title of the outlines item.
 destination: Page number, destination name, or any other PDF object
 to be used as a reference when clicking on the outlines entry. Note
 this should be ``None`` if an action is used instead. If set to a
 page number, it will be resolved to a reference at the time of
 writing the outlines back to the document.
 page_location: Supplemental page location for a page number
 in ``destination``, e.g. ``PageLocation.Fit``. May also be
 a simple string such as ``'FitH'``.
 action: Action to perform when clicking on this item. Will be ignored
 during writing if ``destination`` is also set.
 obj: ``Dictionary`` object representing this outlines item in a ``Pdf``.
 May be ``None`` for creating a new object. If present, an existing
 object is modified in-place during writing and original attributes
 are retained.
 left, top, bottom, right, zoom: Describes the viewport position associated
 with a destination.

 This object does not contain any information about higher-level or
 neighboring elements.

 Valid destination arrays:
 [page /XYZ left top zoom]
 generally
 [page, PageLocationEntry, 0 to 4 ints]
 """

 def __init__(
 self,
 title: str,
 destination: Array | String | Name | int | None = None,
 page_location: PageLocation | str | None = None,
 action: Dictionary | None = None,
 obj: Dictionary | None = None,
 *,
 left: float | None = None,
 top: float | None = None,
 right: float | None = None,
 bottom: float | None = None,
 zoom: float | None = None,
):
 """Initialize OutlineItem."""
 self.title = title
 self.destination = destination
 self.page_location = page_location
 self.page_location_kwargs = {}
 self.action = action
 if self.destination is not None and self.action is not None:
 raise ValueError("Only one of destination and action may be set")
 self.obj = obj
 kwargs = dict(left=left, top=top, right=right, bottom=bottom, zoom=zoom)
 self.page_location_kwargs = {k: v for k, v in kwargs.items() if v is not None}
 self.is_closed = False
 self.children: list[OutlineItem] = []

 def __str__(self):
 if self.children:
 if self.is_closed:
 oc_indicator = '[+]'
 else:
 oc_indicator = '[-]'
 else:
 oc_indicator = '[]'
 if self.destination is not None:
 if isinstance(self.destination, Array):
 # 12.3.2.2 Explicit destination
 # [raw_page, /PageLocation.SomeThing, integer parameters for viewport]
 raw_page = self.destination[0]
 page = Page(raw_page)
 dest = page.label
 elif isinstance(self.destination, String):
 # 12.3.2.2 Named destination, byte string reference to Names
 dest = (
 f"<Named Destination in document .Root.Names dictionary: "
 f"{self.destination}>"
)
 elif isinstance(self.destination, Name):
 # 12.3.2.2 Named destination, name object (PDF 1.1)
 dest = (
 f"<Named Destination in document .Root.Dests dictionary: "
 f"{self.destination}>"
)
 elif isinstance(self.destination, int):
 # Page number
 dest = f'<Page {self.destination}>'
 else:
 dest = '<Action>'
 return f'{oc_indicator} {self.title} -> {dest}'

 def __repr__(self):
 return f'<pikepdf.{self.__class__.__name__}: "{self.title}">'

 @classmethod
 def from_dictionary_object(cls, obj: Dictionary):
 """Create a ``OutlineItem`` from a ``Dictionary``.

 Does not process nested items.

 Arguments:
 obj: ``Dictionary`` object representing a single outline node.
 """
 title = str(obj.Title)
 destination = obj.get(Name.Dest)
 if destination is not None and not isinstance(
 destination, (Array, String, Name)
):
 # 12.3.3: /Dest may be a name, byte string or array
 raise OutlineStructureError(
 f"Unexpected object type in Outline's /Dest: {destination!r}"
)
 action = obj.get(Name.A)
 if action is not None and not isinstance(action, Dictionary):
 raise OutlineStructureError(
 f"Unexpected object type in Outline's /A: {action!r}"
)
 return cls(title, destination=destination, action=action, obj=obj)

 def to_dictionary_object(self, pdf: Pdf, create_new: bool = False) -> Dictionary:
 """Create/update a ``Dictionary`` object from this outline node.

 Page numbers are resolved to a page reference on the input
 ``Pdf`` object.

 Arguments:
 pdf: PDF document object.
 create_new: If set to ``True``, creates a new object instead of
 modifying an existing one in-place.
 """
 if create_new or self.obj is None:
 self.obj = obj = pdf.make_indirect(Dictionary())
 else:
 obj = self.obj
 obj.Title = self.title
 if self.destination is not None:
 if isinstance(self.destination, int):
 self.destination = make_page_destination(
 pdf,
 self.destination,
 self.page_location,
 **self.page_location_kwargs,
)
 obj.Dest = self.destination
 if Name.A in obj:
 del obj.A
 elif self.action is not None:
 obj.A = self.action
 if Name.Dest in obj:
 del obj.Dest
 return obj

class Outline:
 """Maintains a intuitive interface for creating and editing PDF document outlines.

 See |pdfrm| section 12.3.

 Arguments:
 pdf: PDF document object.
 max_depth: Maximum recursion depth to consider when reading the outline.
 strict: If set to ``False`` (default) silently ignores structural errors.
 Setting it to ``True`` raises a
 :class:`pikepdf.OutlineStructureError`
 if any object references re-occur while the outline is being read or
 written.

 See Also:
 :meth:`pikepdf.Pdf.open_outline`
 """

 def __init__(self, pdf: Pdf, max_depth: int = 15, strict: bool = False):
 """Initialize Outline."""
 self._root: list[OutlineItem] | None = None
 self._pdf = pdf
 self._max_depth = max_depth
 self._strict = strict
 self._updating = False

 def __str__(self):
 return str(self.root)

 def __repr__(self):
 return f'<pikepdf.{self.__class__.__name__}: {len(self.root)} items>'

 def __enter__(self):
 self._updating = True
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 try:
 if exc_type is not None:
 return
 self._save()
 finally:
 self._updating = False

 def _save_level_outline(
 self,
 parent: Dictionary,
 outline_items: Iterable[OutlineItem],
 level: int,
 visited_objs: set[tuple[int, int]],
):
 count = 0
 prev: Dictionary | None = None
 first: Dictionary | None = None
 for item in outline_items:
 out_obj = item.to_dictionary_object(self._pdf)
 objgen = out_obj.objgen
 if objgen in visited_objs:
 if self._strict:
 raise OutlineStructureError(
 f"Outline object {objgen} reoccurred in structure"
)
 out_obj = item.to_dictionary_object(self._pdf, create_new=True)
 else:
 visited_objs.add(objgen)

 out_obj.Parent = parent
 count += 1
 if prev is not None:
 prev.Next = out_obj
 out_obj.Prev = prev
 else:
 first = out_obj
 if Name.Prev in out_obj:
 del out_obj.Prev
 prev = out_obj
 if level < self._max_depth:
 sub_items: Iterable[OutlineItem] = item.children
 else:
 sub_items = ()
 self._save_level_outline(out_obj, sub_items, level + 1, visited_objs)
 if item.is_closed:
 out_obj.Count = -cast(int, out_obj.Count)
 else:
 count += cast(int, out_obj.Count)
 if count:
 assert prev is not None and first is not None
 if Name.Next in prev:
 del prev.Next
 parent.First = first
 parent.Last = prev
 else:
 if Name.First in parent:
 del parent.First
 if Name.Last in parent:
 del parent.Last
 parent.Count = count

 def _load_level_outline(
 self,
 first_obj: Dictionary,
 outline_items: list[Object],
 level: int,
 visited_objs: set[tuple[int, int]],
):
 current_obj: Dictionary | None = first_obj
 while current_obj:
 objgen = current_obj.objgen
 if objgen in visited_objs:
 if self._strict:
 raise OutlineStructureError(
 f"Outline object {objgen} reoccurred in structure"
)
 return
 visited_objs.add(objgen)

 item = OutlineItem.from_dictionary_object(current_obj)
 first_child = current_obj.get(Name.First)
 if isinstance(first_child, Dictionary) and level < self._max_depth:
 self._load_level_outline(
 first_child, item.children, level + 1, visited_objs
)
 count = current_obj.get(Name.Count)
 if isinstance(count, int) and count < 0:
 item.is_closed = True
 outline_items.append(item)
 next_obj = current_obj.get(Name.Next)
 if next_obj is None or isinstance(next_obj, Dictionary):
 current_obj = next_obj
 else:
 raise OutlineStructureError(
 f"Outline object {objgen} points to non-dictionary"
)

 def _save(self):
 if self._root is None:
 return
 if Name.Outlines in self._pdf.Root:
 outlines = self._pdf.Root.Outlines
 else:
 self._pdf.Root.Outlines = outlines = self._pdf.make_indirect(
 Dictionary(Type=Name.Outlines)
)
 self._save_level_outline(outlines, self._root, 0, set())

 def _load(self):
 self._root = root = []
 if Name.Outlines not in self._pdf.Root:
 return
 outlines = self._pdf.Root.Outlines or {}
 first_obj = outlines.get(Name.First)
 if first_obj:
 self._load_level_outline(first_obj, root, 0, set())

 def add(self, title: str, destination: Array | int | None) -> OutlineItem:
 """Add an item to the outline.

 Arguments:
 title: Title of the outline item.
 destination: Destination to jump to when the item is selected.

 Returns:
 The newly created :class:`OutlineItem`.
 """
 if self._root is None:
 self._load()
 item = OutlineItem(title, destination)
 if self._root is None:
 self._root = [item]
 else:
 self._root.append(item)
 if not self._updating:
 self._save()
 return item

 @property
 def root(self) -> list[OutlineItem]:
 """Return the root node of the outline."""
 if self._root is None:
 self._load()
 return cast(List[OutlineItem], self._root)

./usr/lib/python3/dist-packages/pikepdf/objects.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""Provide classes to stand in for PDF objects.

The purpose of these is to provide nice-looking classes to allow explicit
construction of PDF objects and more pythonic idioms and facilitate discovery
by documentation generators and linters.

It's also a place to narrow the scope of input types to those more easily
converted to C++.

There is some deliberate "smoke and mirrors" here: all of the objects are truly
instances of ``pikepdf.Object``, which is a variant container object. The
``__new__`` constructs a ``pikepdf.Object`` in each case, and the rest of the
class definition is present as an aide for code introspection.
"""

from __future__ import annotations

pylint: disable=unused-import, abstract-method
from secrets import token_urlsafe
from typing import TYPE_CHECKING, Any, Iterable, Mapping, cast

from . import _core
from ._core import Matrix, Object, ObjectType, Rectangle

if TYPE_CHECKING: # pragma: no cover
 from pikepdf import Pdf

By default pikepdf.Object will identify itself as pikepdf._core.Object
Here we change the module to discourage people from using that internal name
Instead it will become pikepdf.objects.Object
Object.__module__ = __name__
ObjectType.__module__ = __name__

type(Object) is the metaclass that pybind11 defines; we wish to extend that
pylint cannot see the C++ metaclass definition and is thoroughly confused.
pylint: disable=invalid-metaclass

class _ObjectMeta(type(Object)): # type: ignore
 """Support instance checking."""

 def __instancecheck__(self, instance: Any) -> bool:
 # Note: since this class is a metaclass, self is a class object
 if type(instance) != Object:
 return False
 return self.object_type == instance._type_code

class _NameObjectMeta(_ObjectMeta):
 """Support usage pikepdf.Name.Whatever -> Name('/Whatever')."""

 def __getattr__(self, attr: str) -> Name:
 if attr.startswith('_') or attr == 'object_type':
 return getattr(_ObjectMeta, attr)
 return Name('/' + attr)

 def __setattr__(self, attr: str, value: Any) -> None:
 # No need for a symmetric .startswith('_'). To prevent user error, we
 # simply don't allow mucking with the pikepdf.Name class's attributes.
 # There is no reason to ever assign to them.
 raise AttributeError(
 "Attributes may not be set on pikepdf.Name. Perhaps you meant to "
 "modify a Dictionary rather than a Name?"
)

 def __getitem__(self, item: str) -> None:
 if item.startswith('/'):
 item = item[1:]
 raise TypeError(
 "pikepdf.Name is not subscriptable. You probably meant:\n"
 f" pikepdf.Name.{item}\n"
 "or\n"
 f" pikepdf.Name('/{item}')\n"
)

class Name(Object, metaclass=_NameObjectMeta):
 """Construct a PDF Name object.

 Names can be constructed with two notations:

 1. ``Name.Resources``

 2. ``Name('/Resources')``

 The two are semantically equivalent. The former is preferred for names
 that are normally expected to be in a PDF. The latter is preferred for
 dynamic names and attributes.
 """

 object_type = ObjectType.name_

 def __new__(cls, name: str | Name) -> Name:
 """Construct a PDF Name."""
 # QPDF_Name::unparse ensures that names are always saved in a UTF-8
 # compatible way, so we only need to guard the input.
 if isinstance(name, bytes):
 raise TypeError("Name should be str")
 if isinstance(name, Name):
 return name # Names are immutable so we can return a reference
 return _core._new_name(name)

 @classmethod
 def random(cls, len_: int = 16, prefix: str = '') -> Name:
 """Generate a cryptographically strong random, valid PDF Name.

 This function uses Python's secrets.token_urlsafe, which returns a
 URL-safe encoded random number of the desired length. An optional
 prefix may be prepended. (The encoding is ultimately done with
 :func:`base64.urlsafe_b64encode`.) Serendipitously, URL-safe is also
 PDF-safe.

 When the length parameter is 16 (16 random bytes or 128 bits), the result
 is probably globally unique and can be treated as never colliding with
 other names.

 The length of the string may vary because it is encoded.
 """
 random_string = token_urlsafe(len_)
 return _core._new_name(f"/{prefix}{random_string}")

class Operator(Object, metaclass=_ObjectMeta):
 """Construct an operator for use in a content stream.

 An Operator is one of a limited set of commands that can appear in PDF content
 streams (roughly the mini-language that draws objects, lines and text on a
 virtual PDF canvas). The commands :func:`parse_content_stream` and
 :func:`unparse_content_stream` create and expect Operators respectively, along
 with their operands.

 pikepdf uses the special Operator "INLINE IMAGE" to denote an inline image
 in a content stream.
 """

 object_type = ObjectType.operator

 def __new__(cls, name: str) -> Operator:
 """Construct an operator."""
 return cast('Operator', _core._new_operator(name))

class String(Object, metaclass=_ObjectMeta):
 """Construct a PDF String object."""

 object_type = ObjectType.string

 def __new__(cls, s: str | bytes) -> String:
 """Construct a PDF String.

 Args:
 s: The string to use. String will be encoded for
 PDF, bytes will be constructed without encoding.

 Return type:
 pikepdf.String
 """
 if isinstance(s, bytes):
 return _core._new_string(s)
 return _core._new_string_utf8(s)

class Array(Object, metaclass=_ObjectMeta):
 """Construct a PDF Array object."""

 object_type = ObjectType.array

 def __new__(cls, a: Iterable | Rectangle | Matrix | None = None) -> Array:
 """Construct a PDF Array.

 Args:
 a: An iterable of objects. All objects must be either
 `pikepdf.Object` or convertible to `pikepdf.Object`.

 Return type:
 pikepdf.Array
 """
 if isinstance(a, (str, bytes)):
 raise TypeError('Strings cannot be converted to arrays of chars')

 if a is None:
 a = []
 elif isinstance(a, (Rectangle, Matrix)):
 return a.as_array()
 elif isinstance(a, Array):
 return cast(Array, a.__copy__())
 return _core._new_array(a)

class Dictionary(Object, metaclass=_ObjectMeta):
 """Construct a PDF Dictionary object."""

 object_type = ObjectType.dictionary

 def __new__(cls, d: Mapping | None = None, **kwargs) -> Dictionary:
 """Construct a PDF Dictionary.

 Works from either a Python ``dict`` or keyword arguments.

 These two examples are equivalent:

 .. code-block:: python

 pikepdf.Dictionary({'/NameOne': 1, '/NameTwo': 'Two'})

 pikepdf.Dictionary(NameOne=1, NameTwo='Two')

 In either case, the keys must be strings, and the strings
 correspond to the desired Names in the PDF Dictionary. The values
 must all be convertible to `pikepdf.Object`.

 Return type:
 pikepdf.Dictionary
 """
 if kwargs and d is not None:
 raise ValueError('Cannot use both a mapping object and keyword args')
 if kwargs:
 # Add leading slash
 # Allows Dictionary(MediaBox=(0,0,1,1), Type=Name('/Page')...
 return _core._new_dictionary({('/' + k): v for k, v in kwargs.items()})
 if isinstance(d, Dictionary):
 # Already a dictionary
 return d.__copy__()
 if not d:
 d = {}
 if d and any(key == '/' or not key.startswith('/') for key in d.keys()):
 raise KeyError("Dictionary created from strings must begin with '/'")
 return _core._new_dictionary(d)

class Stream(Object, metaclass=_ObjectMeta):
 """Construct a PDF Stream object."""

 object_type = ObjectType.stream

 def __new__(cls, owner: Pdf, data: bytes | None = None, d=None, **kwargs) -> Stream:
 """Create a new stream object.

 Streams stores arbitrary binary data and may or may not be compressed.
 It also may or may not be a page or Form XObject's content stream.

 A stream dictionary is like a pikepdf.Dictionary or Python dict, except
 it has a binary payload of data attached. The dictionary describes
 how the data is compressed or encoded.

 The dictionary may be initialized just like pikepdf.Dictionary is initialized,
 using a mapping object or keyword arguments.

 Args:
 owner: The Pdf to which this stream shall be attached.
 data: The data bytes for the stream.
 d: An optional mapping object that will be used to construct the stream's
 dictionary.
 kwargs: Keyword arguments that will define the stream dictionary. Do not set
 /Length here as pikepdf will manage this value. Set /Filter
 if the data is already encoded in some format.

 Examples:
 Using kwargs:
 >>> s1 = pikepdf.Stream(
 pdf,
 b"uncompressed image data",
 BitsPerComponent=8,
 ColorSpace=Name.DeviceRGB,
 ...
)
 Using dict:
 >>> d = pikepdf.Dictionary(...)
 >>> s2 = pikepdf.Stream(
 pdf,
 b"data",
 d
)

 .. versionchanged:: 2.2
 Support creation of ``pikepdf.Stream`` from existing dictionary.

 .. versionchanged:: 3.0
 ``obj`` argument was removed; use ``data``.
 """
 if data is None:
 raise TypeError("Must make Stream from binary data")

 stream_dict = None
 if d or kwargs:
 stream_dict = Dictionary(d, **kwargs)

 stream = _core._new_stream(owner, data)
 if stream_dict:
 stream.stream_dict = stream_dict
 return stream

./usr/lib/python3/dist-packages/pikepdf/py.typed

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0
pikepdf is typed

./usr/lib/python3/dist-packages/pikepdf/settings.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MPL-2.0

"""pikepdf global settings."""

from __future__ import annotations

from ._core import (
 get_decimal_precision,
 set_decimal_precision,
 set_flate_compression_level,
)

__all__ = [
 'get_decimal_precision',
 'set_decimal_precision',
 'set_flate_compression_level',
]

./usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/INSTALLER

debian

./usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/METADATA

Metadata-Version: 2.1
Name: pikepdf
Version: 8.7.1
Summary: Read and write PDFs with Python, powered by qpdf
Author-email: "James R. Barlow" <james@purplerock.ca>
License: MPL-2.0
Project-URL: documentation, https://pikepdf.readthedocs.io/
Project-URL: repository, https://github.com/pikepdf/pikepdf
Project-URL: changelog, https://pikepdf.readthedocs.io/en/latest/releasenotes/index.html
Keywords: PDF
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
Classifier: Programming Language :: C++
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Multimedia :: Graphics
Classifier: Topic :: Software Development :: Libraries
Requires-Python: >=3.8
Description-Content-Type: text/markdown
License-File: LICENSE.txt
Requires-Dist: Deprecated
Requires-Dist: Pillow >=10.0.1
Requires-Dist: lxml >=4.8
Requires-Dist: packaging
Provides-Extra: dev
Requires-Dist: pre-commit ; extra == 'dev'
Requires-Dist: typer[all] ; extra == 'dev'
Provides-Extra: docs
Requires-Dist: GitPython ; extra == 'docs'
Requires-Dist: PyGithub ; extra == 'docs'
Requires-Dist: Sphinx >=3 ; extra == 'docs'
Requires-Dist: ipython ; extra == 'docs'
Requires-Dist: matplotlib ; extra == 'docs'
Requires-Dist: pybind11 ; extra == 'docs'
Requires-Dist: requests ; extra == 'docs'
Requires-Dist: sphinx-issues ; extra == 'docs'
Requires-Dist: sphinx-rtd-theme ; extra == 'docs'
Requires-Dist: tomli ; (python_version < "3.11") and extra == 'docs'
Provides-Extra: mypy
Requires-Dist: lxml-stubs ; extra == 'mypy'
Requires-Dist: types-Pillow ; extra == 'mypy'
Requires-Dist: types-requests ; extra == 'mypy'
Requires-Dist: types-setuptools ; extra == 'mypy'
Provides-Extra: test
Requires-Dist: attrs >=20.2.0 ; extra == 'test'
Requires-Dist: coverage[toml] ; extra == 'test'
Requires-Dist: hypothesis >=6.36 ; extra == 'test'
Requires-Dist: numpy >=1.21.0 ; extra == 'test'
Requires-Dist: pybind11 ; extra == 'test'
Requires-Dist: pytest-cov >=3.0.0 ; extra == 'test'
Requires-Dist: pytest-timeout >=2.1.0 ; extra == 'test'
Requires-Dist: pytest-xdist >=2.5.0 ; extra == 'test'
Requires-Dist: pytest >=6.2.5 ; extra == 'test'
Requires-Dist: python-dateutil >=2.8.1 ; extra == 'test'
Requires-Dist: psutil >=5.9 ; (os_name != "nt") and extra == 'test'
Requires-Dist: python-xmp-toolkit >=2.0.1 ; (os_name != "nt" and platform_machine == "x86_64") and extra == 'test'
Requires-Dist: tomli ; (python_version < "3.11") and extra == 'test'

<!-- SPDX-FileCopyrightText: 2022 James R. Barlow -->
<!-- SPDX-License-Identifier: MPL-2.0 -->

pikepdf
=======

pikepdf is a Python library for reading and writing PDF files.

[![Build Status](https://github.com/pikepdf/pikepdf/actions/workflows/build.yml/badge.svg)](https://github.com/pikepdf/pikepdf/actions/workflows/build.yml) [![PyPI](https://img.shields.io/pypi/v/pikepdf.svg)](https://pypi.org/project/pikepdf/) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pikepdf) ![PyPy](https://img.shields.io/badge/3.9-blue) ![PyPI - License](https://img.shields.io/pypi/l/pikepdf) ![PyPI - Downloads](https://img.shields.io/pypi/dm/pikepdf) [![codecov](https://codecov.io/gh/pikepdf/pikepdf/branch/main/graph/badge.svg?token=8FJ755317J)](https://codecov.io/gh/pikepdf/pikepdf)

pikepdf is based on [QPDF](https://github.com/qpdf/qpdf), a powerful PDF manipulation and repair library.

Python + QPDF = "py" + "qpdf" = "pyqpdf", which looks like a dyslexia test. Say it out loud, and it sounds like "pikepdf".

```python
# Elegant, Pythonic API
with pikepdf.open('input.pdf') as pdf:
    num_pages = len(pdf.pages)
    del pdf.pages[-1]
    pdf.save('output.pdf')
```

To install:

```bash
pip install pikepdf
```

For users who want to build from source, see [installation](https://pikepdf.readthedocs.io/en/latest/index.html).

pikepdf is [documented](https://pikepdf.readthedocs.io/en/latest/index.html) and actively maintained. Binary wheels are available for all common platforms, both x86-64 and ARM64/Apple Silicon. For information on the latest changes, see the [release notes](https://pikepdf.readthedocs.io/en/latest/releasenotes/index.html).

Commercial support is available.

Features

This library is similar to pypdf (formerly PyPDF2) - it provides low level access to PDF features and allows editing and content transformation of existing PDFs. Some knowledge of the PDF specification may be helpful. It does not have the capability to render a PDF to image.

Feature	**pikepdf**	**pypdf** (PyPDF2)
Editing, manipulation and transformation of existing PDFs	✔	✔
Based on an existing, mature PDF library	QPDF	✘
Implementation	C++ and Python	Python
PDF versions supported	1.1 to 1.7	1.1 to 1.7
Save and load password protected (encrypted) PDFs	✔ (except public key)	✔ (except public key)
Creates linearized ("fast web view") PDFs	✔	✘
Test suite coverage	![codecov][codecov]	![codecovpypdf2][codecovpypdf]
Creates PDFs that pass PDF validation tests	✔	✘
Modifies PDF/A without breaking PDF/A compliance	✔	✘
PDF XMP metadata editing	✔	read-only
Integrates with Jupyter and IPython notebooks for rapid development	✔	✘

[codecov]: https://codecov.io/gh/pikepdf/pikepdf/branch/main/graph/badge.svg?token=8FJ755317J

[codecovpypdf]: https://codecov.io/gh/py-pdf/pypdf/branch/main/graph/badge.svg?token=id42cGNZ5Z

Testimonials

> I decided to try writing a quick Python program with pikepdf to automate [something] and it "just worked". –Jay Berkenbilt, creator of QPDF

> "Thanks for creating a great pdf library, I tested out several and this is the one that was best able to work with whatever I threw at it." –@cfcurtis

In Production

* [OCRmyPDF](https://github.com/ocrmypdf/OCRmyPDF) uses pikepdf to graft OCR text layers onto existing PDFs, to examine the contents of input PDFs, and to optimize PDFs.

* [PDF Arranger](https://github.com/jeromerobert/pdfarranger) is a small Python application that provides a graphical user interface to rotate, crop and rearrange PDFs.

* [PDFStitcher](https://github.com/cfcurtis/sewingutils) is a utility for stitching PDF pages into a single document (i.e. N-up or page imposition).

License

pikepdf is licensed under the [Mozilla Public License 2.0](https://www.mozilla.org/en-US/MPL/2.0/) license (MPL-2.0) that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license. MPL 2.0 permits you to combine the software with other work, including commercial and closed source software, but asks you to publish source-level modifications you make to pikepdf itself.

Some components of the project may be under other license agreements, as indicated in their SPDX license header or the [`.dep5/reuse`](REUSE) file.

./usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/WHEEL

Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: false
Tag: cp311-cp311-linux_riscv64

./usr/lib/python3/dist-packages/pikepdf-8.7.1.dist-info/top_level.txt

pikepdf

./usr/share/doc/python3-pikepdf/changelog.Debian.gz

./usr/share/doc/python3-pikepdf/changelog.Debian

pikepdf (8.7.1+dfsg-2) unstable; urgency=medium

 * Update autopkgtest dependencies to fix test failure.

 -- Vincent Cheng <vcheng@debian.org> Mon, 20 Nov 2023 02:55:34 -0800

pikepdf (8.7.1+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Add build-dep on python3-deprecated.
 - Refresh patches.

 -- Vincent Cheng <vcheng@debian.org> Sun, 19 Nov 2023 08:20:55 -0800

pikepdf (8.5.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Wed, 11 Oct 2023 10:07:26 -0700

pikepdf (8.5.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sat, 07 Oct 2023 00:33:32 -0700

pikepdf (8.4.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sun, 10 Sep 2023 08:28:02 -0700

pikepdf (8.4.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Tue, 22 Aug 2023 03:26:44 -0700

pikepdf (8.3.2+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sat, 12 Aug 2023 14:02:47 -0700

pikepdf (8.3.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Wed, 09 Aug 2023 11:21:00 -0700

pikepdf (8.2.3+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Refresh patches.

 -- Vincent Cheng <vcheng@debian.org> Wed, 02 Aug 2023 23:24:57 -0700

pikepdf (8.2.2+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Sat, 29 Jul 2023 18:08:50 -0700

pikepdf (8.2.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Tue, 25 Jul 2023 01:03:51 -0700

pikepdf (8.2.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Vincent Cheng <vcheng@debian.org> Fri, 21 Jul 2023 22:46:27 -0700

pikepdf (8.1.1+dfsg-1) unstable; urgency=medium

 * Adopt package and add myself as Uploader. (Closes: #1017873)
 * New upstream release. (Closes: #1030340)
 - Drop docs-build-use-DEB_VERSION_UPSTREAM.patch.
 - Refresh remaining patches.
 * Add build-depends on pybuild-plugin-pyproject.
 * Update dh compat level to 13.
 * Update Standards version to 4.6.2.

 -- Vincent Cheng <vcheng@debian.org> Sun, 16 Jul 2023 22:04:06 -0700

pikepdf (6.0.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #1019694).
 * Drop python3-setuptools-scm-git-archive, python3-sphinx-panels build-deps.
 * Add Optional-patch-remove-sphinx-design.patch.
 * Extend docs-build-use-DEB_VERSION_UPSTREAM.patch to src/pikepdf/_version.py.
 * Refresh remaining patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 28 Sep 2022 14:18:59 -0700

pikepdf (5.1.1+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Cherry-pick upstream commit 4f6923f (Closes: #1009737).

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 15 Apr 2022 14:49:08 -0700

pikepdf (5.0.1+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 01 Mar 2022 13:13:09 -0700

pikepdf (5.0.0+dfsg-2) unstable; urgency=medium

 * Update b-d python3-toml -> python3-tomli.
 * Add autopkgtest dep on python3-tomli (Closes: #1006123).

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 20 Feb 2022 13:16:51 -0700

pikepdf (5.0.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #1005766).
 * Refresh patches.
 * Add build-deps qpdf 10.6.2, python3-sphinx-panels, python3-packaging.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 18 Feb 2022 13:13:43 -0700

pikepdf (4.2.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #996881, #1002424).
 * Update path in d/copyright src/gsl.h -> src/qpdf/gsl.h.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 23 Dec 2021 15:37:35 -0700

pikepdf (3.2.0+dfsg-2) unstable; urgency=medium

 * Drop python3-pytest-helpers-namespace from autopkgtest dependencies.
 No longer required by upstream's test suite.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 18 Oct 2021 14:35:54 -0700

pikepdf (3.2.0+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #996792).
 * Add build-deps on python3-toml, python3-sphinx-issues.
 * Update d/copyright for new release.
 - Drop stanzas for mp_compile.py, QIntC.hh and docs/images/pike-tree.jpg.
 - Update path docs/images/pike.{jpg->png}.
 - Add stanza for tests/resources/Gray.icc.
 * Drop drop-pybind11-from-setup.py.patch.
 No longer required.
 * Drop Fix-compatibility-with-pybind11.patch.
 Obsoleted by upstream changes.
 * Drop patches corresponding to cherry-picks from upstream.
 * Refresh remaining patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 18 Oct 2021 14:00:32 -0700

pikepdf (1.17.3+dfsg-5) unstable; urgency=medium

 * Cherry pick upstream commit 3f38f73 to fix CVE-2021-29421 (Closes: #986274).

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 09 Apr 2021 10:41:33 -0700

pikepdf (1.17.3+dfsg-4) unstable; urgency=medium

 * Cherry-pick upstream commit 7ca375cb to fix another broken text
 (Closes: #981465).
 Thanks to Jay Berkenbilt for investigation.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 01 Feb 2021 10:19:39 -0700

pikepdf (1.17.3+dfsg-3) unstable; urgency=medium

 * Fix bug number closed by previous upload.
 * Cherry-pick upstream commits 7ac9b058 and fe4b568a for compatibility
 with qpdf 10.1.0 (Closes: #980426).

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 19 Jan 2021 14:10:44 -0700

pikepdf (1.17.3+dfsg-2) unstable; urgency=medium

 [Debian Janitor]
 * Bump debhelper from old 10 to 12.
 * Set upstream metadata fields: Bug-Database, Bug-Submit.

 [Ondřej Nový]
 * d/control: Update Maintainer field with new Debian Python Team
 contact address.
 * d/control: Update Vcs-* fields with new Debian Python Team Salsa
 layout.

 [Sean Whitton]
 * Fix compatibility with pybind11 (Closes: #975202).
 Thanks to Matthias Klose for the patch.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 24 Dec 2020 22:33:32 -0700

pikepdf (1.17.3+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Update d/copyright for several new files.
 Thanks to upstream for help with this.
 - Drop tests/resources/tree* from Files-Excluded:, and Comment: field
 - Add stanzas for new test resources, src/gsl.h and src/QIntC.hh
 - Update upstream's copyright years in Files: * stanza.
 * Fix "Licence"->"License" in an existing stanza.
 * Drop disable-test_icc_extract.patch
 - Test dropped upstream.
 * Refresh remaining patches.
 * Add python3-psutil autopkgtest dependency.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 26 Jul 2020 15:47:36 -0700

pikepdf (1.13.0+dfsg-2) unstable; urgency=medium

 * Add runtime dependency on python3-pkg-resources (Closes: #965103).

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 18 Jul 2020 10:57:32 -0700

pikepdf (1.13.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Add stanza for tests/resources/outlines.pdf to d/copyright.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 17 May 2020 17:11:59 -0700

pikepdf (1.12.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Sun, 17 May 2020 16:50:08 -0700

pikepdf (1.11.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Update Files-Excluded:
 - Remove tests/resources/enron1_gs.pdf
 - Add docs/images/save-pike.jpg
 Although <https://commons.wikimedia.org/wiki/File:SaveDePike.jpg>
 says the photo is public domain, it is possible that the photographed
 sign itself is under copyright. The file is not essential so playing
 it safe.
 * Drop disable-test_docinfo_problems.patch.
 Tests have been updated to use a different file, which we have.
 * Add drop-save-pike.patch.
 * Refresh remaining patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 15 Apr 2020 16:21:33 -0700

pikepdf (1.10.3+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #955045).
 * Add docs/images/28fish.jpg to d/copyright.
 * Refresh patch.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 27 Mar 2020 08:50:15 -0700

pikepdf (1.10.2+dfsg-2) unstable; urgency=medium

 * In d/rules, when setting PYTHONPATH to build the HTML docs, add only
 the subdirectory of .pybuild corresponding to the version of Python
 which will actually be used to build the docs.

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 21 Mar 2020 21:44:24 -0700

pikepdf (1.10.2+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #950138).

 -- Sean Whitton <spwhitton@spwhitton.name> Sat, 29 Feb 2020 08:56:25 -0700

pikepdf (1.10.0+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Refresh patch.
 * Set http{s,}_proxy for override_dh_auto_build to prevent sphinx
 attempting to fetch intersphinx inventory files.
 Thanks, LibraryStyleGuide page on Debian Wiki.
 * Fix HTML docs build:
 - Add python3-pil build-dep
 - Run dh_auto_build first, then try to build docs.
 Previously we were doing the reverse.
 - Set PYTHONPATH.
 * Drop superfluous '-O--buildsystem=pybuild'.

 -- Sean Whitton <spwhitton@spwhitton.name> Mon, 27 Jan 2020 20:42:14 -0700

pikepdf (1.8.1+dfsg-1) unstable; urgency=medium

 * New upstream release (Closes: #946575).
 * Fix some paths 'test'->'tests' in d/copyright.
 * Update d/copyright for new test resource.

 -- Sean Whitton <spwhitton@spwhitton.name> Wed, 11 Dec 2019 11:38:08 -0700

pikepdf (1.7.0+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Tue, 12 Nov 2019 09:40:42 -0700

pikepdf (1.6.5+dfsg-1) unstable; urgency=medium

 * New upstream release.
 * Tighten pybind11 build-dep to require 2.4.3.
 * Refresh patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 01 Nov 2019 20:16:42 -0700

pikepdf (1.6.4+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 10 Oct 2019 10:15:17 -0700

pikepdf (1.6.3+dfsg-1) unstable; urgency=medium

 * New upstream release.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 05 Sep 2019 07:30:45 -0700

pikepdf (1.6.1+dfsg-1) unstable; urgency=medium

 * New upstream release.
 - Tighten libqpdf build-dep to require 8.4.2.
 * Add mp_compile.py stanza to d/copyright.
 * Refresh patches.

 -- Sean Whitton <spwhitton@spwhitton.name> Fri, 16 Aug 2019 09:03:02 +0100

pikepdf (1.5.0.post0+dfsh-1) unstable; urgency=medium

 [Sean Whitton]
 * New upstream release.
 - Drop python3-defusedxml build-dep
 - Drop python3-pytest-runner build-dep
 + Drop rw-build-tree d/tests/control restriction
 - Tighten python3-pybind11 dependency to require 2.3.0.
 * Add drop-pybind11-from-setup.py.patch, disable-test_icc_extract.patch.
 * Drop Fix-issue-25-year-missing-leading-zero-on-some-platforms.patch,
 drop-setuptools_scm_git_archive-from-setup.py.patch and
 fix_xmp_metadata_without_xmpmeta_wrapper.patch.
 * Refresh remaining patches.
 * d/copyright updates:
 - Update Files-Excluded
 - Update upstream copyright years.
 - Add info for docs/images/pike-{release,tree}.jpg,
 tests/resources/pike-flate-jp2.pdf

 [Ondřej Nový]
 * Use debhelper-compat instead of debian/compat.

 -- Sean Whitton <spwhitton@spwhitton.name> Thu, 15 Aug 2019 18:47:38 +0100

Older entries have been removed from this changelog.
To read the complete changelog use `apt changelog python3-pikepdf`.

./usr/share/doc/python3-pikepdf/changelog.Debian.riscv64.gz

./usr/share/doc/python3-pikepdf/changelog.Debian.riscv64

pikepdf (8.7.1+dfsg-2+b1) sid; urgency=low, binary-only=yes

 * Binary-only non-maintainer upload for riscv64; no source changes.
 * Rebuild with Python 3.12 as supported

 -- riscv64 Build Daemon (rv-manda-04) <buildd_riscv64-rv-manda-04@buildd.debian.org> Tue, 05 Dec 2023 20:55:36 +0000

./usr/share/doc/python3-pikepdf/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: pikepdf
Source: https://github.com/pikepdf/pikepdf
Files-Excluded: docs/images/save-pike.jpg

Files: *
Copyright: (C) 2017-2020 James R. Barlow
License: MPL-2.0
Comment:
 The file licenses-for-wheels.txt is relevant only when a binary
 artifact is produced from the combination of the source code of
 pikepdf and the source code of qpdf. Nothing in pikepdf is Apache
 licensed.

Files: src/pikepdf/models/outlines.py
Copyright: (C) 2020 Matthias Erll, (C) 2020 James R. Barlow
License: MPL-2.0

Files: debian/*
Copyright: (C) 2018 Sean Whitton <spwhitton@spwhitton.name>
License: MPL-2.0

Files: docs/images/pike.png
Copyright: Public domain
License: public-domain
 From the U.S. Fish and Wildlife Service National Image Library.
 .
 See: https://en.wikipedia.org/wiki/File:Esox_lucius1.jpg
Comment: Maximum resolution version is in debian/missing-sources/.

Files: tests/*.py
Copyright: (C) 2017 James R. Barlow
License: CC0-1.0

Files: tests/resources/*
Copyright: (C) 2017 James R. Barlow
License: CC-BY-4.0

Files: tests/resources/Gray.icc
Copyright: Kai-Uwe Behrmann <www.behrmann.name>
 Marti Maria <www.littlecms.com>
 Photogamut <www.photogamut.org>
 Graeme Gill <www.argyllcms.com>
 ColorSolutions <www.basICColor.com>
License: Zlib

Files: tests/resources/congress.pdf docs/images/congress_im0.jpg tests/resources/congress-gray.pdf
Copyright: Public domain
License: public-domain
 From US Congressional Records.
Comment: Converted from JPEG to PDF.

Files: tests/resources/content-stream-errors.pdf
Copyright: (C) 2019 Jay Berkenbilt
License: Apache-2.0
 On Debian systems the full text of the Apache-2.0 license can be
 found in /usr/share/common-licenses/Apache-2.0.

Files: tests/resources/graph*.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.
Comment:
 For -encrypted.pdf, user password is "user" and owner password is "owner".

Files: tests/resources/jbig2.pdf
Copyright: Public domain
License: public-domain
 From US Congressional Records.

Files: tests/resources/jbig2global.pdf
Copyright: (C) 2005 Ellywa
License: GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Triumph.typewriter_text_Linzensoep.gif
 Converted to PDF.

Files: tests/resources/veraPDF*.pdf
Copyright: (C) 2015 veraPDF Consortium
License: CC-BY-4.0
Comment:
 Obtained from: https://github.com/veraPDF/veraPDF-corpus

Files: tests/resources/sandwich.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0
Comment:
 Created using ocrmypdf --pdf-renderer sandwich, to test Tesseract PDF
 text encoding.
 .
 Originally obtained from: https://commons.wikimedia.org/wiki/File:LinnSequencer_hardware_MIDI_sequencer_brochure_page_2_300dpi.jpg
 .
 A copy of that JPEG is included in debian/missing-sources/.

Files: tests/resources/outlines.pdf
Copyright: (C) 2020 Matthias Erll
License: MPL-2.0
Comment:
 License assumed from LICENSE.txt in project root.

Files: docs/images/pike-cartoon.png
Copyright: (C) 2017 creozavr
License: CC0-1.0
Comment:
 Obtained from: https://pixabay.com/en/pike-fish-predator-shchuchin-2612354/

Files: docs/images/pikemen.jpg
Copyright: (C) 2009 Rama
License: CeCILL-2.0 or CC-BY-SA-2.0-FR
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Pike_square_img_3653.jpg

Files: docs/images/pike-release.jpg
Copyright: (C) 2014 Azerty197666
License: CC-BY-SA-4.0
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Release_of_a_pike.jpg

Files: docs/images/sushi.jpg
Copyright: (C) 2004 Gérald Anfossi
License: GFDL-1.2+ or CC-BY-SA-3.0
Comment: See: https://commons.wikimedia.org/wiki/File:Sushi_bento.jpg

Files: docs/images/28fish.jpg
Copyright: (C) 2014 Wellcome Library, London
License: CC-BY-4.0
Comment:
 Obtained from https://commons.wikimedia.org/wiki/File:Twenty_eight_types_of_fish._Engraving_by_R._Scott_after_T._B_Wellcome_V0022737EL.jpg
 https://wellcomecollection.org/works/hwzup9cj?wellcomeImagesUrl=/indexplus/image/V0022737EL.html
 .
 Year of copyright given above is date of upload to Wikimedia Commons.
 This may not be when the scan/photograph was actually produced by the
 Wellcome Library. The original work is from the 19th century.

License: MPL-2.0
 This Source Code Form is subject to the terms of the Mozilla Public
 License, v. 2.0.
 .
 On Debian systems the full text of the MPL-2.0 can be found in
 /usr/share/common-licenses/MPL-2.0.

License: CC0-1.0
 To the extent possible under law, the author(s) have dedicated all copyright
 and related and neighboring rights to this software to the public domain
 worldwide. This software is distributed without any warranty.
 .
 On Debian systems the full text of the CC0-1.0 license can be found
 in /usr/share/common-licenses/CC0-1.0

License: CC-BY-4.0
 Creative Commons Attribution 4.0 International Public License
 .
 By exercising the Licensed Rights (defined below), You accept and agree
 to be bound by the terms and conditions of this Creative Commons
 Attribution 4.0 International Public License ("Public License"). To the
 extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of
 these terms and conditions, and the Licensor grants You such rights in
 consideration of benefits the Licensor receives from making the
 Licensed Material available under these terms and conditions.
 .
 Section 1 -- Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.
 .
 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.
 .
 c. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 .
 d. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.
 .
 e. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.
 .
 f. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.
 .
 g. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.
 .
 h. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.
 .
 i. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.
 .
 j. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.
 .
 k. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.
 .
 Section 2 -- Scope.
 .
 a. License grant.
 .
 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:
 .
 a. reproduce and Share the Licensed Material, in whole or
 in part; and
 .
 b. produce, reproduce, and Share Adapted Material.
 .
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.
 .
 3. Term. The term of this Public License is specified in Section
 6(a).
 .
 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.
 .
 5. Downstream recipients.
 .
 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.
 .
 b. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.
 .
 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).
 .
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 .
 2. Patent and trademark rights are not licensed under this
 Public License.
 .
 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.
 .
 Section 3 -- License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the
 following conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified
 form), You must:
 .
 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:
 .
 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);
 .
 ii. a copyright notice;
 .
 iii. a notice that refers to this Public License;
 .
 iv. a notice that refers to the disclaimer of
 warranties;
 .
 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;
 .
 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and
 .
 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.
 .
 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.
 .
 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.
 .
 4. If You Share Adapted Material You produce, the Adapter's
 License You apply must not prevent recipients of the Adapted
 Material from complying with this Public License.
 .
 Section 4 -- Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that
 apply to Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;
 .
 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material; and
 .
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not
 replace Your obligations under this Public License where the Licensed
 Rights include other Copyright and Similar Rights.
 .
 Section 5 -- Disclaimer of Warranties and Limitation of Liability.
 .
 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
 .
 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
 .
 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.
 .
 Section 6 -- Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.
 .
 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or
 .
 2. upon express reinstatement by the Licensor.
 .
 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.
 .
 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.
 .
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.
 .
 Section 7 -- Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.
 .
 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.
 .
 Section 8 -- Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.
 .
 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.
 .
 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.
 .
 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: CeCILL-2.0
 CeCILL FREE SOFTWARE LICENSE AGREEMENT
 .
 Notice
 .
 This Agreement is a Free Software license agreement that is the result
 of discussions between its authors in order to ensure compliance with
 the two main principles guiding its drafting:
 .
 firstly, compliance with the principles governing the distribution
 of Free Software: access to source code, broad rights granted to
 users, secondly, the election of a governing law, French law, with
 which it is conformant, both as regards the law of torts and
 intellectual property law, and the protection that it offers to
 both authors and holders of the economic rights over software.
 .
 The authors of the CeCILL license are:
 .
 Commissariat à l'Energie Atomique - CEA, a public scientific,
 technical and industrial research establishment, having its principal
 place of business at 25 rue Leblanc, immeuble Le Ponant D, 75015
 Paris, France.
 .
 Centre National de la Recherche Scientifique - CNRS, a public
 scientific and technological establishment, having its principal place
 of business at 3 rue Michel-Ange, 75794 Paris cedex 16, France.
 .
 Institut National de Recherche en Informatique et en Automatique -
 INRIA, a public scientific and technological establishment, having its
 principal place of business at Domaine de Voluceau, Rocquencourt, BP
 105, 78153 Le Chesnay cedex, France.
 .
 Preamble
 .
 The purpose of this Free Software license agreement is to grant users
 the right to modify and redistribute the software governed by this
 license within the framework of an open source distribution model.
 .
 The exercising of these rights is conditional upon certain obligations
 for users so as to preserve this status for all subsequent
 redistributions.
 .
 In consideration of access to the source code and the rights to copy,
 modify and redistribute granted by the license, users are provided
 only with a limited warranty and the software's author, the holder of
 the economic rights, and the successive licensors only have limited
 liability.
 .
 In this respect, the risks associated with loading, using, modifying
 and/or developing or reproducing the software by the user are brought
 to the user's attention, given its Free Software status, which may
 make it complicated to use, with the result that its use is reserved
 for developers and experienced professionals having in-depth computer
 knowledge. Users are therefore encouraged to load and test the
 suitability of the software as regards their requirements in
 conditions enabling the security of their systems and/or data to be
 ensured and, more generally, to use and operate it in the same
 conditions of security. This Agreement may be freely reproduced and
 published, provided it is not altered, and that no provisions are
 either added or removed herefrom.
 .
 This Agreement may apply to any or all software for which the holder
 of the economic rights decides to submit the use thereof to its
 provisions.
 .
 Article 1 - DEFINITIONS
 .
 For the purpose of this Agreement, when the following expressions
 commence with a capital letter, they shall have the following meaning:
 .
 Agreement: means this license agreement, and its possible subsequent
 versions and annexes.
 .
 Software: means the software in its Object Code and/or Source Code
 form and, where applicable, its documentation, "as is" when the
 Licensee accepts the Agreement.
 .
 Initial Software: means the Software in its Source Code and possibly
 its Object Code form and, where applicable, its documentation, "as is"
 when it is first distributed under the terms and conditions of the
 Agreement.
 .
 Modified Software: means the Software modified by at least one
 Contribution.
 .
 Source Code: means all the Software's instructions and program lines
 to which access is required so as to modify the Software.
 .
 Object Code: means the binary files originating from the compilation
 of the Source Code.
 .
 Holder: means the holder(s) of the economic rights over the Initial
 Software.
 .
 Licensee: means the Software user(s) having accepted the Agreement.
 .
 Contributor: means a Licensee having made at least one Contribution.
 .
 Licensor: means the Holder, or any other individual or legal entity,
 who distributes the Software under the Agreement.
 .
 Contribution: means any or all modifications, corrections,
 translations, adaptations and/or new functions integrated into the
 Software by any or all Contributors, as well as any or all Internal
 Modules.
 .
 Module: means a set of sources files including their documentation
 that enables supplementary functions or services in addition to those
 offered by the Software.
 .
 External Module: means any or all Modules, not derived from the
 Software, so that this Module and the Software run in separate address
 spaces, with one calling the other when they are run.
 .
 Internal Module: means any or all Module, connected to the Software so
 that they both execute in the same address space.
 .
 GNU GPL: means the GNU General Public License version 2 or any
 subsequent version, as published by the Free Software Foundation Inc.
 .
 Parties: mean both the Licensee and the Licensor.
 .
 These expressions may be used both in singular and plural form.
 .
 Article 2 - PURPOSE
 .
 The purpose of the Agreement is the grant by the Licensor to the
 Licensee of a non-exclusive, transferable and worldwide license for
 the Software as set forth in Article 5 hereinafter for the whole term
 of the protection granted by the rights over said Software.
 .
 Article 3 - ACCEPTANCE
 .
 3.1 The Licensee shall be deemed as having accepted the terms and
 conditions of this Agreement upon the occurrence of the first of the
 following events:
 .
 (i) loading the Software by any or all means, notably, by
 downloading from a remote server, or by loading from a physical
 medium; (ii) the first time the Licensee exercises any of the
 rights granted hereunder.
 .
 3.2 One copy of the Agreement, containing a notice relating to the
 characteristics of the Software, to the limited warranty, and to the
 fact that its use is restricted to experienced users has been provided
 to the Licensee prior to its acceptance as set forth in Article 3.1
 hereinabove, and the Licensee hereby acknowledges that it has read and
 understood it.
 .
 Article 4 - EFFECTIVE DATE AND TERM
 .
 4.1 EFFECTIVE DATE
 .
 The Agreement shall become effective on the date when it is accepted
 by the Licensee as set forth in Article 3.1.
 .
 4.2 TERM
 .
 The Agreement shall remain in force for the entire legal term of
 protection of the economic rights over the Software.
 .
 Article 5 - SCOPE OF RIGHTS GRANTED
 .
 The Licensor hereby grants to the Licensee, who accepts, the following
 rights over the Software for any or all use, and for the term of the
 Agreement, on the basis of the terms and conditions set forth
 hereinafter.
 .
 Besides, if the Licensor owns or comes to own one or more patents
 protecting all or part of the functions of the Software or of its
 components, the Licensor undertakes not to enforce the rights granted
 by these patents against successive Licensees using, exploiting or
 modifying the Software. If these patents are transferred, the Licensor
 undertakes to have the transferees subscribe to the obligations set
 forth in this paragraph.
 .
 5.1 RIGHT OF USE
 .
 The Licensee is authorized to use the Software, without any limitation
 as to its fields of application, with it being hereinafter specified
 that this comprises:
 .
 permanent or temporary reproduction of all or part of the Software
 by any or all means and in any or all form.
 .
 loading, displaying, running, or storing the Software on any or
 all medium.
 .
 entitlement to observe, study or test its operation so as to
 determine the ideas and principles behind any or all constituent
 elements of said Software. This shall apply when the Licensee
 carries out any or all loading, displaying, running, transmission
 or storage operation as regards the Software, that it is entitled
 to carry out hereunder.
 .
 5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS
 .
 The right to make Contributions includes the right to translate,
 adapt, arrange, or make any or all modifications to the Software, and
 the right to reproduce the resulting software.
 .
 The Licensee is authorized to make any or all Contributions to the
 Software provided that it includes an explicit notice that it is the
 author of said Contribution and indicates the date of the creation
 thereof.
 .
 5.3 RIGHT OF DISTRIBUTION
 .
 In particular, the right of distribution includes the right to
 publish, transmit and communicate the Software to the general public
 on any or all medium, and by any or all means, and the right to
 market, either in consideration of a fee, or free of charge, one or
 more copies of the Software by any means.
 .
 The Licensee is further authorized to distribute copies of the
 modified or unmodified Software to third parties according to the
 terms and conditions set forth hereinafter.
 .
 5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION
 .
 The Licensee is authorized to distribute true copies of the Software
 in Source Code or Object Code form, provided that said distribution
 complies with all the provisions of the Agreement and is accompanied
 by:
 .
 a copy of the Agreement,
 .
 a notice relating to the limitation of both the Licensor's
 warranty and liability as set forth in Articles 8 and 9,
 .
 and that, in the event that only the Object Code of the Software is
 redistributed, the Licensee allows future Licensees unhindered access
 to the full Source Code of the Software by indicating how to access
 it, it being understood that the additional cost of acquiring the
 Source Code shall not exceed the cost of transferring the data.
 .
 5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE
 .
 When the Licensee makes a Contribution to the Software, the terms and
 conditions for the distribution of the resulting Modified Software
 become subject to all the provisions of this Agreement.
 .
 The Licensee is authorized to distribute the Modified Software, in
 source code or object code form, provided that said distribution
 complies with all the provisions of the Agreement and is accompanied
 by:
 .
 a copy of the Agreement,
 .
 a notice relating to the limitation of both the Licensor's
 warranty and liability as set forth in Articles 8 and 9,
 .
 and that, in the event that only the object code of the Modified
 Software is redistributed, the Licensee allows future Licensees
 unhindered access to the full source code of the Modified Software by
 indicating how to access it, it being understood that the additional
 cost of acquiring the source code shall not exceed the cost of
 transferring the data.
 .
 5.3.3 DISTRIBUTION OF EXTERNAL MODULES
 .
 When the Licensee has developed an External Module, the terms and
 conditions of this Agreement do not apply to said External Module,
 that may be distributed under a separate license agreement.
 .
 5.3.4 COMPATIBILITY WITH THE GNU GPL
 .
 The Licensee can include a code that is subject to the provisions of
 one of the versions of the GNU GPL in the Modified or unmodified
 Software, and distribute that entire code under the terms of the same
 version of the GNU GPL.
 .
 The Licensee can include the Modified or unmodified Software in a code
 that is subject to the provisions of one of the versions of the GNU
 GPL, and distribute that entire code under the terms of the same
 version of the GNU GPL.
 .
 Article 6 - INTELLECTUAL PROPERTY
 .
 6.1 OVER THE INITIAL SOFTWARE
 .
 The Holder owns the economic rights over the Initial Software. Any or
 all use of the Initial Software is subject to compliance with the
 terms and conditions under which the Holder has elected to distribute
 its work and no one shall be entitled to modify the terms and
 conditions for the distribution of said Initial Software.
 .
 The Holder undertakes that the Initial Software will remain ruled at
 least by this Agreement, for the duration set forth in Article 4.2.
 .
 6.2 OVER THE CONTRIBUTIONS
 .
 The Licensee who develops a Contribution is the owner of the
 intellectual property rights over this Contribution as defined by
 applicable law.
 .
 6.3 OVER THE EXTERNAL MODULES
 .
 The Licensee who develops an External Module is the owner of the
 intellectual property rights over this External Module as defined by
 applicable law and is free to choose the type of agreement that shall
 govern its distribution.
 .
 6.4 JOINT PROVISIONS
 .
 The Licensee expressly undertakes:
 .
 not to remove, or modify, in any manner, the intellectual property
 notices attached to the Software;
 .
 to reproduce said notices, in an identical manner, in the copies
 of the Software modified or not.
 .
 The Licensee undertakes not to directly or indirectly infringe the
 intellectual property rights of the Holder and/or Contributors on the
 Software and to take, where applicable, vis-à-vis its staff, any and
 all measures required to ensure respect of said intellectual property
 rights of the Holder and/or Contributors.
 .
 Article 7 - RELATED SERVICES
 .
 7.1 Under no circumstances shall the Agreement oblige the Licensor to
 provide technical assistance or maintenance services for the Software.
 .
 However, the Licensor is entitled to offer this type of services. The
 terms and conditions of such technical assistance, and/or such
 maintenance, shall be set forth in a separate instrument. Only the
 Licensor offering said maintenance and/or technical assistance
 services shall incur liability therefor.
 .
 7.2 Similarly, any Licensor is entitled to offer to its licensees,
 under its sole responsibility, a warranty, that shall only be binding
 upon itself, for the redistribution of the Software and/or the
 Modified Software, under terms and conditions that it is free to
 decide. Said warranty, and the financial terms and conditions of its
 application, shall be subject of a separate instrument executed
 between the Licensor and the Licensee.
 .
 Article 8 - LIABILITY
 .
 8.1 Subject to the provisions of Article 8.2, the Licensee shall be
 entitled to claim compensation for any direct loss it may have
 suffered from the Software as a result of a fault on the part of the
 relevant Licensor, subject to providing evidence thereof.
 .
 8.2 The Licensor's liability is limited to the commitments made under
 this Agreement and shall not be incurred as a result of in particular:
 (i) loss due the Licensee's total or partial failure to fulfill its
 obligations, (ii) direct or consequential loss that is suffered by the
 Licensee due to the use or performance of the Software, and (iii) more
 generally, any consequential loss. In particular the Parties expressly
 agree that any or all pecuniary or business loss (i.e. loss of data,
 loss of profits, operating loss, loss of customers or orders,
 opportunity cost, any disturbance to business activities) or any or
 all legal proceedings instituted against the Licensee by a third
 party, shall constitute consequential loss and shall not provide
 entitlement to any or all compensation from the Licensor.
 .
 Article 9 - WARRANTY
 .
 9.1 The Licensee acknowledges that the scientific and technical
 state-of-the-art when the Software was distributed did not enable all
 possible uses to be tested and verified, nor for the presence of
 possible defects to be detected. In this respect, the Licensee's
 attention has been drawn to the risks associated with loading, using,
 modifying and/or developing and reproducing the Software which are
 reserved for experienced users.
 .
 The Licensee shall be responsible for verifying, by any or all means,
 the suitability of the product for its requirements, its good working
 order, and for ensuring that it shall not cause damage to either
 persons or properties.
 .
 9.2 The Licensor hereby represents, in good faith, that it is entitled
 to grant all the rights over the Software (including in particular the
 rights set forth in Article 5).
 .
 9.3 The Licensee acknowledges that the Software is supplied "as is" by
 the Licensor without any other express or tacit warranty, other than
 that provided for in Article 9.2 and, in particular, without any
 warranty as to its commercial value, its secured, safe, innovative or
 relevant nature.
 .
 Specifically, the Licensor does not warrant that the Software is free
 from any error, that it will operate without interruption, that it
 will be compatible with the Licensee's own equipment and software
 configuration, nor that it will meet the Licensee's requirements.
 .
 9.4 The Licensor does not either expressly or tacitly warrant that the
 Software does not infringe any third party intellectual property right
 relating to a patent, software or any other property right. Therefore,
 the Licensor disclaims any and all liability towards the Licensee
 arising out of any or all proceedings for infringement that may be
 instituted in respect of the use, modification and redistribution of
 the Software. Nevertheless, should such proceedings be instituted
 against the Licensee, the Licensor shall provide it with technical and
 legal assistance for its defense. Such technical and legal assistance
 shall be decided on a case-by-case basis between the relevant Licensor
 and the Licensee pursuant to a memorandum of understanding. The
 Licensor disclaims any and all liability as regards the Licensee's use
 of the name of the Software. No warranty is given as regards the
 existence of prior rights over the name of the Software or as regards
 the existence of a trademark.
 .
 Article 10 - TERMINATION
 .
 10.1 In the event of a breach by the Licensee of its obligations
 hereunder, the Licensor may automatically terminate this Agreement
 thirty (30) days after notice has been sent to the Licensee and has
 remained ineffective.
 .
 10.2 A Licensee whose Agreement is terminated shall no longer be
 authorized to use, modify or distribute the Software. However, any
 licenses that it may have granted prior to termination of the
 Agreement shall remain valid subject to their having been granted in
 compliance with the terms and conditions hereof.
 .
 Article 11 - MISCELLANEOUS
 .
 11.1 EXCUSABLE EVENTS
 .
 Neither Party shall be liable for any or all delay, or failure to
 perform the Agreement, that may be attributable to an event of force
 majeure, an act of God or an outside cause, such as defective
 functioning or interruptions of the electricity or telecommunications
 networks, network paralysis following a virus attack, intervention by
 government authorities, natural disasters, water damage, earthquakes,
 fire, explosions, strikes and labor unrest, war, etc.
 .
 11.2 Any failure by either Party, on one or more occasions, to invoke
 one or more of the provisions hereof, shall under no circumstances be
 interpreted as being a waiver by the interested Party of its right to
 invoke said provision(s) subsequently.
 .
 11.3 The Agreement cancels and replaces any or all previous
 agreements, whether written or oral, between the Parties and having
 the same purpose, and constitutes the entirety of the agreement
 between said Parties concerning said purpose. No supplement or
 modification to the terms and conditions hereof shall be effective as
 between the Parties unless it is made in writing and signed by their
 duly authorized representatives.
 .
 11.4 In the event that one or more of the provisions hereof were to
 conflict with a current or future applicable act or legislative text,
 said act or legislative text shall prevail, and the Parties shall make
 the necessary amendments so as to comply with said act or legislative
 text. All other provisions shall remain effective. Similarly,
 invalidity of a provision of the Agreement, for any reason whatsoever,
 shall not cause the Agreement as a whole to be invalid.
 .
 11.5 LANGUAGE
 .
 The Agreement is drafted in both French and English and both versions
 are deemed authentic.
 .
 Article 12 - NEW VERSIONS OF THE AGREEMENT
 .
 12.1 Any person is authorized to duplicate and distribute copies of
 this Agreement.
 .
 12.2 So as to ensure coherence, the wording of this Agreement is
 protected and may only be modified by the authors of the License, who
 reserve the right to periodically publish updates or new versions of
 the Agreement, each with a separate number. These subsequent versions
 may address new issues encountered by Free Software.
 .
 12.3 Any Software distributed under a given version of the Agreement
 may only be subsequently distributed under the same version of the
 Agreement or a subsequent version, subject to the provisions of
 Article 5.3.4.
 .
 Article 13 - GOVERNING LAW AND JURISDICTION
 .
 13.1 The Agreement is governed by French law. The Parties agree to
 endeavor to seek an amicable solution to any disagreements or disputes
 that may arise during the performance of the Agreement.
 .
 13.2 Failing an amicable solution within two (2) months as from their
 occurrence, and unless emergency proceedings are necessary, the
 disagreements or disputes shall be referred to the Paris Courts having
 jurisdiction, by the more diligent Party.
 .
 CeCILL stands for Ce(a) C(nrs) I(nria) L(ogiciel) L(ibre)
 .
 Version 2.0 dated 2006-09-05.

License: CC-BY-SA-2.0-FR
 This file is licensed under the Creative Commons Attribution-Share
 Alike 2.0 France license.
 .
 You are free to:
 .
 • Share — copy and redistribute the material in any medium or format
 • Adapt — remix, transform, and build upon the material for any
 purpose, even commercially.
 .
 Under the following terms:
 .
 • Attribution — You must give appropriate credit, provide a link to
 the license, and indicate if changes were made. You may do so in
 any reasonable manner, but not in any way that suggests the
 licensor endorses you or your use.
 • ShareAlike — If you remix, transform, or build upon the material,
 you must distribute your contributions under the same license as
 the original.
 • No additional restrictions — You may not apply legal terms or
 technological measures that legally restrict others from doing
 anything the license permits.
 .
 ---- Full license text follows ----
 .
 [Creative Commons Legal Code]
 .
 Paternité - Partage Des Conditions Initiales A l'Identique 2.0
 .
 Creative Commons n'est pas un cabinet d'avocats et ne fournit pas de
 services de conseil juridique. La distribution de la présente version
 de ce contrat ne crée aucune relation juridique entre les parties au
 contrat présenté ci-après et Creative Commons. Creative Commons
 fournit cette offre de contrat-type en l'état, à seule fin
 d'information. Creative Commons ne saurait être tenu responsable des
 éventuels préjudices résultant du contenu ou de l'utilisation de ce
 contrat.
 .
 Contrat
 .
 L'Oeuvre (telle que définie ci-dessous) est mise à disposition selon
 les termes du présent contrat appelé Contrat Public Creative Commons
 (dénommé ici « CPCC » ou « Contrat »). L'Oeuvre est protégée par le
 droit de la propriété littéraire et artistique (droit d'auteur, droits
 voisins, droits des producteurs de bases de données) ou toute autre
 loi applicable. Toute utilisation de l'Oeuvre autrement
 qu'explicitement autorisée selon ce Contrat ou le droit applicable est
 interdite.
 .
 L'exercice sur l'Oeuvre de tout droit proposé par le présent contrat
 vaut acceptation de celui-ci. Selon les termes et les obligations du
 présent contrat, la partie Offrante propose à la partie Acceptante
 l'exercice de certains droits présentés ci-après, et l'Acceptant en
 approuve les termes et conditions d'utilisation.
 .
 1. Définitions
 .
 « Oeuvre » : oeuvre de l'esprit protégeable par le droit de la
 propriété littéraire et artistique ou toute loi applicable et qui
 est mise à disposition selon les termes du présent Contrat. «
 Oeuvre dite Collective » : une oeuvre dans laquelle l'oeuvre, dans
 sa forme intégrale et non modifiée, est assemblée en un ensemble
 collectif avec d'autres contributions qui constituent en
 elles-mêmes des oeuvres séparées et indépendantes. Constituent
 notamment des Oeuvres dites Collectives les publications
 périodiques, les anthologies ou les encyclopédies. Aux termes de
 la présente autorisation, une oeuvre qui constitue une Oeuvre dite
 Collective ne sera pas considérée comme une Oeuvre dite Dérivée
 (telle que définie ci-après). « Oeuvre dite Dérivée » : une
 oeuvre créée soit à partir de l'Oeuvre seule, soit à partir de
 l'Oeuvre et d'autres oeuvres préexistantes. Constituent notamment
 des Oeuvres dites Dérivées les traductions, les arrangements
 musicaux, les adaptations théâtrales, littéraires ou
 cinématographiques, les enregistrements sonores, les reproductions
 par un art ou un procédé quelconque, les résumés, ou toute autre
 forme sous laquelle l'Oeuvre puisse être remaniée, modifiée,
 transformée ou adaptée, à l'exception d'une oeuvre qui constitue
 une Oeuvre dite Collective. Une Oeuvre dite Collective ne sera pas
 considérée comme une Oeuvre dite Dérivée aux termes du présent
 Contrat. Dans le cas où l'Oeuvre serait une composition musicale
 ou un enregistrement sonore, la synchronisation de l'oeuvre avec
 une image animée sera considérée comme une Oeuvre dite Dérivée
 pour les propos de ce Contrat. « Auteur original » : la ou les
 personnes physiques qui ont créé l'Oeuvre. « Offrant » : la ou
 les personne(s) physique(s) ou morale(s) qui proposent la mise à
 disposition de l'Oeuvre selon les termes du présent Contrat. «
 Acceptant » : la personne physique ou morale qui accepte le
 présent contrat et exerce des droits sans en avoir violé les
 termes au préalable ou qui a reçu l'autorisation expresse de
 l'Offrant d'exercer des droits dans le cadre du présent contrat
 malgré une précédente violation de ce contrat. « Options du
 Contrat » : les attributs génériques du Contrat tels qu'ils ont
 été choisis par l'Offrant et indiqués dans le titre de ce Contrat
 : Paternité - Pas d'Utilisation Commerciale - Partage Des
 Conditions Initiales A l'Identique.
 .
 2. Exceptions aux droits exclusifs. Aucune disposition de ce contrat
 n'a pour intention de réduire, limiter ou restreindre les prérogatives
 issues des exceptions aux droits, de l'épuisement des droits ou
 d'autres limitations aux droits exclusifs des ayants droit selon le
 droit de la propriété littéraire et artistique ou les autres lois
 applicables.
 .
 3. Autorisation. Soumis aux termes et conditions définis dans cette
 autorisation, et ceci pendant toute la durée de protection de l'Oeuvre
 par le droit de la propriété littéraire et artistique ou le droit
 applicable, l'Offrant accorde à l'Acceptant l'autorisation mondiale
 d'exercer à titre gratuit et non exclusif les droits suivants :
 .
 reproduire l'Oeuvre, incorporer l'Oeuvre dans une ou plusieurs
 Oeuvres dites Collectives et reproduire l'Oeuvre telle
 qu'incorporée dans lesdites Oeuvres dites Collectives; créer et
 reproduire des Oeuvres dites Dérivées; distribuer des exemplaires
 ou enregistrements, présenter, représenter ou communiquer l'Oeuvre
 au public par tout procédé technique, y compris incorporée dans
 des Oeuvres Collectives; distribuer des exemplaires ou
 phonogrammes, présenter, représenter ou communiquer au public des
 Oeuvres dites Dérivées par tout procédé technique; lorsque
 l'Oeuvre est une base de données, extraire et réutiliser des
 parties substantielles de l'Oeuvre.
 .
 Les droits mentionnés ci-dessus peuvent être exercés sur tous les
 supports, médias, procédés techniques et formats. Les droits ci-dessus
 incluent le droit d'effectuer les modifications nécessaires
 techniquement à l'exercice des droits dans d'autres formats et
 procédés techniques. L'exercice de tous les droits qui ne sont pas
 expressément autorisés par l'Offrant ou dont il n'aurait pas la
 gestion demeure réservé, notamment les mécanismes de gestion
 collective obligatoire applicables décrits à l'article 4(d).
 .
 4. Restrictions. L'autorisation accordée par l'article 3 est
 expressément assujettie et limitée par le respect des restrictions
 suivantes :
 .
 L'Acceptant peut reproduire, distribuer, représenter ou
 communiquer au public l'Oeuvre y compris par voie numérique
 uniquement selon les termes de ce Contrat. L'Acceptant doit
 inclure une copie ou l'adresse Internet (Identifiant Uniforme de
 Ressource) du présent Contrat à toute reproduction ou
 enregistrement de l'Oeuvre que l'Acceptant distribue, représente
 ou communique au public y compris par voie numérique. L'Acceptant
 ne peut pas offrir ou imposer de conditions d'utilisation de
 l'Oeuvre qui altèrent ou restreignent les termes du présent
 Contrat ou l'exercice des droits qui y sont accordés au
 bénéficiaire. L'Acceptant ne peut pas céder de droits sur
 l'Oeuvre. L'Acceptant doit conserver intactes toutes les
 informations qui renvoient à ce Contrat et à l'exonération de
 responsabilité. L'Acceptant ne peut pas reproduire, distribuer,
 représenter ou communiquer au public l'Oeuvre, y compris par voie
 numérique, en utilisant une mesure technique de contrôle d'accès
 ou de contrôle d'utilisation qui serait contradictoire avec les
 termes de cet Accord contractuel. Les mentions ci-dessus
 s'appliquent à l'Oeuvre telle qu'incorporée dans une Oeuvre dite
 Collective, mais, en dehors de l'Oeuvre en elle-même, ne
 soumettent pas l'Oeuvre dite Collective, aux termes du présent
 Contrat. Si l'Acceptant crée une Oeuvre dite Collective, à la
 demande de tout Offrant, il devra, dans la mesure du possible,
 retirer de l'Oeuvre dite Collective toute référence au dit
 Offrant, comme demandé. Si l'Acceptant crée une Oeuvre dite
 Collective, à la demande de tout Auteur, il devra, dans la mesure
 du possible, retirer de l'Oeuvre dite Collective toute référence
 au dit Auteur, comme demandé. Si l'Acceptant crée une Oeuvre dite
 Dérivée, à la demande de tout Offrant, il devra, dans la mesure du
 possible, retirer de l'Oeuvre dite Dérivée toute référence au dit
 Offrant, comme demandé. Si l'Acceptant crée une Oeuvre dite
 Dérivée, à la demande de tout Auteur, il devra, dans la mesure du
 possible, retirer de l'Oeuvre dite Dérivée toute référence au dit
 Auteur, comme demandé. L'Acceptant peut reproduire, distribuer,
 représenter ou communiquer au public une Oeuvre dite Dérivée y
 compris par voie numérique uniquement sous les termes de ce
 Contrat, ou d'une version ultérieure de ce Contrat comprenant les
 mêmes Options du Contrat que le présent Contrat, ou un Contrat
 Creative Commons iCommons comprenant les mêmes Options du Contrat
 que le présent Contrat (par exemple Paternité - Pas d'Utilisation
 Commerciale - Partage Des Conditions Initiales A l'Identique 2.0
 Japon). L'Acceptant doit inclure une copie ou l'adresse Internet
 (Identifiant Uniforme de Ressource) du présent Contrat, ou d'un
 autre Contrat tel que décrit à la phrase précédente, à toute
 reproduction ou enregistrement de l'Oeuvre dite Dérivée que
 l'Acceptant distribue, représente ou communique au public y
 compris par voie numérique. L'Acceptant ne peut pas offrir ou
 imposer de conditions d'utilisation sur l'Oeuvre dite Dérivée qui
 altèrent ou restreignent les termes du présent Contrat ou
 l'exercice des droits qui y sont accordés au bénéficiaire, et doit
 conserver intactes toutes les informations qui renvoient à ce
 Contrat et à l'avertissement sur les garanties. L'Acceptant ne
 peut pas reproduire, distribuer, représenter ou communiquer au
 public y compris par voie numérique l'Oeuvre dite Dérivée en
 utilisant une mesure technique de contrôle d'accès ou de contrôle
 d'utilisation qui serait contradictoire avec les termes de cet
 Accord contractuel. Les mentions ci-dessus s'appliquent à l'Oeuvre
 dite Dérivée telle qu'incorporée dans une Oeuvre dite Collective,
 mais, en dehors de l'Oeuvre dite Dérivée en elle-même, ne
 soumettent pas l'Oeuvre Collective, aux termes du présent Contrat.
 Si l'Acceptant reproduit, distribue, représente ou communique au
 public, y compris par voie numérique, l'Oeuvre ou toute Oeuvre
 dite Dérivée ou toute Oeuvre dite Collective, il doit conserver
 intactes toutes les informations sur le régime des droits et en
 attribuer la paternité à l'Auteur Original, de manière raisonnable
 au regard au médium ou au moyen utilisé. Il doit communiquer le
 nom de l'Auteur Original ou son éventuel pseudonyme s'il est
 indiqué ; le titre de l'Oeuvre Originale s'il est indiqué ; dans
 la mesure du possible, l'adresse Internet ou Identifiant Uniforme
 de Ressource (URI), s'il existe, spécifié par l'Offrant comme
 associé à l'Oeuvre, à moins que cette adresse ne renvoie pas aux
 informations légales (paternité et conditions d'utilisation de
 l'Oeuvre). Dans le cas d'une Oeuvre dite Dérivée, il doit indiquer
 les éléments identifiant l'utilisation l'Oeuvre dans l'Oeuvre dite
 Dérivée par exemple « Traduction anglaise de l'Oeuvre par l'Auteur
 Original » ou « Scénario basé sur l'Oeuvre par l'Auteur Original
 ». Ces obligations d'attribution de paternité doivent être
 exécutées de manière raisonnable. Cependant, dans le cas d'une
 Oeuvre dite Dérivée ou d'une Oeuvre dite Collective, ces
 informations doivent, au minimum, apparaître à la place et de
 manière aussi visible que celles à laquelle apparaissent les
 informations de même nature. Dans le cas où une utilisation de
 l'Oeuvre serait soumise à un régime légal de gestion collective
 obligatoire, l'Offrant se réserve le droit exclusif de collecter
 ces redevances par l'intermédiaire de la société de perception et
 de répartition des droits compétente. Sont notamment concernés la
 radiodiffusion et la communication dans un lieu public de
 phonogrammes publiés à des fins de commerce, certains cas de
 retransmission par câble et satellite, la copie privée d'Oeuvres
 fixées sur phonogrammes ou vidéogrammes, la reproduction par
 reprographie.
 .
 5. Garantie et exonération de responsabilité
 .
 En mettant l'Oeuvre à la disposition du public selon les termes de
 ce Contrat, l'Offrant déclare de bonne foi qu'à sa
 connaissance et dans les limites d'une enquête raisonnable :
 L'Offrant a obtenu tous les droits sur l'Oeuvre nécessaires
 pour pouvoir autoriser l'exercice des droits accordés par le
 présent Contrat, et permettre la jouissance paisible et
 l'exercice licite de ces droits, ceci sans que l'Acceptant
 n'ait aucune obligation de verser de rémunération ou tout
 autre paiement ou droits, dans la limite des mécanismes de
 gestion collective obligatoire applicables décrits à l'article
 4(e); L'Oeuvre n'est constitutive ni d'une violation des
 droits de tiers, notamment du droit de la propriété littéraire
 et artistique, du droit des marques, du droit de
 l'information, du droit civil ou de tout autre droit, ni de
 diffamation, de violation de la vie privée ou de tout autre
 préjudice délictuel à l'égard de toute tierce partie. A
 l'exception des situations expressément mentionnées dans le
 présent Contrat ou dans un autre accord écrit, ou exigées par
 la loi applicable, l'Oeuvre est mise à disposition en l'état
 sans garantie d'aucune sorte, qu'elle soit expresse ou tacite,
 y compris à l'égard du contenu ou de l'exactitude de l'Oeuvre.
 .
 6. Limitation de responsabilité. A l'exception des garanties d'ordre
 public imposées par la loi applicable et des réparations imposées par
 le régime de la responsabilité vis-à-vis d'un tiers en raison de la
 violation des garanties prévues par l'article 5 du présent contrat,
 l'Offrant ne sera en aucun cas tenu responsable vis-à-vis de
 l'Acceptant, sur la base d'aucune théorie légale ni en raison d'aucun
 préjudice direct, indirect, matériel ou moral, résultant de
 l'exécution du présent Contrat ou de l'utilisation de l'Oeuvre, y
 compris dans l'hypothèse où l'Offrant avait connaissance de la
 possible existence d'un tel préjudice.
 .
 7. Résiliation
 .
 Tout manquement aux termes du contrat par l'Acceptant entraîne la
 résiliation automatique du Contrat et la fin des droits qui en
 découlent. Cependant, le contrat conserve ses effets envers les
 personnes physiques ou morales qui ont reçu de la part de
 l'Acceptant, en exécution du présent contrat, la mise à
 disposition d'Oeuvres dites Dérivées, ou d'Oeuvres dites
 Collectives, ceci tant qu'elles respectent pleinement leurs
 obligations. Les sections 1, 2, 5, 6 et 7 du contrat continuent à
 s'appliquer après la résiliation de celui-ci. Dans les limites
 indiquées ci-dessus, le présent Contrat s'applique pendant toute
 la durée de protection de l'Oeuvre selon le droit
 applicable. Néanmoins, l'Offrant se réserve à tout moment le droit
 d'exploiter l'Oeuvre sous des conditions contractuelles
 différentes, ou d'en cesser la diffusion; cependant, le recours à
 cette option ne doit pas conduire à retirer les effets du présent
 Contrat (ou de tout contrat qui a été ou doit être accordé selon
 les termes de ce Contrat), et ce Contrat continuera à s'appliquer
 dans tous ses effets jusqu'à ce que sa résiliation intervienne
 dans les conditions décrites ci-dessus.
 .
 8. Divers
 .
 A chaque reproduction ou communication au public par voie
 numérique de l'Oeuvre ou d'une Oeuvre dite Collective par
 l'Acceptant, l'Offrant propose au bénéficiaire une offre de mise à
 disposition de l'Oeuvre dans des termes et conditions identiques à
 ceux accordés à la partie Acceptante dans le présent Contrat. A
 chaque reproduction ou communication au public par voie numérique
 d'une Oeuvre dite Dérivée par l'Acceptant, l'Offrant propose au
 bénéficiaire une offre de mise à disposition du bénéficiaire de
 l'Oeuvre originale dans des termes et conditions identiques à ceux
 accordés à la partie Acceptante dans le présent Contrat. La
 nullité ou l'inapplicabilité d'une quelconque disposition de ce
 Contrat au regard de la loi applicable n'affecte pas celle des
 autres dispositions qui resteront pleinement valides et
 applicables. Sans action additionnelle par les parties à cet
 accord, lesdites dispositions devront être interprétées dans la
 mesure minimum nécessaire à leur validité et leur applicabilité.
 Aucune limite, renonciation ou modification des termes ou
 dispositions du présent Contrat ne pourra être acceptée sans le
 consentement écrit et signé de la partie compétente. Ce Contrat
 constitue le seul accord entre les parties à propos de l'Oeuvre
 mise ici à disposition. Il n'existe aucun élément annexe, accord
 supplémentaire ou mandat portant sur cette Oeuvre en dehors des
 éléments mentionnés ici. L'Offrant ne sera tenu par aucune
 disposition supplémentaire qui pourrait apparaître dans une
 quelconque communication en provenance de l'Acceptant. Ce Contrat
 ne peut être modifié sans l'accord mutuel écrit de l'Offrant et de
 l'Acceptant. Le droit applicable est le droit français.
 .
 Creative Commons n'est pas partie à ce Contrat et n'offre aucune forme
 de garantie relative à l'Oeuvre. Creative Commons décline toute
 responsabilité à l'égard de l'Acceptant ou de toute autre partie, quel
 que soit le fondement légal de cette responsabilité et quel que soit
 le préjudice subi, direct, indirect, matériel ou moral, qui
 surviendrait en rapport avec le présent Contrat. Cependant, si
 Creative Commons s'est expressément identifié comme Offrant pour
 mettre une Oeuvre à disposition selon les termes de ce Contrat,
 Creative Commons jouira de tous les droits et obligations d'un
 Offrant.
 .
 A l'exception des fins limitées à informer le public que l'Oeuvre est
 mise à disposition sous CPCC, aucune des parties n'utilisera la marque
 « Creative Commons » ou toute autre indication ou logo afférent sans
 le consentement préalable écrit de Creative Commons. Toute utilisation
 autorisée devra être effectuée en conformité avec les lignes
 directrices de Creative Commons à jour au moment de l'utilisation,
 telles qu'elles sont disponibles sur son site Internet ou sur simple
 demande.
 .
 Creative Commons peut être contacté à https://creativecommons.org/.

License: CC-BY-SA-4.0
 Attribution-ShareAlike 4.0 International
 .
 ===
 .
 Creative Commons Corporation ("Creative Commons") is not a law firm and
 does not provide legal services or legal advice. Distribution of
 Creative Commons public licenses does not create a lawyer-client or
 other relationship. Creative Commons makes its licenses and related
 information available on an "as-is" basis. Creative Commons gives no
 warranties regarding its licenses, any material licensed under their
 terms and conditions, or any related information. Creative Commons
 disclaims all liability for damages resulting from their use to the
 fullest extent possible.
 .
 Using Creative Commons Public Licenses
 .
 Creative Commons public licenses provide a standard set of terms and
 conditions that creators and other rights holders may use to share
 original works of authorship and other material subject to copyright
 and certain other rights specified in the public license below. The
 following considerations are for informational purposes only, are not
 exhaustive, and do not form part of our licenses.
 .
 Considerations for licensors: Our public licenses are
 intended for use by those authorized to give the public
 permission to use material in ways otherwise restricted by
 copyright and certain other rights. Our licenses are
 irrevocable. Licensors should read and understand the terms
 and conditions of the license they choose before applying it.
 Licensors should also secure all rights necessary before
 applying our licenses so that the public can reuse the
 material as expected. Licensors should clearly mark any
 material not subject to the license. This includes other CC-
 licensed material, or material used under an exception or
 limitation to copyright. More considerations for licensors:
 wiki.creativecommons.org/Considerations_for_licensors
 .
 Considerations for the public: By using one of our public
 licenses, a licensor grants the public permission to use the
 licensed material under specified terms and conditions. If
 the licensor's permission is not necessary for any reason--for
 example, because of any applicable exception or limitation to
 copyright--then that use is not regulated by the license. Our
 licenses grant only permissions under copyright and certain
 other rights that a licensor has authority to grant. Use of
 the licensed material may still be restricted for other
 reasons, including because others have copyright or other
 rights in the material. A licensor may make special requests,
 such as asking that all changes be marked or described.
 Although not required by our licenses, you are encouraged to
 respect those requests where reasonable. More_considerations
 for the public:
 wiki.creativecommons.org/Considerations_for_licensees
 .
 ===
 .
 Creative Commons Attribution-ShareAlike 4.0 International Public
 License
 .
 By exercising the Licensed Rights (defined below), You accept and agree
 to be bound by the terms and conditions of this Creative Commons
 Attribution-ShareAlike 4.0 International Public License ("Public
 License"). To the extent this Public License may be interpreted as a
 contract, You are granted the Licensed Rights in consideration of Your
 acceptance of these terms and conditions, and the Licensor grants You
 such rights in consideration of benefits the Licensor receives from
 making the Licensed Material available under these terms and
 conditions.
 .
 .
 Section 1 -- Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar
 Rights that is derived from or based upon the Licensed Material
 and in which the Licensed Material is translated, altered,
 arranged, transformed, or otherwise modified in a manner requiring
 permission under the Copyright and Similar Rights held by the
 Licensor. For purposes of this Public License, where the Licensed
 Material is a musical work, performance, or sound recording,
 Adapted Material is always produced where the Licensed Material is
 synched in timed relation with a moving image.
 .
 b. Adapter's License means the license You apply to Your Copyright
 and Similar Rights in Your contributions to Adapted Material in
 accordance with the terms and conditions of this Public License.
 .
 c. BY-SA Compatible License means a license listed at
 creativecommons.org/compatiblelicenses, approved by Creative
 Commons as essentially the equivalent of this Public License.
 .
 d. Copyright and Similar Rights means copyright and/or similar rights
 closely related to copyright including, without limitation,
 performance, broadcast, sound recording, and Sui Generis Database
 Rights, without regard to how the rights are labeled or
 categorized. For purposes of this Public License, the rights
 specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 .
 e. Effective Technological Measures means those measures that, in the
 absence of proper authority, may not be circumvented under laws
 fulfilling obligations under Article 11 of the WIPO Copyright
 Treaty adopted on December 20, 1996, and/or similar international
 agreements.
 .
 f. Exceptions and Limitations means fair use, fair dealing, and/or
 any other exception or limitation to Copyright and Similar Rights
 that applies to Your use of the Licensed Material.
 .
 g. License Elements means the license attributes listed in the name
 of a Creative Commons Public License. The License Elements of this
 Public License are Attribution and ShareAlike.
 .
 h. Licensed Material means the artistic or literary work, database,
 or other material to which the Licensor applied this Public
 License.
 .
 i. Licensed Rights means the rights granted to You subject to the
 terms and conditions of this Public License, which are limited to
 all Copyright and Similar Rights that apply to Your use of the
 Licensed Material and that the Licensor has authority to license.
 .
 j. Licensor means the individual(s) or entity(ies) granting rights
 under this Public License.
 .
 k. Share means to provide material to the public by any means or
 process that requires permission under the Licensed Rights, such
 as reproduction, public display, public performance, distribution,
 dissemination, communication, or importation, and to make material
 available to the public including in ways that members of the
 public may access the material from a place and at a time
 individually chosen by them.
 .
 l. Sui Generis Database Rights means rights other than copyright
 resulting from Directive 96/9/EC of the European Parliament and of
 the Council of 11 March 1996 on the legal protection of databases,
 as amended and/or succeeded, as well as other essentially
 equivalent rights anywhere in the world.
 .
 m. You means the individual or entity exercising the Licensed Rights
 under this Public License. Your has a corresponding meaning.
 .
 .
 Section 2 -- Scope.
 .
 a. License grant.
 .
 1. Subject to the terms and conditions of this Public License,
 the Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to
 exercise the Licensed Rights in the Licensed Material to:
 .
 a. reproduce and Share the Licensed Material, in whole or
 in part; and
 .
 b. produce, reproduce, and Share Adapted Material.
 .
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public
 License does not apply, and You do not need to comply with
 its terms and conditions.
 .
 3. Term. The term of this Public License is specified in Section
 6(a).
 .
 4. Media and formats; technical modifications allowed. The
 Licensor authorizes You to exercise the Licensed Rights in
 all media and formats whether now known or hereafter created,
 and to make technical modifications necessary to do so. The
 Licensor waives and/or agrees not to assert any right or
 authority to forbid You from making technical modifications
 necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective
 Technological Measures. For purposes of this Public License,
 simply making modifications authorized by this Section 2(a)
 (4) never produces Adapted Material.
 .
 5. Downstream recipients.
 .
 a. Offer from the Licensor -- Licensed Material. Every
 recipient of the Licensed Material automatically
 receives an offer from the Licensor to exercise the
 Licensed Rights under the terms and conditions of this
 Public License.
 .
 b. Additional offer from the Licensor -- Adapted Material.
 Every recipient of Adapted Material from You
 automatically receives an offer from the Licensor to
 exercise the Licensed Rights in the Adapted Material
 under the conditions of the Adapter's License You apply.
 .
 c. No downstream restrictions. You may not offer or impose
 any additional or different terms or conditions on, or
 apply any Effective Technological Measures to, the
 Licensed Material if doing so restricts exercise of the
 Licensed Rights by any recipient of the Licensed
 Material.
 .
 6. No endorsement. Nothing in this Public License constitutes or
 may be construed as permission to assert or imply that You
 are, or that Your use of the Licensed Material is, connected
 with, or sponsored, endorsed, or granted official status by,
 the Licensor or others designated to receive attribution as
 provided in Section 3(a)(1)(A)(i).
 .
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not
 licensed under this Public License, nor are publicity,
 privacy, and/or other similar personality rights; however, to
 the extent possible, the Licensor waives and/or agrees not to
 assert any such rights held by the Licensor to the limited
 extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 .
 2. Patent and trademark rights are not licensed under this
 Public License.
 .
 3. To the extent possible, the Licensor waives any right to
 collect royalties from You for the exercise of the Licensed
 Rights, whether directly or through a collecting society
 under any voluntary or waivable statutory or compulsory
 licensing scheme. In all other cases the Licensor expressly
 reserves any right to collect such royalties.
 .
 .
 Section 3 -- License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the
 following conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified
 form), You must:
 .
 a. retain the following if it is supplied by the Licensor
 with the Licensed Material:
 .
 i. identification of the creator(s) of the Licensed
 Material and any others designated to receive
 attribution, in any reasonable manner requested by
 the Licensor (including by pseudonym if
 designated);
 .
 ii. a copyright notice;
 .
 iii. a notice that refers to this Public License;
 .
 iv. a notice that refers to the disclaimer of
 warranties;
 .
 v. a URI or hyperlink to the Licensed Material to the
 extent reasonably practicable;
 .
 b. indicate if You modified the Licensed Material and
 retain an indication of any previous modifications; and
 .
 c. indicate the Licensed Material is licensed under this
 Public License, and include the text of, or the URI or
 hyperlink to, this Public License.
 .
 2. You may satisfy the conditions in Section 3(a)(1) in any
 reasonable manner based on the medium, means, and context in
 which You Share the Licensed Material. For example, it may be
 reasonable to satisfy the conditions by providing a URI or
 hyperlink to a resource that includes the required
 information.
 .
 3. If requested by the Licensor, You must remove any of the
 information required by Section 3(a)(1)(A) to the extent
 reasonably practicable.
 .
 b. ShareAlike.
 .
 In addition to the conditions in Section 3(a), if You Share
 Adapted Material You produce, the following conditions also apply.
 .
 1. The Adapter's License You apply must be a Creative Commons
 license with the same License Elements, this version or
 later, or a BY-SA Compatible License.
 .
 2. You must include the text of, or the URI or hyperlink to, the
 Adapter's License You apply. You may satisfy this condition
 in any reasonable manner based on the medium, means, and
 context in which You Share Adapted Material.
 .
 3. You may not offer or impose any additional or different terms
 or conditions on, or apply any Effective Technological
 Measures to, Adapted Material that restrict exercise of the
 rights granted under the Adapter's License You apply.
 .
 .
 Section 4 -- Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that
 apply to Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right
 to extract, reuse, reproduce, and Share all or a substantial
 portion of the contents of the database;
 .
 b. if You include all or a substantial portion of the database
 contents in a database in which You have Sui Generis Database
 Rights, then the database in which You have Sui Generis Database
 Rights (but not its individual contents) is Adapted Material,
 .
 including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share
 all or a substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not
 replace Your obligations under this Public License where the Licensed
 Rights include other Copyright and Similar Rights.
 .
 .
 Section 5 -- Disclaimer of Warranties and Limitation of Liability.
 .
 a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
 EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
 AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
 ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
 IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
 WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
 PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
 ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
 KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
 ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
 .
 b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
 TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
 NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
 INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
 COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
 USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
 ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
 DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
 IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
 .
 c. The disclaimer of warranties and limitation of liability provided
 above shall be interpreted in a manner that, to the extent
 possible, most closely approximates an absolute disclaimer and
 waiver of all liability.
 .
 .
 Section 6 -- Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and
 Similar Rights licensed here. However, if You fail to comply with
 this Public License, then Your rights under this Public License
 terminate automatically.
 .
 b. Where Your right to use the Licensed Material has terminated under
 Section 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided
 it is cured within 30 days of Your discovery of the
 violation; or
 .
 2. upon express reinstatement by the Licensor.
 .
 For the avoidance of doubt, this Section 6(b) does not affect any
 right the Licensor may have to seek remedies for Your violations
 of this Public License.
 .
 c. For the avoidance of doubt, the Licensor may also offer the
 Licensed Material under separate terms or conditions or stop
 distributing the Licensed Material at any time; however, doing so
 will not terminate this Public License.
 .
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
 License.
 .
 .
 Section 7 -- Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different
 terms or conditions communicated by You unless expressly agreed.
 .
 b. Any arrangements, understandings, or agreements regarding the
 Licensed Material not stated herein are separate from and
 independent of the terms and conditions of this Public License.
 .
 .
 Section 8 -- Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and
 shall not be interpreted to, reduce, limit, restrict, or impose
 conditions on any use of the Licensed Material that could lawfully
 be made without permission under this Public License.
 .
 b. To the extent possible, if any provision of this Public License is
 deemed unenforceable, it shall be automatically reformed to the
 minimum extent necessary to make it enforceable. If the provision
 cannot be reformed, it shall be severed from this Public License
 without affecting the enforceability of the remaining terms and
 conditions.
 .
 c. No term or condition of this Public License will be waived and no
 failure to comply consented to unless expressly agreed to by the
 Licensor.
 .
 d. Nothing in this Public License constitutes or may be interpreted
 as a limitation upon, or waiver of, any privileges and immunities
 that apply to the Licensor or You, including from the legal
 processes of any jurisdiction or authority.
 .
 .
 ===
 .
 Creative Commons is not a party to its public licenses.
 Notwithstanding, Creative Commons may elect to apply one of its public
 licenses to material it publishes and in those instances will be
 considered the "Licensor." Except for the limited purpose of indicating
 that material is shared under a Creative Commons public license or as
 otherwise permitted by the Creative Commons policies published at
 creativecommons.org/policies, Creative Commons does not authorize the
 use of the trademark "Creative Commons" or any other trademark or logo
 of Creative Commons without its prior written consent including,
 without limitation, in connection with any unauthorized modifications
 to any of its public licenses or any other arrangements,
 understandings, or agreements concerning use of licensed material. For
 the avoidance of doubt, this paragraph does not form part of the public
 licenses.
 .
 Creative Commons may be contacted at creativecommons.org.

License: CC-BY-SA-1.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. "Licensor" means the individual or entity that offers
 the Work under the terms of this License. "Original Author" means
 the individual or entity who created the Work. "Work" means the
 copyrightable work of authorship offered under the terms of this
 License. "You" means an individual or entity exercising rights
 under this License who has not previously violated the terms of
 this License with respect to the Work, or who has received express
 permission from the Licensor to exercise rights under this License
 despite a previous violation.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works;
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of
 each Derivative Work You distribute, publicly display, publicly
 perform, or publicly digitally perform. You may not offer or
 impose any terms on the Derivative Works that alter or restrict
 the terms of this License or the recipients' exercise of the
 rights granted hereunder, and You must keep intact all notices
 that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; in the case
 of a Derivative Work, a credit identifying the use of the Work in
 the Derivative Work (e.g., "French translation of the Work by
 Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 By offering the Work for public release under this License,
 Licensor represents and warrants that, to the best of
 Licensor's knowledge after reasonable inquiry: Licensor has
 secured all rights in the Work necessary to grant the license
 rights hereunder and to permit the lawful exercise of the
 rights granted hereunder without You having any obligation to
 pay any royalties, compulsory license fees, residuals or any
 other payments; The Work does not infringe the copyright,
 trademark, publicity rights, common law rights or any other
 right of any third party or constitute defamation, invasion of
 privacy or other tortious injury to any third party. EXCEPT
 AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
 WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON
 AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER
 EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
 WARRANTIES REGARDING THE CONTENTS OR ACCURACY OF THE WORK.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
 THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN
 NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
 SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
 ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, a later version of this License with the same License
 Elements as this License, or a Creative Commons iCommons license
 that contains the same License Elements as this License
 (e.g. Attribution-ShareAlike 2.0 Japan). You must include a copy
 of, or the Uniform Resource Identifier for, this License or other
 license specified in the previous sentence with every copy or
 phonorecord of each Derivative Work You distribute, publicly
 display, publicly perform, or publicly digitally perform. You may
 not offer or impose any terms on the Derivative Works that alter
 or restrict the terms of this License or the recipients' exercise
 of the rights granted hereunder, and You must keep intact all
 notices that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; to the
 extent reasonably practicable, the Uniform Resource Identifier, if
 any, that Licensor specifies to be associated with the Work,
 unless such URI does not refer to the copyright notice or
 licensing information for the Work; and in the case of a
 Derivative Work, a credit identifying the use of the Work in the
 Derivative Work (e.g., "French translation of the Work by Original
 Author," or "Screenplay based on original Work by Original
 Author"). Such credit may be implemented in any reasonable manner;
 provided, however, that in the case of a Derivative Work or
 Collective Work, at a minimum such credit will appear where any
 other comparable authorship credit appears and in a manner at
 least as prominent as such other comparable authorship credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.5
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any credit as required by clause
 4(c), as requested. If You create a Derivative Work, upon notice
 from any Licensor You must, to the extent practicable, remove from
 the Derivative Work any credit as required by clause 4(c), as
 requested. You may distribute, publicly display, publicly
 perform, or publicly digitally perform a Derivative Work only
 under the terms of this License, a later version of this License
 with the same License Elements as this License, or a Creative
 Commons iCommons license that contains the same License Elements
 as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must
 include a copy of, or the Uniform Resource Identifier for, this
 License or other license specified in the previous sentence with
 every copy or phonorecord of each Derivative Work You distribute,
 publicly display, publicly perform, or publicly digitally
 perform. You may not offer or impose any terms on the Derivative
 Works that alter or restrict the terms of this License or the
 recipients' exercise of the rights granted hereunder, and You must
 keep intact all notices that refer to this License and to the
 disclaimer of warranties. You may not distribute, publicly
 display, publicly perform, or publicly digitally perform the
 Derivative Work with any technological measures that control
 access or use of the Work in a manner inconsistent with the terms
 of this License Agreement. The above applies to the Derivative
 Work as incorporated in a Collective Work, but this does not
 require the Collective Work apart from the Derivative Work itself
 to be made subject to the terms of this License. If you
 distribute, publicly display, publicly perform, or publicly
 digitally perform the Work or any Derivative Works or Collective
 Works, You must keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i)
 the name of the Original Author (or pseudonym, if applicable) if
 supplied, and/or (ii) if the Original Author and/or Licensor
 designate another party or parties (e.g. a sponsor institute,
 publishing entity, journal) for attribution in Licensor's
 copyright notice, terms of service or by other reasonable means,
 the name of such party or parties; the title of the Work if
 supplied; to the extent reasonably practicable, the Uniform
 Resource Identifier, if any, that Licensor specifies to be
 associated with the Work, unless such URI does not refer to the
 copyright notice or licensing information for the Work; and in the
 case of a Derivative Work, a credit identifying the use of the
 Work in the Derivative Work (e.g., "French translation of the Work
 by Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: Apache-2.0
 On Debian systems the full text of the Apache-2.0 license can be found in
 /usr/share/common-licenses/Apache-2.0.

License: Zlib
 The zlib/libpng License
 .
 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 .
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 .
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 .
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 .
 3. This notice may not be removed or altered from any source
 distribution.
 .
 NO WARRANTY
 .
 BECAUSE THE DATA IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
 FOR THE DATA, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
 PROVIDE THE DATA "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
 TO THE QUALITY AND PERFORMANCE OF THE DATA IS WITH YOU. SHOULD THE
 DATA PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
 REPAIR OR CORRECTION.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
 REDISTRIBUTE THE DATA AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
 OUT OF THE USE OR INABILITY TO USE THE DATA (INCLUDING BUT NOT LIMITED
 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
 YOU OR THIRD PARTIES OR A FAILURE OF THE DATA TO OPERATE WITH ANY OTHER
 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

./usr/share/doc/python3-pikepdf/examples/find_links.py

SPDX-FileCopyrightText: 2022 James R. Barlow
SPDX-License-Identifier: MIT

"""Use pikepdf to find links in a PDF."""

from __future__ import annotations

import argparse

import pikepdf

Name = pikepdf.Name

parser = argparse.ArgumentParser(description="Find URIs in a PDF")
parser.add_argument('input_file')

def check_action(action):
 if action.Type != Name.Action:
 return
 if action.S == Name.URI:
 yield str(bytes(action.URI), encoding='ascii')

def check_object_aa(obj):
 if Name.AA in obj:
 for _name, action in obj.AA.items():
 yield from check_action(action)

def check_page_annots(page):
 if Name.Annots not in page:
 return
 annots = page.Annots
 for annot in annots:
 if annot.Type != Name.Annot:
 continue
 if annot.Subtype == Name.Link:
 link_annot = annot
 if Name.A in link_annot:
 action = link_annot.A
 yield from check_action(action)
 yield from check_object_aa(annot)

def check_page(page):
 yield from check_object_aa(page)

def gather_links(pdf):
 for page in pdf.pages:
 yield from check_page(page)
 yield from check_page_annots(page)

def main():
 args = parser.parse_args()
 with pikepdf.open(args.input_file) as pdf:
 links = gather_links(pdf)
 for link in links:
 print(link)

if __name__ == "__main__":
 main()

